ALGEBRA COMPREHENSIVE EXAMINATION

Fall 2001

Basmaji Cates^{*} Chabot

Answer 5 questions only. You must answer at least one from each of Groups, Rings, and Fields. Please show work to support your answers.

Groups

- 1. Let G be a finite group. Set $C(x) = \{y \in G | xy = yx\}$ and define xRy iff $y = g^{-1}xg$ for some $g \in G$.
 - (a) Show C(x) is a subgroup of G.
 - (b) Show R is an equivalence relation on G.
 - (c) Show $|x^G| = [G: C(x)]$ $(x^G = \{y \in G | yRx\}, [G: C(x)] = \text{ index of } C(x) \text{ in } G\}.$
- **2.** Let G be a group of order $2^5 19^t$, t a positive integer. Prove that G is solvable.
- **3.** Define $Z_1(G) = Z(G)$, $Z_n(G)/Z_{n-1}(G) = Z(G/Z_{n-1}(G))$. Prove that if G is a p-group then $Z_n(G) = G$ for some n.

Rings

- **4.** Let R be a commutative ring with identity 1. Assume 1 = e + f and ef = 0. Define $\phi : R \to R$ by $\phi(x) = ex$. Prove:
 - (a) e is an idempotent (i.e. $e^2 = e$).
 - (b) ϕ is a ring homomorphism.
 - (c) e is the identity of $\phi(R)$ (the image of ϕ).

5. Let A be an ideal of the commutative ring R. Set $\rho(A) = \{x \in R | x^n \in A, \text{ for some } n > 0\}$.

- (a) Show that $\rho(A)$ is an ideal.
- (b) Show that $\rho(\rho(A)) = \rho(A)$.
- (c) $\rho(A \cap B) = \rho(A) \cap \rho(B)$.
- 6. Let R be a commutative ring with identity. Let Q be an ideal of R, and let P be the ideal $\{x \in R | x^n \in Q \text{ for some positive integer } n\}$. Definition: If A, B are ideals then $AB = \{\sum a_i b_i : all \text{ finite sums}\}$. Prove that if P is maximal and if $Q = P_1 P_2 \neq R$ for some prime ideals P_1 and P_2 , then $Q = P^2$.

Fields

- 7. Let E be the splitting field of $x^8 2$ over Q.
 - (a) Prove that [E:Q] = 16.
 - (b) Show that the Galois group $\mathcal{G}(E/Q)$ is not abelian.
- 8. Let E be the splitting field of $p(x) = x^3 + 11x + 3$ over Q.
 - (a) Prove that p(x) is irreducible over Q.
 - (b) Find $a, b, c \in Q$ such that $(\theta^2 + 1)^{-1} = a + b\theta + c\theta^2$, for a root θ of p(x).
- 9. Prove or disprove.
 - (a) $Q(\sqrt[3]{2})$ is a normal extension of Q.
 - (b) $Q[x]/(x^4-2)$ is a normal extension of Q.