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ABSTRACT

Semidirect Product of

The Integers Modulo Two

By

Ahmed Al Fares

This thesis concerns the existence of 2-groups with certain derived length, with

a specified order of the quotient subgroups. Let a, b, c be positive integers. We will

show that there exists a finite 2-group G of derived length 3 such that |G/G′| = 2a

and |G′/G′′| = 2b and |G′′/G′′′| = 2c if

(1) a ≥ 3 and b = 3, or

(2) a ≥ 5 and b ≥ 4.

In another thesis E. Golvin is showing a statement stronger than the converse

the theorem in the above paragraph. More specifically, he shows that: “If G is a finite

2-group with derived length 3, then aG and bG are both at least 3.” The integers aG

and bG are defined to be aG = log2 |G/G′| and bG = log2 |G′/G′′|.
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CHAPTER 1

Introduction

Group theory is a subfield of abstract algebra that deals with the structure of certain

objects called groups. In mathematics, a group could be described as a complete

collection of symmetries of some object. For example, if we take an equilateral triangle

to be this object, then some of the things in that collection will be a reflection of that

triangle and a one hundred and twenty degree rotation of it in addition to other

things. Different groups have different elements and have different sizes. They also

differ in the way they are constructed. Group theory is vastly used in mathematics to

answer many different questions, some directly related to group theory, others from

other fields of mathematics. One big question is, what are the possible structures of

groups of a given order?

This thesis centers around the following question: For a finite 2-group G of

derived length 3, what are the possible orders of G/G′, G′/G′′, and G′′/G′′′? The

meanings of the technical terms are going to be introduced later on in chapter 2.

The main theorems, Theorems 5.9 and 5.10, of this paper are the following:

For a finite group G, define:

aG = log2 |G/G′|

bG = log2 |G′/G′′|

cG = log2 |G′′/G′′′|

Let a, b, c be positive integers.
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(1) If a ≥ 3 and b = 3, then there exists a finite 2-group G with derived length 3

such that aG = a and bG = b and cG = c. ( Theorem 5.9)

(2) If a ≥ 5 and b ≥ 4, then there exists a finite 2-group G with derived length 3

such that aG = a and bG = b and cG = c. (Theorem 5.10)

This theorem is an existence theorem, so it will be proved by construction.

The construction involves semidirect products and wreath products. One of the tools

or tricks that we’ll be using to quickly find elements in the commutator subgroup is

a theorem by Miller [6] from 1977. This theorem allows us to find elements in the

commutator subgroup of a semidirect product.

There is other work that has been done in this area. In a companion thesis,

Golvin gives a proof of the following theorem: If G is a finite 2-group with derived

length 3, then aG and bG are both at least 3 ([8]). P. Hall proves that aG ≥ 2 and

bG ≥ 3, and a proof that aG 6= 2 can be found in Gorenstein ([5], [7]).

The question remains open in the cases where a = 3, 4 and b ≥ 4. More effort

will have to be made to prove or disprove the following conjecture:

Let a, b, c be positive integers. Then there exists a finite 2-groupG with derived

length 3 such that aG = a and bG = b and cG = c if and only if a and b are both at

least 3.

An interesting thing about groups is: “There is a folklore conjecture asserting

that almost all finite groups are 2-groups: the fraction of isomorphism classes of 2-

groups among isomorphism classes of groups of order at most n is thought to tend to

1 as n tends to infinity. For instance, of the 49, 910, 529, 484 different groups of order
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at most 2000, 49, 487, 365, 422, or just over 99%, are 2-groups of order 1024” (Besche,

Eick & O’Brien 2002) ([9], [10]).

The papers [2], [3], [4], and [5] all contain results relevant to the derived series

of finite p-groups.
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CHAPTER 2

Background

This chapter will give a brief background about the basic facts and definitions that

we’ll need throughout this thesis. The reader is assumed to have some basic knowl-

edge from abstract algebra and group theory. A good reference is the Dummit and

Foote, Abstract Algebra textbook [1].

Definition 2.1. Let G be a set with a binary operation ∗ that combines any two ele-

ments a, b ∈ G to form another element a ∗ b. Then (G, ∗) is a group if it satisfies

the following four axioms:

(1) If a, b ∈ G, then a ∗ b ∈ G. (Closure)

(2) For any a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c). (Associativity)

(3) There is an element e ∈ G such that for any a ∈ G, e ∗ a = a ∗ e = a.

(Identity element)

(4) For each a ∈ G, there exists an element b ∈ G such that a ∗ b = b ∗ a = e.

(Inverse element)
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Definition 2.2. A subset H of a group G is said to be a subgroup if H forms a

group with the same operation. We write H ≤ G to mean that H is a subgroup of G.

