ALGEBRA COMPREHENSIVE EXAMINATION
Fall 2003

Basmaji
Bishop* Cates

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields.
Be sure to show enough work that your answers are adequately supported.

## GROUPS

1. Let p be a prime and let G be a p-group. Let N be a normal subgroup of G of order p . Prove that N is in the center of G.
2. Prove that a group of order $3^{2} \cdot 11^{2}$ must be solvable.
3. Let G be an abelian group of order $\mathrm{pq}, \mathrm{p}$ and q distinct primes. Prove that G is cyclic.

## RINGS

1. Let R and S be rings, R with unit element 1 , and let $\phi: \mathrm{R} \rightarrow \mathrm{S}$ be a ring homomorphism. Prove:
(a) If $\phi$ is onto, then $S$ has a unit element.
(b) If R is commutative, S need not be commutative even if. $\phi$ is $1-1$ but, if $\phi$ is onto, S is commutative.
(c) If S is a commutative ring with no zero divisors, then either $\phi(\mathrm{r})=0$ for every $\mathrm{r} \in \mathrm{R}$ or $\phi(1)$ is the unit element of $S$.
2. Let D be a Euclidean domain. Prove:
(a) If a divides bc and $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$ then a divides c .
(b) If a is irreducible then a is prime.
3. Let R be a ring with identity. Ideals $I$ and $J$ are called comaximal if $I+J=\mathrm{R}$. Let $I_{i}, i=1, \ldots$, n be a collection of ideals that are pairwise comaximal; i.e., for $i \neq j, I_{i}$ and $I_{j}$ are comaximal. Prove that for any $\mathrm{k}, 1 \leq k \leq \mathrm{n}$, the ideals $I_{k}$ and $\bigcap_{i \neq k} I_{i}$ are comaximal.

## FIELDS

1. Let $F$ be the field of integers modulo 5 and let $f(x)=x^{3}+3 x^{2}+3 x+2$. Prove that $f(x)$ is reducible over F , find the splitting field K and determine the number of elements of K .
2. Let $\mathbf{Q}$ be the field of rationals and let $p(x)=x^{3}-5 x+11$.
(a) Prove that $p(x)$ is irreducible over $\mathbf{Q}$
(b) Let $\alpha$ is a root of $p(x)$.
(i) Find $a, b, c$ in such that $1 / \alpha=a+b \alpha+c \alpha^{2}$.
(ii) Find $a, b, c$ in such that $1 /(\alpha-2)=a+b \alpha+c \alpha^{2}$.
3. Let F be a field.
(a) Prove that every extension field of degree 2 is a normal extension.
(b) Give an example of a field extension that is not normal (with confirmation, of course).
