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Spring 2025

Directions: Answer 5 questions only. You must answer at least one from each of linear
algebra, groups, and synthesis. Indicate clearly which problems you want us to grade. You
are graded on your logic, reasoning, and understanding.

Linear Algebra

(L1) Let V be a vector space with basis {v1, . . . , vn}. Let T : V → V be a linear map, and
assume T is one-to-one. Prove that {T (v1), T (v2), . . . , T (vn)} is a basis for V .

Solution: Since V has dimension n, we just need to show that {T (v1), T (v2), . . . , T (vn)}
is a linearly independent set. Suppose that c1T (v1) + c2T (v2) + · · · + cnT (vn) = 0.
Since T is linear we have that T (c1v1 + c2v2 + · · ·+ cnvn) = 0. Since T is one-to-one
and T (0) = 0 we have that c1v1 + c2v2 + · · ·+ cnvn = 0. Since {v1, . . . , vn} is a basis
for V this implies that c1 = c2 = · · · = cn = 0. Thus {T (v1), T (v2), . . . , T (vn)} is a
linearly independent set.

(L2) Let V be a vector space and L : V → V be a linear transformation. Let λ be an
eigenvalue of L. Prove that

Eλ = {v ∈ V | L(v) = λv}

is a subspace of V .

Solution: (a) Since L is a linear transformation we have that L(0) = 0 = λ ·0. Thus
0 ∈ Eλ(L). (b) Let v1, v2 ∈ Eλ(L). Then L(v1 + v2) = L(v1) + L(v2) = λv1 + λv2 =
λ(v1 + v2). Thus v1 + v2 ∈ Eλ(L). (c) Let w ∈ Eλ(L) and let c be a scalar. Then
L(w) = λw. Thus L(cw) = cL(w) = c(λw) = λ(cw). Thus cw ∈ Eλ(L). By parts
(a,b,c) we have that Eλ(L) is a subspace of V .

(L3) Let T : V → W be a linear transformation from an n-dimensional space V to an
m-dimensional space W . Show that dim(ker(T )) + dim(im(T )) = n.

Solution: There are many different kinds of proof, depending on our perspective
and our starting assumptions. The proof we present here is based on the proof of
Theorem 2.3 (Dimension Theorem) in Friedberg, Insel, and Spence, Linear Algebra.

Let k = dim(ker(T )), and let {v1, . . . , vk} be a basis of ker(T ). Since ker(T ) is a sub-
space of V , we can extend the basis {v1, . . . , vk} of ker(T ) to a basis {v1, . . . , vk, vk+1, . . . , vn}
of V . Now let S = {T (vk+1), T (vk+2), . . . , T (vn)}. We will prove that S is a basis of
im(T ).

First we show that spanS = im(T ). Since span{v1, . . . , vn} = V , we have

im(T ) = span{T (v1), . . . , T (vn)}.

But T (v1) = · · · = T (vk) = 0 (since v1, . . . , vk ∈ ker(T )), so

im(T ) = span{0, . . . , 0, T (vk+1), . . . , T (vn)}
= span{T (vk+1), . . . , T (vn)} = spanS.



Now we show that S is independent. Let bk+1, . . . , bn be scalars such that

bk+1T (vk+1) + · · ·+ bnT (vn) = 0.

Then, since T is linear, we get

T (bk+1vk+1 + · · ·+ bnvn) = 0,

and so bk+1vk+1 + · · · + bnvn ∈ ker(T ). Since {v1, . . . , vk} is a basis of ker(T ), there
exist scalars c1, . . . , ck such that

bk+1vk+1 + · · ·+ bnvn = c1v1 + · · ·+ ckvk.

We can rearrange this equation to obtain

−c1v1 − · · · − ckvk + bk+1vk+1 + · · ·+ bnvn = 0.

But {v1, . . . , vn} is a basis of V , so we conclude that bk+1 = · · · = bn = 0.
Therefore, S is a basis of im(T ). Since S is a set of n − k vectors, we have

dim(im(T )) = n− k. Therefore,

dim(ker(T )) + dim(im(T )) = k + (n− k) = n.

Groups

(G1) Let S3 denote the symmetric group, i.e. the group of all permutations of the set
{1, 2, 3}. Define H = {1, (12)}.
(a) How many left cosets does H have?
(b) List the elements of each left coset of H.
(c) Is H a normal subgroup of G?

Solution:

(a) 3, since |S3|/|H| = 6/2 = 3.
(b) {1, (12)}, {(13), (123)}, {(23), (132)}. If anyone accidentally does the right cosets

instead of the left cosets, then those are: {1, (12)}, {(13), (132)}, {(23), (123)}.
(c) No, because, for instance, (13)H = {(13), (123)} but H(13) = {(13), (132)}, so

(13)H 6= H(13).

