ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2001
Basmaji Cates* Chabot
Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

Groups

1. Let G be a finite group. Set $C(x)=\{y \in G \mid x y=y x\}$ and define $x R y$ iff $y=g^{-1} x g$ for some $g \in G$.
(a) Show $C(x)$ is a subgroup of G.
(b) Show R is an equivalence relation on G.
(c) Show $\left|x^{G}\right|=[G: C(x)]\left(x^{G}=\{y \in G \mid y R x\},[G: C(x)]=\right.$ index of $C(x)$ in $\left.G\right)$.
2. Let G be a group of order $2^{5} 19^{t}, t$ a positive integer. Prove that G is solvable.
3. Define $Z_{1}(G)=Z(G), Z_{n}(G) / Z_{n-1}(G)=Z\left(G / Z_{n-1}(G)\right)$. Prove that if G is a p-group then $Z_{n}(G)=G$ for some n.

Rings

4. Let R be a commutative ring with identity 1 . Assume $1=e+f$ and $e f=0$. Define $\phi: R \rightarrow R$ by $\phi(x)=e x$. Prove:
(a) e is an idempotent (i.e. $e^{2}=e$).
(b) ϕ is a ring homomorphism.
(c) e is the identity of $\phi(R)$ (the image of ϕ).
5. Let A be an ideal of the commutative ring R. Set $\rho(A)=\left\{x \in R \mid x^{n} \in A\right.$, for some $\left.n>0\right\}$.
(a) Show that $\rho(A)$ is an ideal.
(b) Show that $\rho(\rho(A))=\rho(A)$.
(c) $\rho(A \cap B)=\rho(A) \cap \rho(B)$.
6. Let R be a commutative ring with identity. Let Q be an ideal of R, and let P be the ideal $\{x \in$ $R \mid x^{n} \in Q$ for some positive integer $\left.n\right\}$. Definition: If A, B are ideals then $A B=\left\{\sum a_{i} b_{i}\right.$: all finite sums $\}$. Prove that if P is maximal and if $Q=P_{1} P_{2} \neq R$ for some prime ideals P_{1} and P_{2}, then $Q=P^{2}$.

Fields

7. Let E be the splitting field of $x^{8}-2$ over Q.
(a) Prove that $[E: Q]=16$.
(b) Show that the Galois group $\mathcal{G}(E / Q)$ is not abelian.
8. Let E be the splitting field of $p(x)=x^{3}+11 x+3$ over Q.
(a) Prove that $p(x)$ is irreducible over Q.
(b) Find $a, b, c \in Q$ such that $\left(\theta^{2}+1\right)^{-1}=a+b \theta+c \theta^{2}$, for a root θ of $p(x)$.
9. Prove or disprove.
(a) $Q(\sqrt[3]{2})$ is a normal extension of Q.
(b) $Q[x] /\left(x^{4}-2\right)$ is a normal extension of Q.
