ALGEBRA COMPREHENSIVE EXAM

FALL 2005
Committee: Bishop, Brookfield*, Krebs
Answer 5 questions only. You must answer at least one question from each of GROUPS, RINGS and FIELDS. Please show work to support your answers.

GROUPS:

(1) Exhibit four distinct (i.e. nonisomorphic) groups of order 12, verifying that they are nonisomorphic.
(2) Let G be a group of order 242. Prove that G contains a nontrivial normal abelian subgroup H. (By nontrivial, we mean $H \neq\{e\}$.)
(3) Let H be a subgroup of a group G. Show that the following conditions are equivalent:
(a) $x^{-1} y^{-1} x y \in H$ for all $x, y \in G$
(b) H is a normal subgroup and G / H is abelian.

RINGS:

(1) Let $\mathbb{Z}_{n}[x]$ denote the ring of polynomials in x with coefficients in the ring of integers modulo n. Let $R=\mathbb{Z}_{6}[x]$. Let $I=(4) \subseteq R$. (In other words, I is the ideal in R generated by the constant 4.) Prove that:
(a) The ring R / I is isomorphic to the ring $\mathbb{Z}_{2}[x]$, and
(b) I is a prime ideal, and
(c) I is not a maximal ideal.
(2) Suppose R is a commutative ring with identity, I is a proper ideal of R, and $a \in R$.
(a) Prove that the smallest ideal of R which contains I and a is $I+(a)$ where
$I+(a)=\{x \in R \mid x=i+r a$ for some $i \in I$ and $r \in R\}$.
(That is, show that (1) $I+(a)$ is an ideal, and (2), if J is any ideal which contains I and a, then J contains $I+(a)$.)
(b) Prove that I is a maximal ideal if and only if it has the property that, if $a \in R$ and $a \notin I$, then $I+(a)=R$.
(3) Let R be the ring of matrices of form $\left[\begin{array}{cc}a & b \\ 2 b & a\end{array}\right]$ with $a, b \in \mathbb{Q}$. Prove that R is isomorphic to $\mathbb{Q}(\sqrt{2})$.

FIELDS:

(1) Explicitly produce an example of a field of 4 elements. Verify that it is a field and give its complete multiplication table. Hint: $f(x)=x^{2}+x+1$ is irreducible in $\mathbb{Z}_{2}[x]$.
(2) Let E be the splitting field of $\left(x^{2}-2\right)\left(x^{2}-3\right)$ over the field \mathbb{Q} of rational numbers. Prove that the Galois group of E over \mathbb{Q} is isomorphic to the direct product $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$, where \mathbb{Z}_{2} is the group of integers mod 2.
(3) Let $F \subseteq E$ be an extension of fields.
(a) Define what it means for E to be an algebraic extension of F.
(b) If $(E: F)<\infty$, show that E is an algebraic extension of F.

