ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2009
Brookfield*, Krebs, Shaheen
Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

(1) Prove that \mathbb{Q} is not a cyclic group.

Answer: Of course, $\langle 0\rangle=\{0\} \neq \mathbb{Q}$. And if $0 \neq q \in \mathbb{Q}$, Then $\langle q\rangle=\{n q \mid n \in$ $\mathbb{Z}\}$ is the set of all integer multiples of q. But not all rational numbers are integer multiples of q, for example, $q / 2$ is not. (If $q / 2=n q$ for some $n \in \mathbb{Z}$, then $q=0$ contrary to assumption.) Thus \mathbb{Q} is not equal to any of its cyclic subgroups, that is, \mathbb{Q} is not cyclic.
(2) Let G be a group of order 30. Show that G is not simple.

Answer: By Sylow, $n_{3} \in\{1,10\}$ and $n_{5} \in\{1,6\}$. But if $n_{3}=10$ and $n_{5}=6$, then G would have 20 elements of order 3 and 24 elements of order 5-clearly impossible. Thus, either $n_{3}=1$ and G contains a unique normal subgroup of order 3 , or $n_{5}=1$ and G contains a unique normal subgroup of order 5 . Either way, G is not simple.
(3) Suppose that G is a nonabelian group of order p^{3} where p is a prime number. In the problems below you may use the following facts: (A) If G is a group with center Z and G / Z is cyclic, then G is abelian; (B) If a group G has order p^{2} then G is abelian.
(a) Let Z be the center of G. Prove that $|Z|=p$.

Answer: By Lagrange, $|Z|=1, p, p^{2}$ or p^{3}. Using the class equation in the standard way we know that $|Z| \neq 1$. And $|Z|=p^{3}$ would imply $Z=G$ and hence G is abelian, contrary to assumption. And if $|Z|=p^{2}$ then $|G / Z|=p$ and so G / Z is cyclic which, by (A), implies G is abelian, contrary to assumption.
(b) Let G^{\prime} be the commutator subgroup of G. Prove that $G^{\prime}=Z$.

Answer: $|G / Z|$ has order p^{2} so is an abelian group by (B). This implies $G^{\prime} \leq Z$ and also $\left|G^{\prime}\right|=1$ or $\left|G^{\prime}\right|=p$. But $G^{\prime}=\{1\}$ would imply that G is abelian, contrary to assumption. So we are left with $\left|G^{\prime}\right|=p$ and so $G^{\prime}=Z$.

Rings

(1) Let R be a commutative ring with identity 1 . For each $n \in \mathbb{N}$, let I_{i} be a proper ideal of R such that $I_{1} \subseteq I_{2} \subseteq I_{3} \subseteq \ldots$ Show that $J=\bigcup_{n \in \mathbb{N}} I_{n}$ is a proper ideal of R.
Answer: [See F02] Let $x \in J$ and $r \in R$. Then $x \in I_{n}$ for some $n \in \mathbb{N}$, and so $r x \in I_{n} \subseteq J$. Thus J is closed under multiplication by elements of R.

Let $x, y \in J$. Then $x \in I_{n}$ and $y \in I_{m}$ for some $n, m \in \mathbb{N}$, and so $x, y \in$ $I_{\max (m, n)}$. Hence $x-y \in I_{\max (m, n)} \subseteq J$. Thus J is closed under subtraction.

These two closure conditions imply that J is an ideal of R. If J is not proper, then $J=R$ and $1 \in J$. But then $1 \in I_{n}$ for some $n \in \mathbb{N}$, which means that $I_{n}=R$, contradicting the properness of I_{n}. Thus J must be proper.
(2) Let $R=M_{2}(F)$ be the ring of 2×2 matrices over a field F with the usual operations. Show that the only (two-sided) ideals of R are $\{0\}$ and R itself (that is, R is a simple ring).
Answer: Let J be a two-sided ideal of R. Suppose that $J \neq\{0\}$ and contains a nonzero matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] \in J$. At least one of the entries of A must be nonzero. If $a_{11} \neq 0$, then
$\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{rr}a_{11} & 0 \\ 0 & a_{11}\end{array}\right] \in J$
and so $I \in J$ and $J=R$. Similar arguments work if $a_{12} \neq 0, a_{21} \neq 0$ or $a_{22} \neq 0$.
(3) Let I be the ideal of $\mathbb{Z}[x]$ generated by 2 and x. Show that I is not a principal ideal.
Answer : First we notice that any polynomial in I has the form $f(x)=2 g(x)+$ $x h(x)$ for some $g, h \in \mathbb{Z}[x]$. In particular, $f(0)=2 g(0)$ is an even integer.

