ALGEBRA COMPREHENSIVE EXAM

FALL 2004

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS

- **1.** Let *H* and *N* be subgroups of a finite group *G*, *N* normal in *G*. Suppose that [G:N] is finite and |H| is finite, and ([G:N], |H|) = 1. Prove that *HN*.
- **2.** Assume $|G| = p^3$ (p a prime).
 - (a) Show |Z(G)| > 1.
 - (b) Prove that if H is non-abelian, then |Z(G)| = p.
- **3.** Let P be a Sylow p-subgroup of G. Assume that $P \triangleleft N \triangleleft G$. Show that $P \triangleleft G$.

RINGS

- **1.** Let R be a commutative ring with identity. Assume 1 = e + f, and ef = 0. Define $\Phi: R \to R$ by $\Phi(x) = ex$. Prove:
 - (a) e is an idempotent (i.e. $e^2 = e$).
 - (b) Φ is a ring homomorphism.
 - (c) e is the identity of $\Phi(R)$ (the image of Φ).
- **2.** Let R be a nonzero ring such that $x^2 = x$ for all $x \in R$. Show that R is commutative and has characteristic 2.
- **3.** Prove that if F is a field then every ideal of the ring F[x] is principal.

FIELDS

- 1. Show that the group of automorphisms of the rational numbers Q is trivial.
- **2.** Let *E* be the splitting field of $x^6 3$ over the rationals *Q*.
 - (a) Find [E:Q]. Explain.
 - (b) Show that the Galois group $\mathcal{G}(E/Q)$ is not abelian.
- **3.** (a) Let F be a field and let $f(x) \in F[x]$ with $\deg(f(x)) = n > 0$. Prove that f(x) has at most n roots in F.
 - (b) Let F be a field and let f(x) and g(x) be elements of F[x] with $\deg(f(x))$ and $\deg(g(x))$ each at most n. Suppose there exist $a_1, a_2, a_3, \ldots, a_{n+1} \in F$ such that $f(a_i) = g(a_i)$ for $1 \le i \le n+1$. Prove that f(x) = g(x).