ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2008

Brookfield*, Chabot, Shaheen

<u>Directions</u>: Answer 5 questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

- (1) Show that any group of order 15 is cyclic.
 - Answer: [See F11] Let G be a group of order 15. By Sylow, n_3 divides 15 and is congruent to 1 modulo 3. Thus $n_3 = 1$, and G has a unique normal subgroup H of order 3. Similarly, n_5 divides 15 and is congruent to 1 modulo 5. Thus $n_5 = 1$, and G has a unique normal subgroup K of order 5. $H \cap K$ is a subgroup of H and a subgroup of K, so its order divides both 3 and 5, and so $H \cap K = \{1\}$ and $H \times K \cong HK \leq G$. But $|H \times K| = 15 = |G|$ and so $H \times K \cong G$. Now we recall that groups of order 3 and 5 are isomorphic to \mathbb{Z}_3 and \mathbb{Z}_5 respectively and so $G \cong \mathbb{Z}_3 \times \mathbb{Z}_5 \cong \mathbb{Z}_{15}$.
- (2) Let N and H be subgroups of a group G with N normal. Show that $NH = \{nh \mid n \in N \text{ and } h \in H\}$ is a subgroup of G.

Answer: Of course, $N \neq \emptyset$ and $H \neq \emptyset$, so $NH \neq \emptyset$. Suppose $x_1, x_2 \in NH$. Then $x_1 = n_1h_1$ and $x_2 = n_2h_2$, with $n_1, n_2 \in N$ and $h_1, h_2 \in H$. Since N is normal, $h_1h_2^{-1}n_2^{-1} \in h_1h_2^{-1}N = Nh_1h_2^{-1}$ and so $h_1h_2^{-1}n_2^{-1} = n_3h_1h_2^{-1}$ for some $n_3 \in N$. This implies

$$x_1 x_2^{-1} = n_1 h_1 h_2^{-1} n_2^{-1} = n_1 n_3 h_1 h_2^{-1} \in NH.$$

By the subgroup criterion, $NH \leq G$.

- (3) Let p be a prime number and G a nontrivial finite p-group with center Z(G).
 (a) Show that Z(G) is nontrivial.
 - Answer: Fraleigh, Theorem 37.4, p. 329 and Dummit and Foote, Theorem 8, p. 125
 - (b) Let N be a nontrivial normal subgroup of G. Show that $N \cap Z(G)$ is nontrivial.

Answer: Since N is normal, it is a union of conjugacy classes of G. Such a conjugacy class has either one element, in which case the element is in $N \cap Z$, or has a multiple of p elements. Since the order of N is also a multiple of p, this implies that there must be at least p one element conjugacy classes in N. Hence $N \cap Z$ has at least p elements.

Rings

- (1) Let R be a finite commutative ring (not necessarily with a multiplicative identity) with more than one element and no zero divisors.
 - (a) Show that R has a multiplicative identity and so is a domain.
 - (b) Show that R is a field.
 - Answer: [See F07]
 - (a) For each nonzero $a \in R$, define a function $\phi_a : R \to R$ by $\phi_a(x) = ax$ for all $x \in R$. We show that ϕ_a is injective. Suppose that $\phi_a(x) = \phi_a(y)$ for

some $x, y \in R$. Then ax = ay and so a(x - y) = 0. Since $a \neq 0$ and R has no zero divisors, this can only happen if x - y = 0, that is, x = y. Because R is finite and ϕ_a is injective, ϕ_a is also surjective. In particular, there is some $e \in R$ such that $\phi_a(e) = a$ that is ae = a.

We show that e is the multiplicative identity element of R. Indeed, if $x \in R$, then a(x - ex) = ax - aex = ax - ax = 0, and, once again since a is not a zero divisor, we get x = ex. This shows that e is the multiplicative identity element of R, and so R is an integral domain.

- (b) Since ϕ_a is surjective, there is some element $b \in R$ such that ab = e, thus a has a multiplicative inverse. Since this is true of any nonzero element of R, R is a field.
- (2) Let R be the set of all matrices of the form $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ with $a, b \in \mathbb{R}$ together with the usual matrix addition and multiplication operations. Show that R is isomorphic to \mathbb{C} .

