ALGEBRA COMPREHENSIVE EXAM

FALL 2004

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS

1. Let H and N be subgroups of a finite group G, N normal in G. Suppose that $[G: N]$ is finite and $|H|$ is finite, and $([G: N],|H|)=1$. Prove that $H N$.
2. Assume $|G|=p^{3}$ (p a prime).
(a) Show $|Z(G)|>1$.
(b) Prove that if H is non-abelian, then $|Z(G)|=p$.
3. Let P be a Sylow p-subgroup of G. Assume that $P \triangleleft N \triangleleft G$. Show that $P \triangleleft G$.

RINGS

1. Let R be a commutative ring with identity. Assume $1=e+f$, and $e f=0$. Define $\Phi: R \rightarrow R$ by $\Phi(x)=e x$. Prove:
(a) e is an idempotent (i.e. $e^{2}=e$).
(b) Φ is a ring homomorphism.
(c) e is the identity of $\Phi(R)$ (the image of Φ).
2. Let R be a nonzero ring such that $x^{2}=x$ for all $x \in R$. Show that R is commutative and has characteristic 2 .
3. Prove that if F is a field then every ideal of the ring $F[x]$ is principal.

FIELDS

1. Show that the group of automorphisms of the rational numbers Q is trivial.
2. Let E be the splitting field of $x^{6}-3$ over the rationals Q.
(a) Find $[E: Q]$. Explain.
(b) Show that the Galois group $\mathcal{G}(E / Q)$ is not abelian.
3. (a) Let F be a field and let $f(x) \in F[x]$ with $\operatorname{deg}(f(x))=n>0$. Prove that $f(x)$ has at most n roots in F.
(b) Let F be a field and let $f(x)$ and $g(x)$ be elements of $F[x]$ with $\operatorname{deg}(f(x))$ and $\operatorname{deg}(g(x))$ each at most n. Suppose there exist $a_{1}, a_{2}, a_{3}, \ldots, a_{n+1} \in F$ such that $f\left(a_{i}\right)=g\left(a_{i}\right)$ for $1 \leq i \leq n+1$. Prove that $f(x)=g(x)$.
