ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2008
Brookfield*, Chabot, Shaheen
Directions: Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

(1) Show that any group of order 15 is cyclic.

Answer: [See F11] Let G be a group of order 15. By Sylow, n_{3} divides 15 and is congruent to 1 modulo 3 . Thus $n_{3}=1$, and G has a unique normal subgroup H of order 3. Similarly, n_{5} divides 15 and is congruent to 1 modulo 5. Thus $n_{5}=1$, and G has a unique normal subgroup K of order 5 . $H \cap K$ is a subgroup of H and a subgroup of K, so its order divides both 3 and 5, and so $H \cap K=\{1\}$ and $H \times K \cong H K \leq G$. But $|H \times K|=15=|G|$ and so $H \times K \cong G$. Now we recall that groups of order 3 and 5 are isomorphic to \mathbb{Z}_{3} and \mathbb{Z}_{5} respectively and so $G \cong \mathbb{Z}_{3} \times \mathbb{Z}_{5} \cong \mathbb{Z}_{15}$.
(2) Let N and H be subgroups of a group G with N normal. Show that $N H=$ $\{n h \mid n \in N$ and $h \in H\}$ is a subgroup of G.
Answer: Of course, $N \neq \emptyset$ and $H \neq \emptyset$, so $N H \neq \emptyset$. Suppose $x_{1}, x_{2} \in N H$. Then $x_{1}=n_{1} h_{1}$ and $x_{2}=n_{2} h_{2}$, with $n_{1}, n_{2} \in N$ and $h_{1}, h_{2} \in H$. Since N is normal, $h_{1} h_{2}^{-1} n_{2}^{-1} \in h_{1} h_{2}^{-1} N=N h_{1} h_{2}^{-1}$ and so $h_{1} h_{2}^{-1} n_{2}^{-1}=n_{3} h_{1} h_{2}^{-1}$ for some $n_{3} \in N$. This implies

$$
x_{1} x_{2}^{-1}=n_{1} h_{1} h_{2}^{-1} n_{2}^{-1}=n_{1} n_{3} h_{1} h_{2}^{-1} \in N H .
$$

By the subgroup criterion, $N H \leq G$.
(3) Let p be a prime number and G a nontrivial finite p-group with center $Z(G)$.
(a) Show that $Z(G)$ is nontrivial.

Answer: Fraleigh, Theorem 37.4, p. 329 and Dummit and Foote, Theorem 8, p. 125
(b) Let N be a nontrivial normal subgroup of G. Show that $N \cap Z(G)$ is nontrivial.
Answer: Since N is normal, it is a union of conjugacy classes of G. Such a conjugacy class has either one element, in which case the element is in $N \cap Z$, or has a multiple of p elements. Since the order of N is also a multiple of p, this implies that there must be at least p one element conjugacy classes in N. Hence $N \cap Z$ has at least p elements.

Rings

(1) Let R be a finite commutative ring (not necessarily with a multiplicative identity) with more than one element and no zero divisors.
(a) Show that R has a multiplicative identity and so is a domain.
(b) Show that R is a field.

Answer: [See F07]
(a) For each nonzero $a \in R$, define a function $\phi_{a}: R \rightarrow R$ by $\phi_{a}(x)=a x$ for all $x \in R$. We show that ϕ_{a} is injective. Suppose that $\phi_{a}(x)=\phi_{a}(y)$ for
some $x, y \in R$. Then $a x=a y$ and so $a(x-y)=0$. Since $a \neq 0$ and R has no zero divisors, this can only happen if $x-y=0$, that is, $x=y$. Because R is finite and ϕ_{a} is injective, ϕ_{a} is also surjective. In particular, there is some $e \in R$ such that $\phi_{a}(e)=a$ that is $a e=a$.
We show that e is the multiplicative identity element of R. Indeed, if $x \in R$, then $a(x-e x)=a x-a e x=a x-a x=0$, and, once again since a is not a zero divisor, we get $x=e x$. This shows that e is the multiplicative identity element of R, and so R is an integral domain.
(b) Since ϕ_{a} is surjective, there is some element $b \in R$ such that $a b=e$, thus a has a multiplicative inverse. Since this is true of any nonzero element of R, R is a field.
(2) Let R be the set of all matrices of the form $\left[\begin{array}{rr}a & b \\ -b & a\end{array}\right]$ with $a, b \in \mathbb{R}$ together with the usual matrix addition and multiplication operations. Show that R is isomorphic to \mathbb{C}.
Answer: We know that every element of \mathbb{C} can be written uniquely in the form $a+i b$ with $a, b \in \mathbb{R}$. So the function $\phi: R \rightarrow \mathbb{C}$ defined by

