
ALGEBRA COMPREHENSIVE EXAMINATION

Brookfield, Mijares∗, Troyka

Spring 2023

Directions: Answer 5 questions only. You must answer at least one from each of linear
algebra, groups, and synthesis. Indicate CLEARLY which problems you want us to grade.
Otherwise, we will select which ones to grade, and they may not be the ones that you want
us to grade. Be sure to show enough work that your answers are adequately supported.

Notation: As usual, N, Q, Z, Zn, C, and R denote the sets of natural numbers, rational
numbers, integers, integers modulo n, complex numbers, and real numbers respectively,
regarded as groups or fields or vector spaces in the usual way.

Linear Algebra

(L1) Let V be a vector space. Suppose u, v, w ∈ V satisfy 2u + v = w and u + 2v = w.
What does this tell you about the dimension of the subspace spanned by {u, v, w}?

Answer: Subtracting the equations we get (2u + v) − (u + 2v) = w − w which
simplifies to u − v = 0, and so u = v. Plugging this back into either of the given
equations gives w = 3u = 3v.

So every vector in the span of {u, v, w} is a scalar multiple of v and the dimension
of the span of {u, v, w} is 0 if v = 0 and 1 if v is nonzero.

(L2) Let V and W be vector spaces, and let T : V → W be a linear map. Let v1, . . . , vk ∈
V .
(a) Assume v1, . . . , vk are linearly independent. Does it follow that T (v1), . . . , T (vk)

are linearly independent? If yes, prove it. If no, find a condition on T that would
allow us to conclude that T (v1), . . . , T (vk) are linearly independent, and prove
it.

(b) Assume T (v1), . . . , T (vk) are linearly independent. Does it follow that v1, . . . , vk
are linearly independent? If yes, prove it. If no, find a condition on T that would
allow us to conclude that v1, . . . , vk are linearly independent, and prove it.

Answer:

(a) It does not follow; but if T is injective then it does follow. If a1 T (v1) + · · · +
ak T (vk) = 0, then T (a1v1 + · · · + akvk) = 0; since T is injective, this implies
a1v1 + · · ·+ akvk = 0. But v1, . . . , vk are linearly independent, so ai = 0 for all i.

(b) Yes, it does follow. If a1v1 + · · ·+ akvk = 0, then applying T to both sides yields
a1 T (v1) + · · ·+ ak T (vk) = 0. But T (v1), . . . , T (vk) are linearly independent, so
ai = 0 for all i.

(L3) Let V be an n-dimensional vector space, and let T : V → V be an invertible linear
operator. Let v ∈ V be an eigenvector of T with eigenvalue λ.
(a) Prove that λ 6= 0.
(b) Prove that v is also an eigenvector of T−1. What is the eigenvalue of T−1

corresponding to v?

Answer:

(a) If λ = 0, then T (v) = 0, so T is not injective and hence not invertible.
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(b)

λv = T (v)

T−1(λ(v)) = T−1(T (v))

λT−1(v) = v

T−1(v) =
1

λ
v

Therefore v is an eigenvector of T−1, and its eigenvalue is 1/λ.

Groups

(G1) Let G be a group. Show that the following conditions are equivalent:
(a) G has exactly two subgroups.

(b) G ∼= Zp for some prime number p.

Answer: Suppose that G has exactly two subgroups. Then G has at least 2 elements,
so there is an element a ∈ G which is not the identity element e. The subgroup 〈a〉
contains two different elements, e and a, so is not the trivial subgroup. By hypothesis,
〈a〉 must be all of G. That is, G = 〈a〉, G is a cyclic group and G ∼= Zn for some
n ≥ 1 or G ∼= Z. But we know that Z has infinitely many subgroups, and we know
that Zn has as many subgroups as n has (positive) divisors. Since the number of
subgroups is a structural (algebraic) property, we must have G ∼= Zn with n having
exactly two divisors. But this means that n is prime.

Conversely, if G ∼= Zp with p prime, then G has the same number of subgroups as
Zp, which is the same as the number of (positive) divisors of p, namely 2.

(G2) Let H be a subgroup of Sn for some n ≥ 2. Show that, either all elements of H are
even, or exactly half are even and half are odd.

Answer: If all elements of H are even then we are done. Otherwise H contains an
odd element σ. Consider the map λ : H → H defined by λ(h) = σh for all h ∈ H.
Then λ is a bijection, and it interchanges the set of even elements of H with the set
of odd elements of H. Thus H has exactly as many even elements as odd elements,
and we are done.