Definition 2.3. A subgroup H of a group G is said to be a normal subgroup in

G if for any g ∈ G we have gH = Hg. We write H E G to mean H is a normal

subgroup of G.

Definition 2.4. If G and H are groups, the direct product G × H is defined as

follows:

(1) G×H = {(a, b) : a ∈ G, b ∈ H}.

(2) The binary operation on G×H, ∗, is defined as

(g1, h1) ∗ (g2, h2) = (g1 ∗ g2, h1 ∗ h2).

Definition 2.5. If (G, ∗) and (H,�) are two groups and f : (G, ∗) → (H,�) is a

function, we say that f is a homomorphism if

f(g1 ∗ g2) = f(g1)�f(g2) for all g1, g2 ∈ G.

If the homomorphism f is bijective (one-to-one and onto), we say that f is an iso-

morphism from G to H.

Definition 2.6. An isomorphism from a group G into itself is called automorphism.

The set of all automorphisms from G into G is denoted as Aut(G).

Remark 2.7. The set of automorphisms from G into itself, Aut(G), under composi-

tion forms a group.

Definition 2.8. Take two groups, G and H. Let φ : H → Aut(G) be a group

homomorphism. The semidirect product of the groups G and H with respect to φ

is the set (G×H, ∗) where the binary operation ∗ is defined as follows:
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(g1, k1) ∗ (g2, k2) = (g1[φ(k1)](g2), k1k2) for any (g1, k1), (g2, k2) ∈ G×H.

It is denoted as Goφ H.

Theorem 2.9. The semidirect product of two groups G o H, defined in Definition

2.8, is a group.

Proof. We’ll show that the four group properties, from Definition 2.1, are true for the

set GoH. First, recall that

Goφ H = {(g, h) : g ∈ G and h ∈ H}, where

φ : H → Aut(G) is a group homomorphism.

Also, recall that the binary operation is ∗ which is defined by,

(g1, h1) ∗ (g2, h2) = (g1[φ(h1)](g2), h1h2) for any (g1, h1), (g2, h2) ∈ G×H.

(1) Let (g1, h1), (g2, h2) ∈ GoφH. We want to show that (g1, h1)∗(g2, h2) ∈ G×H.

(g1, h1) ∗ (g2, h2) = (g1[φ(h1)](g2), h1h2)

= (g1k, h1h2)

for some k ∈ G such that k = φ(h1)(g2). This is an element of G because φ(h1)

is an element of Aut(G) and it sends elements of G to elements of G. Therefore

it will send g2 to an element of G, which means that k ∈ G. This means that

(g1, h1) ∗ (g2, h2) ∈ G×H.
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(2) Let (g1, h1), (g2, h2), (g3, h3) ∈ G×H. Then

(g1, h1) ∗ [(g2, h2) ∗ (g3, h3)] = (g1, h1) ∗ (g2[φ(h2)](g3), h2h3)

= (g1[φ(h1)](g2[φ(h2)](g3)), h1h2h3)

= (g1[φ(h1)](g2)[φ(h1h2)](g3), h1h2h3)

= (g1[φ(h1)](g2), h1h2) ∗ (g3, h3)

= [(g1, h1) ∗ (g2, h2)] ∗ (g3, h3)

This shows that G×H is associative.

(3) The identity element of G×H is (1G, 1H) where 1G is the identity element of the

group G, and 1H is the identity element of the group H. For any (g, h) ∈ G×H

we have:

(g, h) ∗ (1G, 1H) = (g[φ(h)](1G), h1H)

= (g1G, h1H)

= (g, h);

and also

(1G, 1H) ∗ (g, h) = (1G[φ(1H)](g), 1Hh)

= (1Gg, 1Hh)

= (g, h).

This gives us the equation (g, h)(1G, 1H) = (1G, 1H)(g, h) = (g, h). Hence,

(1G, 1H) is the identity element of G×H.

(4) We claim that the inverse element of (g, h) ∈ G×H is the element ([φ(h−1)](g−1), h−1).

7



To see this, we follow the equation

(g, h) ∗ ([φ(h−1)](g−1), h−1) = (g[φ(h)]([φ(h−1)](g−1)), hh−1)

= (gg−1, hh−1)

= (1G, 1H).

Conversely,

([φ(h−1)](g−1), h−1) ∗ (g, h) = ([φ(h−1)](g−1)[φ((h−1)](g), h−1h)

= (1G, 1H).

This latter equation is saying that if the map φ(h−1) sends g to an element, it

will send g−1 to the inverse of that element. This is true because φ(h−1] is a

group homomorphism. Therefore, the inverse of an element (g, h) ∈ G × H is

([φ(h−1)](g−1), h−1).

