ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2009

Brookfield*, Krebs, Shaheen

<u>Directions</u>: Answer 5 questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

- (1) Prove that \mathbb{Q} is not a cyclic group.
 - Answer: Of course, $\langle 0 \rangle = \{0\} \neq \mathbb{Q}$. And if $0 \neq q \in \mathbb{Q}$, Then $\langle q \rangle = \{nq \mid n \in \mathbb{Z}\}$ is the set of all integer multiples of q. But not all rational numbers are integer multiples of q, for example, q/2 is not. (If q/2 = nq for some $n \in \mathbb{Z}$, then q = 0 contrary to assumption.) Thus \mathbb{Q} is not equal to any of its cyclic subgroups, that is, \mathbb{Q} is not cyclic.
- (2) Let G be a group of order 30. Show that G is not simple.
 Answer: By Sylow, n₃ ∈ {1,10} and n₅ ∈ {1,6}. But if n₃ = 10 and n₅ = 6, then G would have 20 elements of order 3 and 24 elements of order 5—clearly impossible. Thus, either n₃ = 1 and G contains a unique normal subgroup of order 3, or n₅ = 1 and G contains a unique normal subgroup of order 5. Either way, G is not simple.
- (3) Suppose that G is a nonabelian group of order p³ where p is a prime number. In the problems below you may use the following facts: (A) If G is a group with center Z and G/Z is cyclic, then G is abelian; (B) If a group G has order p² then G is abelian.
 - (a) Let Z be the center of G. Prove that |Z| = p.

Answer: By Lagrange, |Z| = 1, p, p^2 or p^3 . Using the class equation in the standard way we know that $|Z| \neq 1$. And $|Z| = p^3$ would imply Z = G and hence G is abelian, contrary to assumption. And if $|Z| = p^2$ then |G/Z| = p and so G/Z is cyclic which, by (A), implies G is abelian, contrary to assumption.

- (b) Let G' be the commutator subgroup of G. Prove that G' = Z.
 - Answer: |G/Z| has order p^2 so is an abelian group by (B). This implies $G' \leq Z$ and also |G'| = 1 or |G'| = p. But $G' = \{1\}$ would imply that G is abelian, contrary to assumption. So we are left with |G'| = p and so G' = Z.

Rings

(1) Let R be a commutative ring with identity 1. For each $n \in \mathbb{N}$, let I_i be a proper ideal of R such that $I_1 \subseteq I_2 \subseteq I_3 \subseteq \ldots$ Show that $J = \bigcup_{n \in \mathbb{N}} I_n$ is a proper ideal of R.

Answer: [See F02] Let $x \in J$ and $r \in R$. Then $x \in I_n$ for some $n \in \mathbb{N}$, and so $rx \in I_n \subseteq J$. Thus J is closed under multiplication by elements of R.

Let $x, y \in J$. Then $x \in I_n$ and $y \in I_m$ for some $n, m \in \mathbb{N}$, and so $x, y \in I_{\max(m,n)}$. Hence $x - y \in I_{\max(m,n)} \subseteq J$. Thus J is closed under subtraction.

These two closure conditions imply that J is an ideal of R. If J is not proper, then J = R and $1 \in J$. But then $1 \in I_n$ for some $n \in \mathbb{N}$, which means that $I_n = R$, contradicting the properness of I_n . Thus J must be proper.

(2) Let $R = M_2(F)$ be the ring of 2×2 matrices over a field F with the usual operations. Show that the only (two-sided) ideals of R are $\{0\}$ and R itself (that is, R is a simple ring).

Answer: Let J be a two-sided ideal of R. Suppose that $J \neq \{0\}$ and contains a nonzero matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in J$. At least one of the entries of A must be nonzero. If $a_{11} \neq 0$, then

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} a_{11} & 0 \\ 0 & a_{11} \end{bmatrix} \in J$$

and so $I \in J$ and J = R. Similar arguments work if $a_{12} \neq 0$, $a_{21} \neq 0$ or $a_{22} \neq 0$.

(3) Let I be the ideal of $\mathbb{Z}[x]$ generated by 2 and x. Show that I is not a principal ideal.

Answer: First we notice that any polynomial in I has the form f(x) = 2g(x) + xh(x) for some $g, h \in \mathbb{Z}[x]$. In particular, f(0) = 2g(0) is an even integer.

Now suppose that I is principal, that is, I = (f) for some $f \in \mathbb{Z}[x]$. Then, in particular, $2 \in I = (f)$ and so 2 = g(x)f(x) for some $g \in \mathbb{Z}[x]$. But $\deg g + \deg f = \deg 2 = 0$, so $\deg g = \deg f = 0$ and g and f are constant polynomials, that is $g, f \in \mathbb{Z}$. From above, f must be ± 2 , and so I = $(f) = (2) = \{2h(x) \mid h(x) \in \mathbb{Z}[x]\}$, that is, I is the set of polynomials whose coefficients are all even. But then $x \notin I$, a contradiction. Thus we have shown that I is not a principal ideal.

Fields

- (1) Consider $f(x) = x^3 + 3x^2 + 3x + 2 \in \mathbb{Z}_5[x]$. Is f irreducible over \mathbb{Z}_5 ? Let K be the splitting field of f over \mathbb{Z}_5 . Factor f completely over K[x]. **Answer**: [See F08] f(3) = 0 and so $f(x) = (x+2)(x^2+x+1)$. Since x^2+x+1 has no roots in \mathbb{Z}_5 , this polynomial is irreducible. Then $K = \mathbb{Z}_5(\alpha)$ where $\alpha^2 + \alpha + 1 = 0$. The other root of $x^2 + x + 1$ in K is $-1 - \alpha$ and so $f(x) = (x+2)(x-\alpha)(x+1+\alpha)$ in K[x].
- (2) Find the Galois group of f(x) = x⁴ 2 over Q. Show that it is not abelian. Answer: Let α = ⁴√4. Then the other roots of f are iα, -α and -iα. The splitting field of f is F = Q(α, i). Since f is irreducible over Q (by Eisenstein with p = 2, for example), α has degree 4 over Q, and [Q(α) : Q] = 4. Since i ∉ Q(α) ⊆ ℝ, i has degree 2 over Q(α), and hence [F : Q] = 8. By Galois Theory, the Galois group of f has order 8 and it is isomorphic to a subgroup of S₄. But all such subgroups of S₄ are isomorphic to the dihedral group of order 8, D₈, a nonabelian group.
- (3) Let p be a prime number, and let \mathbb{Z}_p be the field of integers modulo p. Let E be a finite extension field of \mathbb{Z}_p . Let n be a positive integer. Let

$$S = \sum_{x \in E} x^n$$

(a) Let $\sigma \in \text{Gal}(E/\mathbb{Z}_p)$. Show that $\sigma(S) = S$. Answer: σ is, among other things, a bijection from E to E. So it simply permutes the terms of the sum defining S. Thus $\sigma(S) = S$.

 (b) Show that S ∈ Z_p.
 Answer: Every finite extension of a finite field is Galois, and so by definition of a Galois extension, the fixed field of $\operatorname{Gal}(E/\mathbb{Z}_p)$ is \mathbb{Z}_p . By (a), S is in this fixed field.