
Algebra Comprehensive Exam Fall 2021, old style
Brookfield, Liu, Shaheen∗

Answer five (5) questions only. You must answer at least one from each of section: (I)

Groups, (II) Rings, and (III) Fields. Indicate CLEARLY which problems you want us to

grade; otherwise, we will select the first problem from each section, and then the first two

additional problems answered after that. Be sure to show enough work that your answers

are adequately supported. Tip: When a question has multiple parts, the later parts often

(but not always) make use of the earlier parts.

Notation: Unless otherwise stated, N, Q,Z,Zn,C, and R denote the sets of natural num-

bers, rational numbers, integers, integers modulo n, complex numbers, and real numbers

respectively, regarded as groups or fields or vector spaces in the usual way.

Groups

(G1) Let G be an abelian group. Show that H = {x ∈ G | |x| is finite} is a subgroup of G.

(Note: Here |x| denotes the order of x.)

Solution: Reminder: |x| is finite if and only if xn = e for some n.

(1) H closed under the group operation: Let x, y ∈ H. Then xm = yn = e for

some m,n ∈ Z, so using associativity and commutativity, (xy)mn = (xm)n(yn)m =

enem = e, hence xy ∈ H.

(2) e ∈ H: Obvious, since |e| = 1.

(3) H closed under taking inverses: Let x ∈ H. Then xn = e for some n and so

x−1 = xn−1. Hence (x−1)n = (xn−1)n = xn(n−1) = (xn)n−1 = en−1 = e and

x−1 ∈ H.

OR

Since 〈x〉 = 〈x−1〉, we have |x−1| = |x|, from which the claim is clear.

(G2) The center of a group G is defined as

Z(G) = {g ∈ G : gx = xg for all x ∈ G}.

(a) Prove Z(G) is a normal subgroup of G.

(b) Prove: If G/Z(G) is cyclic, then G is abelian.

Solution: For problem (a) see here: https:// en.wikipedia.org/ wiki/ Center ( group theory)

and also problem 2 from here: http:// pi.math.cornell.edu/ ∼riley/ Teaching/ Groups and

Geometry2012/ past exams/ 2011prelim2 with solutions.pdf . For (b) see problem 11 from

here on page 2: https:// www.math.utah.edu/ ∼schwede/ math435/ HW4Sols.pdf

https://en.wikipedia.org/wiki/Center_(group_theory)
http://pi.math.cornell.edu/~riley/Teaching/Groups_and_Geometry2012/past_exams/2011prelim2_with_solutions.pdf
http://pi.math.cornell.edu/~riley/Teaching/Groups_and_Geometry2012/past_exams/2011prelim2_with_solutions.pdf
https://www.math.utah.edu/~schwede/math435/HW4Sols.pdf
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(G3) Let G be a group and k ∈ N. Prove: If H is the only subgroup of G with order k,

then H is a normal subgroup of G.

Solution: Suppose that H is the only subgroup of G with order k. Let g ∈ G. Define φg :

G → G by φg(x) = g−1xg. First show that φg is an isomorphism. Then φg(H) = g−1Hg

will be a subgroup of G of the same size as H. Thus, g−1Hg = H. Since this is true for all

g ∈ G we have that H is a normal subgroup of G.

Rings

(R1) Prove that 2Z is not isomorphic to 3Z as rings.

Solution: Suppose φ : 2Z → 3Z is ring homomorphism. Let x = φ(2). Then 2x = φ(2) +

φ(2) = φ(4) = φ(2)φ(2) = φ(2)2 = x2. Thus, x2 − 2x = 0. So, x(x − 2) = 0. Thus

x = 0 or x = 2. Since 2 6∈ 3Z we have that x = 0. Thus φ(2) = 0. It follows that

φ(2k) = φ(2)φ(k) = 0 for all k. So φ must be the zero map. And hence φ cannot be an

isomorphism.

- OR -

2Z and 3Z are both infinite cyclic groups under addition, so are isomorphic groups. Their

generators are {−2, 2} and {−3, 3} respectively. Any ring isomorphism φ : 2Z → 3Z is,

in particular, an abelian group isomorphism so must map generators to generators. Thus

φ(2) = 3 or φ(2) = −3. But then φ(4) = φ(2 + 2) = φ(2) + φ(2) = ±(3 + 3) = ±6 and

φ(4) = φ(2 · 2) = φ(2)φ(2) = 3 · 3 = 9, an obvious contradiction.