Hence, we conclude the proof; and so, Goφ H = (G×H, ∗) is a group.

Definition 2.10. Let G and H be two groups and let φ : G→ H be a homomorphism.

Then the kernel of φ is the set Ker(φ) = {g ∈ G : φ(g) = 1H}, where 1H is the

identity element of H.

Definition 2.11. Let n be a positive integer, and take two groups G and H. Let

ψ : H → Sn be a homomorphism, where Sn is the symmetric group of n letters. Let

Gn denote the direct product of n copies of G. We’ll denote ψ(h)(1) by h · 1, ψ(h)(2)

by h · 2, etc. Define φ : H → Aut(Gn) by

φ(h)(g1, . . . , gn) = (g(h·1), . . . , g(h·n)).

Then Gn o H is a wreath product. We denote the wreath product Gn oφ H by

G oψ H.
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Remark 2.12. For the semidirect product, if the group homomorphism is clear from

the context then we can write GoφH simply as GoH. The special case of the wreath

product is no different, i.e. it could also be simply denoted by G oH.

Remark 2.13. The map from Definition 2.11, φ : H → Aut(G) defined by

φ(h)(g1, . . . , gn) = (g(h·1), . . . , g(h·n))

is a homomorphism.

Proof. We’ll use the same names of the functions as defined in Definition 2.11. So, let

ψ : H → Sn be a homomorphism, and, as in the definition, ψ(h)(j) will be denoted

by h · j for all j such that 1 ≤ j ≤ n. As above, φ will be defined from H to Aut(Gn)

by

φ(h)(g1, . . . , gn) = (g(h·1), . . . , g(h·n)).

We also want to recall that the group law in Sn is function composition. That

is, if h, k ∈ Sn, then hk = h ◦ k. Now, we want to show that for h, k ∈ H, we have

φ(hk)(g1, . . . , gn) = φ(h) ◦ φ(k)(g1, . . . , gn).

φ(hk)(g1, . . . , gn) = (g(hk)·1, . . . , g(hk)·n)

= (gh·(k·1), . . . , gh·(k·n))

= φ(h)(gk·1, . . . , gk·n)

= φ(h)(φ(k)(g1, . . . , gn))

= φ(h) ◦ φ(k)(g1, . . . , gn)

Therefore, the map φ(h) is a homomorphism.

Theorem 2.14. Let G and H be groups, and let φ : G → H be a group homomor-

9



phism. If the kernel of φ is K, then K ≤ G, and further, we can conclude that KEG.

Proof. First, we’ll show that K is a subgroup of G. Since φ is an isomorphism, then

we know that it will send the identity element of G, that is, 1G to 1H , the identity

element of H. Suppose that g1, g2 ∈ K, then φ(g1g2) = 1H1H = 1H , hence K is closed

under the operation of G. We also know that for any g ∈ G, we have that gg−1 = 1G,

and so 1H = φ(gg−1) = φ(g)φ(g−1) and hence, this implies that if g ∈ K, then so is

g−1.

To see that K is also normal in G, it is enough to show that for any arbitrary

g ∈ G we have g−1Kg ⊂ K. That is, for any k ∈ K, the element g−1kg is also an

element of K. So let k ∈ K. We’ll show that φ(g−1kg) = 1H . Since φ is a homo-

morphism, we have φ(g−1kg) = φ(g−1)φ(k)φ(g) = φ(g−1)1Hφ(g) = φ(g)−1φ(g) = 1H .

That shows g−1kg ∈ K which means g−1Kg ⊂ K and therefore K EG.

Definition 2.15. Let G be a group and let N ≤ G be a subgroup. The quotient G/N

is defined as follows:

G/N = {gN : g ∈ G}.

The elements of the set G/N are called cosets of N .

Theorem 2.16. Let G be a group, and let N be a normal subgroup of G. Equip G/N

with a binary operation *, defined as follows:

For any g, h ∈ G, we have gN ∗ hN = (gh)N .

Then (G/N, ∗) is a group.

Proof. To prove this theorem, we need to check the four properties of groups men-

tioned in Definition 2.1.
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(1) Showing that G/N is well-defined: Suppose g1N = g2N and h1N = h2N , we’ll

show that g1h1N = g2h2N .

g1h1N = g1Nh1N

= g2Nh2N

= g2h2N

(2) Closure: Take two elements gN and hN in the set G/N . It is clear that ghN ∈

G/N , so the set is closed under the operation ∗.

(3) Associativity: Let gN, hN, kN ∈ G/N , then

(gN ∗ hN) ∗ kN = (gh)N ∗ kN

= (gh)kN

= g(hk)N

= gN ∗ (hk)N

= gN ∗ (hN ∗ kN).