Now suppose that I is principal, that is, $I=(f)$ for some $f \in \mathbb{Z}[x]$. Then, in particular, $2 \in I=(f)$ and so $2=g(x) f(x)$ for some $g \in \mathbb{Z}[x]$. But $\operatorname{deg} g+\operatorname{deg} f=\operatorname{deg} 2=0$, so $\operatorname{deg} g=\operatorname{deg} f=0$ and g and f are constant polynomials, that is $g, f \in \mathbb{Z}$. From above, f must be ± 2, and so $I=$ $(f)=(2)=\{2 h(x) \mid h(x) \in \mathbb{Z}[x]\}$, that is, I is the set of polynomials whose coefficients are all even. But then $x \notin I$, a contradiction. Thus we have shown that I is not a principal ideal.

Fields

(1) Consider $f(x)=x^{3}+3 x^{2}+3 x+2 \in \mathbb{Z}_{5}[x]$. Is f irreducible over \mathbb{Z}_{5} ? Let K be the splitting field of f over \mathbb{Z}_{5}. Factor f completely over $K[x]$.
Answer: [See F08] $f(3)=0$ and so $f(x)=(x+2)\left(x^{2}+x+1\right)$. Since $x^{2}+x+1$ has no roots in \mathbb{Z}_{5}, this polynomial is irreducible. Then $K=\mathbb{Z}_{5}(\alpha)$ where $\alpha^{2}+\alpha+1=0$. The other root of $x^{2}+x+1$ in K is $-1-\alpha$ and so $f(x)=$ $(x+2)(x-\alpha)(x+1+\alpha)$ in $K[x]$.
(2) Find the Galois group of $f(x)=x^{4}-2$ over \mathbb{Q}. Show that it is not abelian.

Answer: Let $\alpha=\sqrt[4]{4}$. Then the other roots of f are $i \alpha,-\alpha$ and $-i \alpha$. The splitting field of f is $F=\mathbb{Q}(\alpha, i)$. Since f is irreducible over \mathbb{Q} (by Eisenstein with $p=2$, for example), α has degree 4 over \mathbb{Q}, and $[\mathbb{Q}(\alpha): \mathbb{Q}]=4$. Since $i \notin \mathbb{Q}(\alpha) \subseteq \mathbb{R}$, i has degree 2 over $\mathbb{Q}(\alpha)$, and hence $[F: \mathbb{Q}]=8$. By Galois Theory, the Galois group of f has order 8 and it is isomorphic to a subgroup of S_{4}. But all such subgroups of S_{4} are isomorphic to the dihedral group of order $8, D_{8}$, a nonabelian group.
(3) Let p be a prime number, and let \mathbb{Z}_{p} be the field of integers modulo p. Let E be a finite extension field of \mathbb{Z}_{p}. Let n be a positive integer. Let

$$
S=\sum_{x \in E} x^{n}
$$

(a) Let $\sigma \in \operatorname{Gal}\left(E / \mathbb{Z}_{p}\right)$. Show that $\sigma(S)=S$.

Answer: σ is, among other things, a bijection from E to E. So it simply permutes the terms of the sum defining S. Thus $\sigma(S)=S$.
(b) Show that $S \in \mathbb{Z}_{p}$.

Answer: Every finite extension of a finite field is Galois, and so by definition of a Galois extension, the fixed field of $\operatorname{Gal}\left(E / \mathbb{Z}_{p}\right)$ is \mathbb{Z}_{p}. By (a), S is in this fixed field.