Answer: We know that every element of \mathbb{C} can be written uniquely in the form a + ib with $a, b \in \mathbb{R}$. So the function $\phi : R \to \mathbb{C}$ defined by

$$\phi\left(\begin{bmatrix}a&b\\-b&a\end{bmatrix}\right) = a + ib$$

for $a, b \in \mathbb{R}$ is a bijection. It remains to show that ϕ is a homomorphism. The additive property is easy, so we confirm just the multiplicative property:

$$\phi\left(\begin{bmatrix}a_{1} & b_{1}\\ -b_{1} & a_{1}\end{bmatrix}\begin{bmatrix}a_{2} & b_{2}\\ -b_{2} & a_{2}\end{bmatrix}\right) = \phi\left(\begin{bmatrix}a_{1}a_{2} - b_{1}b_{2} & a_{1}b_{2} + b_{1}a_{2}\\ -(a_{1}b_{2} + b_{1}a_{2}) & a_{1}a_{2} - b_{1}b_{2}\end{bmatrix}\right)$$
$$= (a_{1}a_{2} - b_{1}b_{2}) + i(a_{1}b_{2} + b_{1}a_{2})$$
$$= (a_{1} + ib_{1})(a_{2} + ib_{2})$$
$$= \phi\left(\begin{bmatrix}a_{1} & b_{1}\\ -b_{1} & a_{1}\end{bmatrix}\right)\phi\left(\begin{bmatrix}a_{2} & b_{2}\\ -b_{2} & a_{2}\end{bmatrix}\right)$$

for all $a_1, a_2, b_1, b_2 \in \mathbb{Q}$.

(3) Let R be a commutative ring with identity and M an ideal of R. Show that M is maximal if and only if, for every $r \in R \setminus M$, there is an $x \in R$ such that $1 - rx \in M$. Note: $R \setminus M = \{r \in R \mid r \notin M\}$.

Answer: [See F12] Suppose that M is maximal. If $r \in R \setminus M$, then the ideal containing M and r is strictly bigger than M so is the whole ring R. Specifically, $\langle r \rangle + M = R$. In particular, $1 \in \langle r \rangle + M$ and so there are $x \in R$ and $m \in M$ such that 1 = rx + m. Consequently $1 - rx = m \in M$.

Conversely, suppose that for every $r \in R \setminus M$ there is an $x \in R$ such that $1 - rx \in M$. Let I be an ideal such that $M \subseteq I \subseteq R$. If I = M we are done. Otherwise, I contains an element r that is not in M. By assumption, there exists $x \in R$ and $m \in M$ such that 1 = rx + m. This implies that $1 \in \langle r \rangle + M$ and so $\langle r \rangle + M = R$. Because $r \in I$ we also have $\langle r \rangle + M \subseteq I$, and so I = R. This shows that M is maximal.

Fields

(1) Let E be the splitting field of $x^6 - 3$ over the rational numbers \mathbb{Q} .

(a) Find $[E : \mathbb{Q}]$. Explain.

(b) Show that the Galois group $\operatorname{Gal}(E/\mathbb{Q})$ is not abelian.

- Answer: [See F14]
- (a) The zeros of $x^6 3$ are $\sqrt[6]{3}$, $\lambda \sqrt[6]{3}$, $\lambda^2 \sqrt[6]{3}$, $\lambda^3 \sqrt[6]{3}$, $\lambda^4 \sqrt[6]{3}$ and $\lambda^5 \sqrt[6]{3}$ where $\lambda = e^{2\pi i/6}$. Since $\lambda = (\lambda \sqrt[6]{3})/\sqrt[6]{3} \in E$, it follows that $E = \mathbb{Q}(\lambda, \sqrt[6]{3})$. Consider

By Eisenstein, $x^6 - 3$ is irreducible over \mathbb{Q} , so $[\mathbb{Q}(\sqrt[6]{3}) : \mathbb{Q}] = 6$. Because, λ is a zero of $x^2 - x + 1 \in \mathbb{Q}(\sqrt[6]{3})[x]$, the degree of λ over $\mathbb{Q}(\sqrt[6]{3})$ is at most 2. But $\mathbb{Q}(\sqrt[6]{3}) \subseteq \mathbb{R}$ and $\lambda \notin \mathbb{R}$, so λ has degree 2 over $\mathbb{Q}(\sqrt[6]{3})$. This implies $[E : \mathbb{Q}(\sqrt[6]{3})] = 2$ and $[E : \mathbb{Q}] = 12$.