So G/N is associative.

(4) Identity element: The identity element of G/N is simply eN = N , where e is

the identity of G. To verify that, take any arbitrary element gN ∈ G/N . Then

gN ∗ N = gN ∗ eN = (ge)N = gN and similarly N ∗ gN = gN . Therefore

gN ∗N = N ∗ gN = gN and this shows that N is the identity element of G/N .

(5) Inverse: It is clear that an arbitrary element gN ∈ G/N will have g−1N as its

inverse, where g−1 is the inverse of g in the group G.
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By 1-5, we can conclude that G/N is a group under the operation ∗ defined as

above.

Definition 2.17. From a group G, take two elements g and h. Then [g, h] is a called

a commutator and it is defined as [g, h] = g−1h−1gh.

Definition 2.18. Let G be a group. The commutator subgroup, G′, is defined to

be the subgroup generated by the commutators [g, h] where g, h ∈ G.

Theorem 2.19. If the group G/N is abelian, then the commutator subgroup G′ is a

subgroup of N .

Proof. We want to show that G′ ≤ N . Since G/N is abelian we know that for any

elements g, h ∈ G

hgN = ghN

N = g−1h−1ghN

From the above equation, we get that g−1h−1gh ∈ N . Since g and h were arbi-

trary, any commutator is an element of N . Since G′ is generated by the commutator

elements, we conclude G′ ≤ N .

Theorem 2.20. Let G and H be groups, and φ : G → H be a homomorphism. Let

φ(G) denote the image of G under φ, then φ(G) ≤ H.

Proof. It suffices to show that φ(G) is not empty and that if h1, h2 ∈ φ(G), then

h1h
−1
2 ∈ φ(G). Let 1G, 1H denote the identities of G and H respectively.

(1) Since φ is a homomorphism, then φ(1G) = 1H . Therefore 1G ∈ φ(G) and so

φ(G) 6= ∅

(2) Let h1, h2 ∈ φ(G), then there exist g1, g2 ∈ G such that φ(g1) = h1, φ(g2) = h2.
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Then φ(g1g
−1
2 ) = φ(g1)φ(g2)

−1 = h1h
−1
2 and so h1h

−1
2 ∈ φ(G).

Theorem 2.21 (First Isomorphism Theorem). Take two groups G and H, and let

φ : G → H be a group homomorphism. Then the quotient group G/Ker(φ), where

Ker(φ) is the kernel of φ, is isomorphic to the image of G under φ.

Proof. In the proof of this theorem, we’ll assume without loss of generality that φ is

surjective (otherwise, replace H by the image of φ). Let K denote Ker(φ). Define

ψ : G/K → H by

ψ(gK) = φ(g)

We’ll first show that ψ is well defined. Let g1K, g2K ∈ G/K, we’ll show that

ψ(g1K) = ψ(g2K). Then

ψ(g1K) = φ(g1) = φ(g2) = ψ(g2K)

Also, ψ is surjective. So, it remains to prove that ψ is injective. To show this note

that

Ker(ψ) = {gK ∈ G/K : ψ(gK) = 1H}

= {gK ∈ G/K : φ(g) = 1H}

= {K}

Therefore, ψ is also injective. Hence, ψ defines an isomorphism from G/K to the

image of G under φ.

Theorem 2.22. Let G be a group and let H be a subgroup of G. Then H ′ ≤ G′.

Proof. The proof of this theorem is really straightforward. We know that H ′ is

generated by elements of the form

hkh−1k−1 such that h, k ∈ H.
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We also know that H < G, i.e. the elements h and k are also in G. This means any

generator of H ′ is an element of G′. Since H ′ is generated by elements of the form

hkh−1k−1 such that h, k ∈ H, we can conclude that H ′ ≤ G′.

Theorem 2.23. Let G be a group. Let φ ∈ Aut(G) such that φ has order 2. Define

ψ : Z2 → Aut(G) by ψ(1) = φ. Let g ∈ G. Then (g−1φ(g), 0) ∈ (Goψ Z2)
′.

Proof. Pick the two elements (g, 0) and (e, 1) in the group G×ψ Z2. Then

[(g, 0), (e, 1)] = (g, 0)−1(e, 1)−1(g, 0)(e, 1)

= (g−1, 0)(e, 1)(g, 0)(e, 1)

= (g−1, 0)([ψ(1)](g), 1)(e, 1)

= (g−1, 0)(φ(g), 1)(e, 1)

= (g−1, 0)(φ(g)[ψ(1)](e), 0)

= (g−1, 0)(φ(g), 0)

= (g−1[ψ(0)](φ(g)), 0)

= (g−1φ(g), 0).

Therefore, (g−1φ(g), 0) ∈ (Goψ Z2)
′.