(R2) Let R = Q[x], the ring of polynomials over Q. Let I = (x2 − 1, x3 − 1), the ideal

generated by x2 − 1 and x3 − 1. Is R/I a field? Explain.

Solution: By the Euclidean Algorithm, gcd[x2 − 1, x3 − 1] = x − 1, so I = (x − 1) and

R/I = R/(x− 1). Since x− 1 is irreducible, R/I is a field.

- OR -

Let φ : R → Q be the evaluation homomorphism defined by φ(f) = f(1) for all f ∈ R.

Clearly, imφ = Q. Since φ(x2 − 1) = φ(x3 − 1) = 0, we have I ⊆ kerφ. To prove the

opposite inclusion we first note that x− 1 = (x3 − 1)− x(x2 − 1) and so x− 1 ∈ I.

Now suppose that f ∈ kerφ. Then f(1) = 0 and by the division algorithm, f(x) = (x−1)g(x)

for some g ∈ R. Since x − 1 ∈ I we have f ∈ I. This shows that I = kerφ and so

R/I = R/ kerφ ∼= imφ = Q, which is a field.

(R3) Let {Ii | i ∈ N} be a set of ideals in a commutative ring R such that I1 ⊆ I2 ⊆ I3 ⊆ · · ·.
Show that I =

⋃
i Ii is an ideal of R.

Solution: Let r ∈ I. Then r ∈ Ii for some i ∈ N. If a ∈ R, then ar ∈ Ii ⊆ I. Therefore I is

closed under multiplication by elements of R.

Let r, s ∈ I. Then r ∈ Ii and s ∈ Ij for some i, j ∈ N. Because of the nesting of the ideals,

r and s are both in Imax(i,j), and so r + s ∈ Imax(i,j) ⊆ I. Thus I is closed under addition.

Therefore I is an ideal of R.
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Fields

(F1) Let φ : F → R be a nontrivial (i.e. nonzero) ring homomorphism with F a field and

R a ring. Show that φ is injective (one-to-one).

Solution: Suppose that φ is not injective. Then kerφ is nonzero and there is a nonzero

element r ∈ F such that φ(r) = 0. Since F is a field, r−1 ∈ F exists and rr−1 = 1. Hence

φ(1) = φ(rr−1) = φ(r)φ(r−1) = 0φ(r−1) = 0

But then, for any s ∈ F , we get

φ(s) = φ(1s) = φ(1)φ(s) = 0φ(s) = 0

so φ is the trivial homomorphism.

(F2) Let E be a field and φ : E → E a nonzero ring homomorphism. Show that

F = {a ∈ E | φ(a) = a}

is a subfield of F .

Solution: Since φ(1) = 1 we have 1 ∈ F . Let a, b ∈ F . Then

φ(a− b) = φ(a)− φ(b) = a− b

φ(ab) = φ(a)φ(b) = ab

so a+b, ab ∈ F . So F is closed under addition, negation and multiplication. Suppose a ∈ F
is nonzero. Then a−1 exists in E and satisfies aa−1 = 1. Since

φ(a−1) = 1φ(a−1) = a−1aφ(a−1) = a−1φ(a)φ(a−1) = a−1φ(aa−1) = a−1φ(1) = a−11 = a−1

we have a−1 ∈ F .

By various subfield tests, this shows that F is a subfield of E.

(F3) Show that α =
√

2 + 3
√

3 is irrational.

Solution: We have (α−
√

2)3 = 3, that is, α3 − 3
√

2α2 + 6α− 2
√

2 = 3. Solving for
√

2 we

get
√

2 =
6α+ α3

2 + 3α2

If α is rational, then this equation implies that
√

2 is rational, a contradiction.

-OR-

Squaring both sides of the above equation we get α6− 6α4− 6α3 + 12α2− 36α+ 1 = 0, that

is, α is a root of

x6 − 6x4 − 6x3 + 12x2 − 36x+ 1.

By the Rational Roots Theorem, this polynomial has no rational roots.

-OR-
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Since Q(
√

2) is a degree 2 extension of Q, all elements of Q(
√

2) have degree 1 or 2 over

Q. If α is rational, then 3
√

3 = α −
√

2 ∈ Q(
√

2). But, since 3
√

3 has degree 3 over Q, this

is a contradiction.