$$
\phi\left(\left[\begin{array}{rr}
a & b \\
-b & a
\end{array}\right]\right)=a+i b
$$

for $a, b \in \mathbb{R}$ is a bijection. It remains to show that ϕ is a homomorphism. The additive property is easy, so we confirm just the multiplicative property:

$$
\begin{aligned}
\phi\left(\left[\begin{array}{cc}
a_{1} & b_{1} \\
-b_{1} & a_{1}
\end{array}\right]\left[\begin{array}{cc}
a_{2} & b_{2} \\
-b_{2} & a_{2}
\end{array}\right]\right) & =\phi\left(\left[\begin{array}{cc}
a_{1} a_{2}-b_{1} b_{2} & a_{1} b_{2}+b_{1} a_{2} \\
-\left(a_{1} b_{2}+b_{1} a_{2}\right) & a_{1} a_{2}-b_{1} b_{2}
\end{array}\right]\right) \\
& =\left(a_{1} a_{2}-b_{1} b_{2}\right)+i\left(a_{1} b_{2}+b_{1} a_{2}\right) \\
& =\left(a_{1}+i b_{1}\right)\left(a_{2}+i b_{2}\right) \\
& =\phi\left(\left[\begin{array}{cc}
a_{1} & b_{1} \\
-b_{1} & a_{1}
\end{array}\right]\right) \phi\left(\left[\begin{array}{cc}
a_{2} & b_{2} \\
-b_{2} & a_{2}
\end{array}\right]\right)
\end{aligned}
$$

for all $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Q}$.
(3) Let R be a commutative ring with identity and M an ideal of R. Show that M is maximal if and only if, for every $r \in R \backslash M$, there is an $x \in R$ such that $1-r x \in M$. Note: $R \backslash M=\{r \in R \mid r \notin M\}$.
Answer: [See F12] Suppose that M is maximal. If $r \in R \backslash M$, then the ideal containing M and r is strictly bigger than M so is the whole ring R. Specifically, $\langle r\rangle+M=R$. In particular, $1 \in\langle r\rangle+M$ and so there are $x \in R$ and $m \in M$ such that $1=r x+m$. Consequently $1-r x=m \in M$.

Conversely, suppose that for every $r \in R \backslash M$ there is an $x \in R$ such that $1-r x \in M$. Let I be an ideal such that $M \subseteq I \subseteq R$. If $I=M$ we are done. Otherwise, I contains an element r that is not in M. By assumption, there exists $x \in R$ and $m \in M$ such that $1=r x+m$. This implies that $1 \in\langle r\rangle+M$ and so $\langle r\rangle+M=R$. Because $r \in I$ we also have $\langle r\rangle+M \subseteq I$, and so $I=R$. This shows that M is maximal.
Fields
(1) Let E be the splitting field of $x^{6}-3$ over the rational numbers \mathbb{Q}.
(a) Find $[E: \mathbb{Q}]$. Explain.
(b) Show that the Galois group $\operatorname{Gal}(E / \mathbb{Q})$ is not abelian.

Answer: [See F14]
(a) The zeros of $x^{6}-3$ are $\sqrt[6]{3}, \lambda \sqrt[6]{3}, \lambda^{2} \sqrt[6]{3}, \lambda^{3} \sqrt[6]{3}, \lambda^{4} \sqrt[6]{3}$ and $\lambda^{5} \sqrt[6]{3}$ where $\lambda=e^{2 \pi i / 6}$. Since $\lambda=(\lambda \sqrt[6]{3}) / \sqrt[6]{3} \in E$, it follows that $E=\mathbb{Q}(\lambda, \sqrt[6]{3})$. Consider