(G2) Let φ : G1 → G2 be a group homomorphism where G1 and G2 are groups. Prove that
if G1 is cyclic and φ is onto then G2 is cyclic.

Solution: Let G1 = 〈g〉. The claim is that φ(g) will generate G2. Let y ∈ G2. Then
since φ is onto there exists x ∈ G1 with φ(x) = y. Since G1 = 〈g〉 we have that
x = gk for some integer k. Thus y = φ(x) = φ(gk) = φ(g)k. Thus all of G2 = 〈φ(g)〉.

(G3) Let G be a finite group, and let H be a nonempty subset of G. Prove that H is a
subgroup of G if and only if H is closed under the operation of G.

Solution: If H is a subgroup of G, then H is closed under the operation of G, by
definition of subgroup.
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Now assume H is closed under the operation of G. In addition to that, we must
prove that the identity of G is in H and that every element of H has its inverse in
H, in order to conclude that H is a subgroup of G.

Since H is nonempty, there exists some x ∈ H. Since H is closed under the
operation of G, it follows that xi ∈ H for every positive integer i. But G is a finite
group, so x must have finite order in G: there exists a positive integer n such that
xn = 1 (the identity of G). Therefore, 1 = xn ∈ H — the identity of G is in H.

Now let h be an arbitrary element of H. Just as above, we have hi ∈ H for every
positive integer i, and there exists m ≥ 2 such that hm = 1. Then h−1 = hm−1, which
is in H since m− 1 is a positive integer.

Synthesis

(S1) Let H =

{(
a 0
0 a

)
: a 6= 0

}
. Prove that H is a normal subgroup of GL2(R).

Solution: We first prove that H is a subgroup. (a) The identity ( 1 0
0 1 ) is in H. (b) If

( a 0
0 a ) , ( b 0

0 b ) ∈ H, then ( a 0
0 a ) ( b 0

0 b ) = ( ab 0
0 ab ) ∈ H. (c) If ( a 0

0 a ) ∈ H, then, since a 6= 0,

we have ( a 0
0 a )−1 =

(
1/a 0
0 1/a

)
∈ H.

We now prove that H is normal. If ( a 0
0 a ) ∈ H and A ∈ GL2(R), then

A ( a 0
0 a )A−1 = A(aA−1) = a(AA−1) = aI = ( a 0

0 a ) ∈ H.

Therefore H is a normal subgroup of GL2(R).

(S2) Let R∗ denote the group of non-zero real numbers under multiplication. Define a
function φ : GLn(R)→ R∗ by

φ(A) =

{
1 if det(A) > 0;

−1 if det(A) < 0.

Prove that φ is a group homomorphism, and find the order of GLn(R)/ ker(φ).

Solution: Let A,B ∈ GLn(R).
– Case I. det(A) > 0 and det(B) > 0. Then det(AB) = det(A) det(B) > 0, so
φ(AB) = 1, and φ(A)φ(B) = (1)(1) = 1.

– Case II. det(A) > 0 and det(B) < 0. Then det(AB) = det(A) det(B) < 0, so
φ(AB) = −1, and φ(A)φ(B) = (1)(−1) = −1.

– Case II. det(A) < 0 and det(B) > 0. Then det(AB) = det(A) det(B) < 0, so
φ(AB) = −1, and φ(A)φ(B) = (−1)(1) = −1.

– Case I. det(A) < 0 and det(B) < 0. Then det(AB) = det(A) det(B) > 0, so
φ(AB) = 1, and φ(A)φ(B) = (−1)(−1) = 1.

Thus we have verified that φ(AB) = φ(A)φ(B) in all four cases.
By the First Isomorphism Theorem, |GLn(R)/ ker(φ)| = | im(φ)| = |{1,−1}| = 2.

(S3) Let V be a vector space over R. We know that V is also an Abelian group under
addition (you do not need to prove this fact). Prove that, for every v ∈ V , the order
of v (as an element of the group under addition) is either 1 or ∞.
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Solution: Let v ∈ V . Suppose the order of v is not ∞; we will show that its order
is 1. Let k be the order of v, so k is a (finite) positive integer. Then v + · · ·+ v = 0,
where v is added to itself k times. Then

0 = v + · · ·+ v︸ ︷︷ ︸
k

= 1v + · · ·+ 1v︸ ︷︷ ︸
k

= (1 + · · ·+ 1︸ ︷︷ ︸
k

)v = kv.

So kv = 0. Since k is a non-zero real number, 1/k is defined. So

kv = 0

(1/k)kv = (1/k)0

1v = 0

v = 0.

Therefore, since v is the additive identity, its order is 1.
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