14



CHAPTER 3

Case One of the Main Theorem

This chapter and the next two will be the heart of this paper. In this chapter, we will

prove the main theorem in the case where a = b = 3 and c is odd. We’ll also compute

the order of all the terms of the derived series (Definition 3.1) of the the group that

will be constructed during the proof of Theorem 3.4.

Definition 3.1. Let G be a group. Then the derived series of G is defined as

follows:

G(0) = G, G(1) = [G,G], G(2) = [G(1), G(1)], . . . and further

G(0) ≥ G(1) ≥ G(2) ≥ . . .

Throughout this thesis we’ll use the notation:

G′ = G(1), G′′ = G(2), G′′′ = G(3), . . .

Definition 3.2. Let G be a group with commutator subgroups G′, G′′, . . . , G(n) such

that

G(n) ≤ G(n−1) ≤ · · · ≤ G′′ ≤ G′.

Then we say that G is of derived length n if and only if G(n) = {1G} and G(k) is

nontrivial for all k ≤ n.

Definition 3.3. Let G be a finite group. If the order of G is a power of 2, we say

that G is a 2-group.

In this thesis we are using D2n to refer to the dihedral group of order 2n. D2n is

defined to be the group of symmetries of a regular polygon with 2n sides. Consider
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the polygon in the complex plane whose vertices are the 2n−1th roots of unity. We

refer to rotation about the origin by an angle of 2π/2n−1 by the letter r, and we refer

to reflection across the real axis by the letter s. Then

D2n = 〈r, s : r2
n−1

= e, s2 = e, rs = sr−1〉.

= {rasb : 0 ≤ a ≤ 2n−1, b = 0, 1}.

The group D2n is a group of order 2n, i.e. a 2-group (see Definition 3.3).

For the remainder of this chapter, take G to be D2n o Z2, where the wreath

product is given by the map φ1 which we define by

φ1 : Z2 → S2 by φ1(1) = (1 2),

where (1 2) is cycle notation for the element of S2 that interchanges 1 and 2.

Now, using this map, φ1, we’ll compute the commutator subgroups G′, G′′ and G′′′.

Then we’ll also compute the quotient groups G/G′, G′/G′′ and G′′/G′′′ and their

orders.

Theorem 3.4. Let n be an integer with n ≥ 3. Then the group G defined above is

a 2-group that has order 22n+1 and derived length 3. Also, we have that |G/G′| = 8

and |G′/G′′| = 8 and |G′′/G′′′| = 22n−5.

Proof. We’ll start by claiming that the commutator subgroup G′ is as follows:

G′ = {((rasb, rcsd), 0) : a+ c and b+ d are even}

Lemma 3.5. G′ = {(rasb, rcsd, e) : a+ c is even and b+ d is even, e = 0}.

Proof. Let’s start by letting

K = {(rasb, rcsd, e) : a+ c is even and b+ d is even, e = 0}.
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Define f : G→ Z2 × Z2 × Z2 by

f((rasb, rcsd), e) = (a+ c, b+ d, e) (mod 2).

First, note that a and c are defined mod 2n−1, and b and d are defined mod 2.

So, f is a well-defined function. Now we’ll show that f is a homomorphism. Let

((rasb, rcsd), e), ((rmsn, rusv), w) ∈ G, then we have

(1) f((rasb, rcsd), e)f((rmsn, rusv), w) = (a+ c, b+ d, e) + (m+ u, n+ v, e+ w)

= (a+ c+m+ u, b+ d+ n+ v, e+ w).

(2) f((rasb, rcsd), e)(rmsn, rusv), w)) = f((rasbrmsn, rcsdrusv), w + e)

= f((ra+(−1)bmsb+n, rc+(−1)dusd+v), e+ w)

= (a+ (−1)bm+ c+ (−1)du, b+ n+ d+ v, e+ w).

To see that the element from (1) is the same as the one from (2) note that

the second and the third components of (a + c + m + u, b + d + n + v, e + w) and

(a+ (−1)bm+ c+ (−1)du, b+n+d+v, e+w) are the same. To see that a+ c+m+u

is the same as a+ (−1)bm+ c+ (−1)du mod 2 we check the 4 cases:

(1) If b = d = 0, then a+ (−1)bm+ c+ (−1)du = a+m+ c+ u = a+ c+m+ u.

(2) If b = 0, d = 1, then a+(−1)bm+c+(−1)du = a+m+c−u ≡ a+c+m+u mod 2.

(3) If b = 1, d = 0, then a+(−1)bm+c+(−1)du = a−m+c+u ≡ a+c+m+u mod 2.