(G3) Consider a group G acting on a non-empty set X. We say the group action is
transitive if, for every x, y ∈ X, there exists g ∈ G such that g ·x = y. Given g ∈ G
and x ∈ X, x is a fixed point of g if g · x = x. We say that the group action is free
if the identity element of G is the only group element with a fixed point (that is, if
g · x = x for some x, then g is the identity element of G). Prove that, if the action
of G on X is both transitive and free, then |G| = |X|.
Answer: Fix x0 ∈ X. Define ϕ : G → X by ϕ(g) = g · x0. We will prove that ϕ is a
bijection, which will imply that |G| = |X|.
• If ϕ(g1) = ϕ(g2), then g1 · x0 = g2 · x0, so g2

−1g1 · x0 = x0. Since the action is
free, this implies that g2

−1g1 = 1, so g1 = g2. Therefore ϕ is injective.
• Let x ∈ X. Since the action is transitive, there exists g ∈ G such that g ·x0 = x.

So ϕ(g) = x. Therefore ϕ is surjective.
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Synthesis

(S1) Let V be a vector space over a field F . LetG = {T : V → V | T is a linear transformation}.
(a) Show that G is a group under function addition. That is, the group operation

is defined to be (T1 + T2)(x) = T1(x) + T2(x) when T1, T2 ∈ G.

Answer: The identity element is the zero function T0(x) = 0 for all x ∈ V . Let
T1, T2, T3 ∈ G. Given x ∈ V we have that

((T1 + T2) + T3)(x) = (T1(x) + T2(x)) + T3(x)

= T1(x) + (T2(x) + T3(x)) = (T1 + (T2 + T3))(x)

which gives associativity. We have that T1 + T2 ∈ G since

(T1 + T2)(αx1 + βx2) = T1(αx1 + βx2) + T2(αx1 + βx2)

= αT1(x1) + βT1(x2) + αT2(x1) + βT2(x2)

= α(T1 + T2)(x1) + β(T1 + T2)(x2).

So G is closed under function addition. Also, −T1 is also in G since

−T1(αx1 + βx2) = −T1(αx1)− T1(βx2) = −αT1(x1)− βT1(x2)

= α(−T1)(x1) + β(−T1)(x2).
So G is closed under inversion. Thus G is a group.

(b) Let

H = {T ∈ G | there exists some α ∈ F such that T (x) = αx for all x ∈ V }

Show that H is a subgroup of G.

Answer: First note that if T : V → V is defined by T (x) = αx then T is a linear
transformation because

T (c1v1 + c2v2) = α(c1v1 + c2v2) = c1αv1 + c2αv2 = c1T (v1) + c2T (v2).

The zero function T0 is in H since T0(x) = 0 · x for all x ∈ V .

Let T1, T2 ∈ H. Then T1(x) = αx and T2(x) = βx for all x ∈ V . Thus,
(T1 + T2)(x) = T1(x) + T2(x) = αx + βx = (α + β)x. So T1 + T2 ∈ H. Also,
−T1(x) = (−α)x for all x ∈ V . Thus −T1 ∈ H. So H is a subgroup of G.

(S2) Let SO2(R) be the group of 2 × 2 orthonormal matrices (that is, A−1 = AT ) with
determinant 1 and real entries. Let U(1) = {z ∈ C : |z| = 1}, considered as a group
under multiplication. Prove that SO2(R) and U(1) are isomorphic.

Answer: Note that if A ∈ SO2(R), then A =

(
a −b
b a

)
, for some a, b ∈ R such

that a2 + b2 = 1. Show that ϕ : SO2(R) −→ U(1) given by(
a −b
b a

)
7−→ a+ bi

is an isomorphism.
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(S3) LetGL2(R) be the group of 2×2 invertible matrices over the real numbers, and R∗, the
group of nonzero real numbers under multiplication. Since the determinant function
det : GL2(R)→ R∗ satisfies det(AB) = (detA)(detB) for all A,B ∈ GL2(R), it is a
group homomorphism. Let G be a finite subgroup of GL2(R).
(a) Show that det(G) ≤ {1,−1}.

Answer: The image of G is isomorphic to a quotient group of G so is a finite
group. In particular, every element of det(G) must have finite order. But 1 and
−1 are the only elements of R∗ with finite order (they are the only solutions of
equations like xn = 1 with n ∈ N). Thus detG ⊆ {1,−1}. Since {1,−1} is a
subgroup of R∗ we have det(G) ≤ {1,−1}.

(b) Show that either, all matrices in G have determinant 1, or exactly half of the
matrices in G have determinant 1.

Answer: Either φ(G) = {1}, the trivial subgroup, or φ(G) = {1,−1}. In the
first case, all matrices in G have determinant 1. In the second case, there are
two cosets of kerφ, each containing the same number of matrices. All matrices
in kerφ have determinant 1. All other matrices in G have determinant −1.
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