ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2006
Chabot, Krebs, Shaheen*
Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

1. Let G be a group, and let G^{\prime} be its commutator subgroup. Let \mathbb{Z} denote the group of integers under addition. Prove that if $G=G^{\prime}$, then any homomorphism from G to \mathbb{Z} is the zero function.
2. Let G be a group of order $175\left(=5^{2} 7\right)$. Prove that G is abelian.

3 . Let p be a prime and assume G is a finite p-group.
(a) Show that the center of G is non-trivial (i.e. $Z(G) \neq\{e\}$).
(b) Let N be a normal subgroup of G of order p. Show that $N \subseteq Z(G)$.

Rings

1. Prove that every ideal of a Euclidean domain is principal.
2. Let R be a commutative ring with identity and I be an ideal of R. Define

$$
\sqrt{I}=\left\{x \in R \mid x^{n} \in I, \text { for some } n \geq 1\right\} .
$$

Prove the following:
(a) \sqrt{I} is an ideal of R.
(b) If $I \subseteq J$ are ideals, then $\sqrt{I} \subset \sqrt{J}$.
(c) $\sqrt{\sqrt{I}}=\sqrt{I}$.
(d) If I and J are ideals of R, then $\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
3. Let $\mathbb{Z}[i]$ denote the ring of Gaussian integers. Let $\mathbb{Z}[x]$ denote the ring of polynomials with integer coefficients. Let f be the unique ring homomorphism from $\mathbb{Z}[x]$ to $\mathbb{Z}[i]$ such that $f(1)=1$ and $f(x)=i$.
(a) Show that the kernel of f is a prime ideal of $\mathbb{Z}[x]$.
(b) Show that $\mathbb{Z}[x] /\left(x^{2}+1\right)$ is an integral domain.

Fields

1. (a) Let \mathbb{Z}_{2} denote the field with two elements. Let $F=\mathbb{Z}_{2}[x] /\left(x^{2}+x+1\right)$. Prove that F is a field.
(b) Let R be the ring $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Prove that the additive group of F is isomorphic to the additive group of R.
(c) Prove that R is not isomorphic (as a ring) to F.
2. Let E be the splitting field of $p(x)=x^{6}-2$ over the rationals \mathbb{Q}.
(a) Find $[E: \mathbb{Q}]$ and explain.
(b) Show that the Galois group $G(E / \mathbb{Q})$ is not abelian.
3. Let K, L, and F be fields with $F \subseteq L \subseteq K,[L: F]=m$, and $[K: L]=n$. Prove that $[K: F]=m n$.
