ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2006

Chabot, Krebs, Shaheen*

Answer 5 questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

Groups

- 1. Let G be a group, and let G' be its commutator subgroup. Let \mathbb{Z} denote the group of integers under addition. Prove that if G = G', then any homomorphism from G to \mathbb{Z} is the zero function.
- 2. Let G be a group of order $175(=5^27)$. Prove that G is abelian.
- 3. Let p be a prime and assume G is a finite p-group.
 - (a) Show that the center of G is non-trivial (i.e. $Z(G) \neq \{e\}$).
 - (b) Let N be a normal subgroup of G of order p. Show that $N \subseteq Z(G)$.

Rings

- 1. Prove that every ideal of a Euclidean domain is principal.
- 2. Let R be a commutative ring with identity and I be an ideal of R. Define

$$\sqrt{I} = \{ x \in R \mid x^n \in I, \text{ for some } n \ge 1 \}.$$

Prove the following:

- (a) \sqrt{I} is an ideal of R.
- (b) If $I \subseteq J$ are ideals, then $\sqrt{I} \subset \sqrt{J}$.
- (c) $\sqrt{\sqrt{I}} = \sqrt{I}$.
- (d) If I and J are ideals of R, then $\sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
- 3. Let $\mathbb{Z}[i]$ denote the ring of Gaussian integers. Let $\mathbb{Z}[x]$ denote the ring of polynomials with integer coefficients. Let f be the unique ring homomorphism from $\mathbb{Z}[x]$ to $\mathbb{Z}[i]$ such that f(1) = 1 and f(x) = i.
 - (a) Show that the kernel of f is a prime ideal of $\mathbb{Z}[x]$.
 - (b) Show that $\mathbb{Z}[x]/(x^2+1)$ is an integral domain.

Fields

- 1. (a) Let \mathbb{Z}_2 denote the field with two elements. Let $F = \mathbb{Z}_2[x]/(x^2 + x + 1)$. Prove that F is a field.
 - (b) Let R be the ring $\mathbb{Z}_2 \times \mathbb{Z}_2$. Prove that the additive group of F is isomorphic to the additive group of R.
 - (c) Prove that R is not isomorphic (as a ring) to F.
- 2. Let E be the splitting field of $p(x) = x^6 2$ over the rationals \mathbb{Q} .
 - (a) Find $[E:\mathbb{Q}]$ and explain.
 - (b) Show that the Galois group $G(E/\mathbb{Q})$ is not abelian.
- 3. Let K, L, and F be fields with $F \subseteq L \subseteq K$, [L:F] = m, and [K:L] = n. Prove that [K:F] = mn.