(b) Since E is a splitting field, Gal(E/Q) is a group of order 12. Each automorphism in Gal(E/Q) sends ⁶√3 to one of its six conjugates ⁶√3, λ⁶√3, λ²√3, λ²√3, λ³√3, λ⁴√3, λ⁵√3, and sends λ to one of its two conjugates λ, λ⁵. Moreover, since ⁶√3 and λ generate E over Q, each automorphism is determined by where it sends these generators. In particular, there are automorphisms r, s ∈ Gal(E/Q) such that r(⁶√3) = λ⁶√3, r(λ) = λ, s(⁶√3) = ⁶√3, s(λ) = λ⁵. With a bit of calculation, one can show that |r| = 6, |s| = 2 and rs = sr⁻¹ and so Gal(E/Q) ≅ D₁₂.

With less calculation, one finds that $r(s(\sqrt[6]{3})) = \lambda \sqrt[6]{3}$, whereas $s(r(\sqrt[6]{3})) = \lambda^5 \sqrt[6]{3}$ which shows that $rs \neq sr$ and so $\operatorname{Gal}(E/\mathbb{Q})$ is not abelian.

- (2) Let E be an extension field of F with [E:F] = 5.
 - (a) Show that $F(\alpha) = F(\alpha^3)$ for all $\alpha \in E$.
 - (b) Show that $F(\alpha) = F(\alpha^9)$ for all $\alpha \in E$.

Answer: [See F07] Reminder: $\deg(\alpha, F) = [F(\alpha) : F]$ divides [E : F] = 5. So either $\deg(\alpha, F) = [F(\alpha) : F] = 1$ with $F(\alpha) = F$ and $\alpha \in F$, or $\deg(\alpha, F) = [F(\alpha) : F] = 5$ with $F(\alpha) = E$ and $\alpha \notin F$.

- (a) If $\alpha \in F$, then $\alpha^3 \in F$ and $F(\alpha) = F(\alpha^3) = F$. Otherwise, α is not in F and so deg $(\alpha, F) = 5$. Because of this, α^3 cannot be in F either. (If $\alpha^3 \in F$ then the degree of α would be three or less.) Thus deg $(\alpha^3, F) = 5$ and $F(\alpha) = F(\alpha^3) = E$.
- (b) By (a), $F(\alpha) = F(\alpha^3) = F((\alpha^3)^3) = F(\alpha^9).$
- (3) Let K be the splitting field of $f(x) = x^3 + 3x^2 + 3x + 2 \in \mathbb{Z}_5[x]$ over \mathbb{Z}_5 . (a) Is f irreducible over \mathbb{Z}_5 ?
 - (b) How many elements does K have?
 - (c) Factor f completely in K[x].

Answer:

- (a) No. f(3) = 0 and so $f(x) = (x 3)(x^2 + x + 1)$.
- (b) Since $3 \in \mathbb{Z}_5$, K is the splitting field for $x^2 + x + 1$. Because $x^2 + x + 1$ has no zeros in \mathbb{Z}_5 it is irreducible over \mathbb{Z}_5 and K has degree 2 over \mathbb{Z}_5 . This means that $|K| = 5^2 = 25$.

(c) Let α be a zero of $x^2 + x + 1$ in K so that $K = \mathbb{Z}_5(\alpha)$. Since $x - \alpha$ is a factor of $x^2 + x + 1$, we can use long division to get the other factor: $x + \alpha + 1$. The complete factorization of f is then $f(x) = (x - 3)(x - \alpha)(x + \alpha + 1)$.