ALGEBRA COMPREHENSIVE EXAMINATION Fall 2003

Basmaji Bishop* Cates

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields.

Be sure to show enough work that your answers are adequately supported.

GROUPS

- 1. Let p be a prime and let G be a p-group. Let N be a normal subgroup of G of order p. Prove that N is in the center of G.
- 2. Prove that a group of order $3^2 \cdot 11^2$ must be solvable.
- 3. Let G be an abelian group of order pq, p and q distinct primes. Prove that G is cyclic.

RINGS

- 1. Let R and S be rings, R with unit element 1, and let $\phi: R \to S$ be a ring homomorphism. Prove:
 - (a) If ϕ is onto, then S has a unit element.
 - (b) If R is commutative, S need not be commutative even if $.\phi$ is 1-1 but, if ϕ is onto, S is commutative.
 - (c) If S is a commutative ring with no zero divisors, then either $\phi(\mathbf{r}) = 0$ for every $\mathbf{r} \in \mathbf{R}$ or $\phi(1)$ is the unit element of S.
- 2. Let D be a Euclidean domain. Prove:
 - (a) If a divides bc and gcd(a, b) = 1 then a divides c.
 - (b) If a is irreducible then a is prime.
- 3. Let R be a ring with identity. Ideals *I* and *J* are called **comaximal** if I+J = R. Let I_i , i = 1,..., n be a collection of ideals that are pairwise comaximal; i.e., for $i \neq j$, I_i and I_j are comaximal. Prove that for any k, $1 \le k \le n$, the ideals I_k and $\bigcap_{i \neq k} I_i$ are comaximal.

FIELDS

- 1. Let F be the field of integers modulo 5 and let $f(x) = x^3 + 3x^2 + 3x + 2$. Prove that f(x) is reducible over F, find the splitting field K and determine the number of elements of K.
- 2. Let **Q** be the field of rationals and let $p(x) = x^3 5x + 11$.
 - (a) Prove that p(x) is irreducible over **Q**
 - (b) Let α is a root of p(x).
 - (i) Find a, b, c in such that $1/\alpha = a + b\alpha + c\alpha^2$.
 - (ii) Find a, b, c in such that $1/(\alpha 2) = a + b\alpha + c\alpha^2$.
- 3. Let F be a field.
 - (a) Prove that every extension field of degree 2 is a normal extension.
 - (b) Give an example of a field extension that is not normal (with confirmation, of course).