By Eisenstein, $x^{6}-3$ is irreducible over \mathbb{Q}, so $[\mathbb{Q}(\sqrt[6]{3}): \mathbb{Q}]=6$. Because, λ is a zero of $x^{2}-x+1 \in \mathbb{Q}(\sqrt[6]{3})[x]$, the degree of λ over $\mathbb{Q}(\sqrt[6]{3})$ is at most 2. But $\mathbb{Q}(\sqrt[6]{3}) \subseteq \mathbb{R}$ and $\lambda \notin \mathbb{R}$, so λ has degree 2 over $\mathbb{Q}(\sqrt[6]{3})$. This implies $[E: \mathbb{Q}(\sqrt[6]{3})]=2$ and $[E: \mathbb{Q}]=12$.
(b) Since E is a splitting field, $\operatorname{Gal}(E / \mathbb{Q})$ is a group of order 12. Each automorphism in $\operatorname{Gal}(E / \mathbb{Q})$ sends $\sqrt[6]{3}$ to one of its six conjugates $\sqrt[6]{3}, \lambda \sqrt[6]{3}$, $\lambda^{2} \sqrt[6]{3}, \lambda^{3} \sqrt[6]{3}, \lambda \sqrt[6]{3}, \lambda^{5} \sqrt[6]{3}$, and sends λ to one of its two conjugates λ, λ^{5}. Moreover, since $\sqrt[6]{3}$ and λ generate E over \mathbb{Q}, each automorphism is determined by where it sends these generators. In particular, there are automorphisms $r, s \in \operatorname{Gal}(E / \mathbb{Q})$ such that $r(\sqrt[6]{3})=\lambda \sqrt[6]{3}, r(\lambda)=\lambda$, $s(\sqrt[6]{3})=\sqrt[6]{3}, s(\lambda)=\lambda^{5}$. With a bit of calculation, one can show that $|r|=6,|s|=2$ and $r s=s r^{-1}$ and so $\operatorname{Gal}(E / \mathbb{Q}) \cong D_{12}$.
With less calculation, one finds that $r(s(\sqrt[6]{3}))=\lambda \sqrt[6]{3}$, whereas $s(r(\sqrt[6]{3}))=$ $\lambda^{5} \sqrt[6]{3}$ which shows that $r s \neq s r$ and so $\operatorname{Gal}(E / \mathbb{Q})$ is not abelian.
(2) Let E be an extension field of F with $[E: F]=5$.
(a) Show that $F(\alpha)=F\left(\alpha^{3}\right)$ for all $\alpha \in E$.
(b) Show that $F(\alpha)=F\left(\alpha^{9}\right)$ for all $\alpha \in E$.

Answer: [See F07] Reminder: $\operatorname{deg}(\alpha, F)=[F(\alpha): F]$ divides $[E: F]=5$. So either $\operatorname{deg}(\alpha, F)=[F(\alpha): F]=1$ with $F(\alpha)=F$ and $\alpha \in F$, or $\operatorname{deg}(\alpha, F)=$ $[F(\alpha): F]=5$ with $F(\alpha)=E$ and $\alpha \notin F$.
(a) If $\alpha \in F$, then $\alpha^{3} \in F$ and $F(\alpha)=F\left(\alpha^{3}\right)=F$. Otherwise, α is not in F and so $\operatorname{deg}(\alpha, F)=5$. Because of this, α^{3} cannot be in F either. (If $\alpha^{3} \in F$ then the degree of α would be three or less.) Thus $\operatorname{deg}\left(\alpha^{3}, F\right)=5$ and $F(\alpha)=F\left(\alpha^{3}\right)=E$.
(b) By (a), $F(\alpha)=F\left(\alpha^{3}\right)=F\left(\left(\alpha^{3}\right)^{3}\right)=F\left(\alpha^{9}\right)$.
(3) Let K be the splitting field of $f(x)=x^{3}+3 x^{2}+3 x+2 \in \mathbb{Z}_{5}[x]$ over \mathbb{Z}_{5}.
(a) Is f irreducible over \mathbb{Z}_{5} ?
(b) How many elements does K have?
(c) Factor f completely in $K[x]$.

Answer:
(a) No. $f(3)=0$ and so $f(x)=(x-3)\left(x^{2}+x+1\right)$.
(b) Since $3 \in \mathbb{Z}_{5}, K$ is the splitting field for $x^{2}+x+1$. Because $x^{2}+x+1$ has no zeros in \mathbb{Z}_{5} it is irreducible over \mathbb{Z}_{5} and K has degree 2 over \mathbb{Z}_{5}. This means that $|K|=5^{2}=25$.
(c) Let α be a zero of $x^{2}+x+1$ in K so that $K=\mathbb{Z}_{5}(\alpha)$. Since $x-\alpha$ is a factor of $x^{2}+x+1$, we can use long division to get the other factor: $x+\alpha+1$. The complete factorization of f is then $f(x)=(x-3)(x-\alpha)(x+\alpha+1)$.