(4) Id b = d = 1, then a+(−1)bm+c+(−1)du = a−m+c−u ≡ a+c+m+u mod 2.
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So f is a homomorphism. Now the kernel of the function f will be

Ker(f) = {((rasb, rcsd), e) : a+ c ≡ 0 (mod 2) and b+ d ≡ 0 (mod 2), e = 0}

= {((rasd, rcsd), 0) : a+ c and b+ d are even}

= K.

We’ll show that G′ = K.

(1) Showing K ≤ G′.

Let’s first compute several of the elements of the the group G′.

((r−1, e), 0) · ((e, e), 1) · ((r−1, e), 0)−1 · ((e, e), 1)−1 = (r−1, e) · 1 · (r, e) · 1

= (r−1, e) · (e, r)

= (r−1, r)

= ((r−1, r), 0) ∈ G′

Therefore, ((r−1, r), 0)−1 = ((r, r−1), 0) ∈ G′. Another element

((s, e), 0)((e, e), 1)((s, e), 0)((e, e), 1) = (s, e) · 1 · (s, e) · 1

= (s, e) · (e, s)

= (s, s)

= ((s, s), 0) ∈ G′;
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Another element of G′ is ((rs, rs), 0) as

((r, s), 0) · 1 · ((r−1, s), 0) · 1 = (r, s)(s, r−1)

= (rs, sr−1)

= (rs, rs)

= ((rs, rs), 0).

Here, we are using 1 to mean ((e, e), 1).

Multiplying the two elements ((rs, rs), 0) and ((s, s), 0) we get,

((rs, rs), 0)((s, s), 0) = ((r, r), 0) ∈ G′ and so ((r−1, r−1), 0) ∈ G′.

One can notice that all the elements that we computed so far are already

elements of the group we called K at the beginning of this proof. Therefore, we’ll use

these facts to show that K ≤ G′.

Now, we want to show show that if a + c is even then we have ((ra, rc), 0) is

in G′. Let give some of the elements we computed above names. Let

x = ((r, r−1), 0),

y = ((r, r), 0),

z = ((s, s), 0).

Because a + c is even, it follows that a − c is also even. Let k = (a + c)/2 and
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j = (a− c)/2. Then we get the following:

((ra, rc), 0) = ((rk+j, rk−j), 0)

= ((rkrj, rk(r−1)j), 0)

= ((rj, (r−1)j), 0)((rk, rk), 0)

= ((r, r−1), 0)j((r, r), 0)k

= xj · yk.

So, this shows that any element of the form ((ra, rc), 0), with a + c being even is an

element of G′. For elements of the form ((ras, rcs), 0), where a + c is even, we can

easily see that

((ras, rcs), 0) = ((ra, rc), 0)((s, s), 0)

= xj · yk · z,

where k and j are as defined in the equation of ((ra, rc), 0). This shows any element

of the form ((ras, rcs), 0) is an element of G′. Hence K ≤ G′.

(2) Showing G′ ≤ K

By the first isomorphism theorem, Theorem 2.21, we know that G/K is isomorphic

to Z2 × Z2 × Z2. This implies that G/K is abelian. Hence, by Theorem 2.19 and

Theorem 2.21, we conclude that G′ ≤ K.

From (1) and (2) we, therefore, get that G′ = K.

Getting back to the proof of Theorem 3.4, we’ll now use the first isomorphism the-

orem, Theorem 2.21, to compute |G/G′|. First, we note that f(G), the image of G

20



under f , is Z2 × Z2 × Z2. Second, by the first isomorphism theorem, we know that

Z2×Z2×Z2 is isomorphic to the group G/G′, since G′ is the kernel of f . Therefore,

|G/G′| = 8.

Now, we’ll compute a couple of elements of G′′, which is the commutator sub-

group of G′. Before doing that, and since the elements of G′ always have the form

((rasb, rcsd), 0) with a + c and b + d both even, we’ll use the shortcut (rasb, rcsd) to

refer to ((rasb, rcsd), 0) in the following computations.

(r, r)(s, s)(r−1, r−1)(s, s) = (rsr−1s, rsr−1s)

= (r2, r2).

We also get (r−2, r−2) ∈ G′′, as G′′ ≤ G′ by Theorem 2.17, so it is closed under taking

inverses. Another element of G′′ is

(e, r−2)(s, s)(e, r2)(s, s) = (eses, r−2sr2s)

= (ss, r−2r−2ss)

= (e, r−4) ∈ G′′.

From these two elements we can get

(e, r−4)(r2, r2) = (er2, r−4r2)

= (r2, r−2) ∈ G′′.

Lemma 3.6. We claim that

G′′ = {(ra, rc) : a and c are both even and a+ c ≡ 0(mod 4)}.

Proof. Let H = {(ra, rc) : a and c are both even and a + c ≡ 0(mod 4)}. Then we
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want to show that G′′ = H. We’ll prove this theorem by showing that H ⊂ G′′ first,

and then that G′′ ⊂ H.

(1) First, we’ll show that H ⊂ G′′.

From the work that was done just before the statement of this lemma, we can see

that many of the elements of H are also in G′′. We, specifically, showed that the two

elements

x = (r2, r−2) and y = (r2, r2)

are elements of G′′. This means that it is enough to show that any element of the

form (ra, rc), satisfying (1) a and c are both even, and (2) a+ c ≡ 0 (mod 4), can be

generated by the elements x and y, as defined above. So, pick an element (ra, rc) ∈ H.

Then, since both a and c are even, we can find two integers n and m such that

a = 2j and c = 2m.

We also know that a+ b ≡ 0 (mod 4). This means that we can find an element k ∈ Z

such that

a+ c = 4k

2j + 2m = 4k

2(j +m) = 4k

j +m = 2k.

Let

q = k −m
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Using this information, we get the following

(ra, rc) = (r2j, r2m)

= (rj, rm)2

= (rk+q, rk−q)2

= (rkrq, rk(r−1)q)2

= (rk, rk)2(rq, (r−1)q)2

= (r, r)2k(r, r−1)2q

= (r2, r2)k(r2, r−2)q

= xkyq (3.1)

This last equation, Equation 3.1, shows that any element of H can be generated using

only the two elements x and y. This implies that x and y generate H. Since we know

by the work done right above Lemma 3.6 that x ∈ G′′ and y ∈ G′′, we know that the

whole set H is contained in G′′, i.e. H ⊂ G′′.

(2) Showing G′′ ⊂ H.

Define g : G′ → Z2 × Z2 × Z2 by

g(rasb, rcsd) = (a, (a+ c)/2, b) mod 2.

We’ll first show that g is a homomorphism. Let (rasb, rcsd), (rmsn, rusv) ∈ G′, then

(1) g(rasb, rcsd)g(rmsn, rusv) = (a, (a+ c)/2, b) + (m, (m+ u)/2, n)

= (a+m, (a+ c+m+ u)/2, b+ n).
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(2) g((rasb, rcsd) · (rmsn, rusv)) = g(rasbrmsn, rcsdrusv)

= g(ra+(−1)bmsb+n, rc+(−1)dusd+v)

= (a+ (−1)bm, (a+ (−1)bm+ c+ (−1)du)/2, b+ n)

Then, going through the same cases when proving that f (from Lemma 3.5), we can

conclude that g is a homomorphism. Now, the kernel of g is

Ker(g) = {(rasb, rcsd) ∈ G′ : b = d = 0, a is even, (a+ c)/2 is even}

= {(ra, rc) ∈ G′ : a ≡ 0 (mod 2), (a+ c)/2 ≡ 0 (mod 2)}

= {(ra, rc) ∈ G′ : a = 2k for some integer k and (a+ c)/2 = 2n for some integer n}

= {(ra, rc) ∈ G′ : a = 2k for some integer k and a+ c = 4n for some integer n}

= {(ra, rc) ∈ G′ : a and c are even, and a+ c = 4n for some integer n}

= {((ra, rc), 0) : a and c are even, and a+ c ≡ 0 (mod 4)}

= H.

In the first equation, we know that b = d = 0 because b+d has to be even. Therefore,

by Theorems 2.19 and 2.21, we know that the commutator subgroup of the domain

of g is a subset of Ker(g) = H. Hence G′′ ⊂ H. From (1) and (2) we get that

G′′ = H = Ker(g).

By Lemma 3.6 above we know that

G′′ = {((ra, rc), 0) : a and c are even, and a+ c ≡ 0 (mod 4)}.

We also know that G′′ is the kernel of the function g defined in the second part

of the above proof. Then by the first isomorphism theorem, Theorem 2.21, we can
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conclude that the image of G′ under g is isomorphic to the quotient group G′/G′′.

The function g is onto, which means that g(G′) = Z2 × Z2 × Z2. Therefore, we get

that |G′/G′′| = 8.

Before jumping to computing G′′′, here is a remark

Remark 3.7. The fact that n has to be at least three was necessary for g, above, to

be well-defined. This is because that both a and c are defined mod 2(n−1), which means

that (a+ c)/2 is well-defined mod 2 if and only if n ≥ 3.

Back to computing G′′′, we want to show that |G′′/G′′′| = 22n−5. Pick any two

elements of G′′, say (ra, rc) and (rk, rn). Then by commutating these two elements

we get the following:

(ra, rc)(rk, rn)(ra, rc)−1(rk, rn)−1 = (ra, rc)(rk, rn)(r−a, r−c)(r−k, r−n)

= (rarkr−ar−k, rcrnr−cr−n)

= (rar−arkr−k, rcr−crnr−n)

= (e, e).

This is true for any two arbitrary elements of G′′, which means that G′′′ = {((e, e), 0)}

is the trivial subgroup of G. To see what the order of G′′/G′′′ is, we’ll compute the

order of the subgroups G′, G′′ and G′′′ first. For the commutator subgroup of G, that

is G′, we have that

(1) The order of G/G′ is 8, as shown in Lemma 3.5.

(2) The order of the group G = D2n o Z2 is 22n+1.

(3) By (1) and (2), we get
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8 = |G/G′| = |G|/|G′| ⇒ |G′| = |G|/8 = (22n+1)/8 = 22n−2.

To find the order of G′′, we note that

(1) The order of G′/G′′ is 8, as shown in Lemma 3.6.

(2) The order of G′ is, as shown above, 22n−2.

(3) By (1) and (2), we get

8 = |G′/G′′| = |G′|/|G′′| ⇒ |G′′| = (22n−2)/8 = 22n−5.

Now, we know that G′′′ is the trivial group. This means that |G′′/G′′′| = |G′′| = 22n−5.
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CHAPTER 4

The Even Case

So far we have proved Theorem 3.4 (one case of the two main theorems 5.9 and 5.10),

which is the case where a = b = 3 and c is odd. This chapter will be dealing with the

other case, where c is even.

Theorem 4.1. Let a, b, c be positive integers where a=b=3 and c is even. Then there

exists a finite 2-group G with derived length 3 such that |G/G′| = 2a and |G′/G′′| = 2b

and |G′′/G′′′| = 2c.

Proof. Let n ≥ 3 be an integer. To prove this theorem, let H = D2n o Z2 (the group

G constructed in Theorem 3.4) and

x1 = ((r, e), 0)

x2 = ((s, e), 0)

x3 = ((e, r), 0)

x4 = ((e, s), 0)

x5 = ((e, e), 1)

Then H is given as follows:

H = 〈x1, x2, x3, x4, x5| x2
n−1

1 = x22 = x2
n−1

3 = x24 = x25 = 1H ,

x2x1 = x−11 x2,

x3x1 = x1x3, x3x2 = x2x3,

x4x1 = x1x4, x4x2 = x2x4, x4x3 = x−13 x4,

x5x1 = x3x5, x5x2 = x4x5, x5x3 = x1x5, x5x4 = x2x5〉
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Let ψ : H → H be defined by:

ψ(x1) = x−11 ,

ψ(x2) = x1x2,

ψ(x3) = x−13 ,

ψ(x4) = x3x4, and

ψ(x5) = x5

We’ll show that this gives a well-defined homomorphism. To show this, we’ll need to

verify that ψ respects all the relations listed above.

(1) Checking the relations x2
n−1

1 = 1H , x
2
2 = 1H , x

2n−1

3 = 1H , x
2
4 = 1H , x

2
5 = 1H :

(ψ(x1))
2n−1

= ((x1)
−1)2

n−1
= ((x2

n−1

1 )−1 = (1H)−1 = 1H .

(ψ(x2))
2 = (x1x2)

2 = x1x2x1x2 = x1x
−1
1 x2x2 = (x2)

2 = 1H .

(ψ(x3))
2n−1

= ((x3)
−1)2

n−1
= (x−13 )2

n−1
= (1H)−1 = 1H .

(ψ(x4))
2 = (x3x4)

2 = x3x4x3x4 = x3x
−1
3 x4x4 = (x4)

2 = 1H .

(ψ(x5))
2 = (x5)

2 = 1H .

(2) Checking the relation x2x1 = x−11 x2:

ψ(x2)ψ(x1) = (x1x2)(x
−1
1 ) = x1x2x

−1
1 = x1x1x2 = x21x2.

(ψ(x1))
−1ψ(x2) = (x−11 )−1x1x2 = x1x1x2 = x21x2.

(3) The relation x3x1 = x1x3:

ψ(x3)ψ(x1) = x−13 x−11 = (x1x3)
−1

ψ(x1)ψ(x3) = x−11 x−13 = (x3x1)
−1 = (x1x3)

−1 (since x3x1 = x1x3).

28



(4) The relation x3x2 = x2x3:

ψ(x3)ψ(x2) = x−13 x1x2 = x1x
−1
3 x2 = x1x2x

−1
3 .

ψ(x2)ψ(x3) = x1x2x
−1
3 .

(5) The relation x4x1 = x1x4:

ψ(x4)ψ(x1) = x3x4x
−1
1 = x3x

−1
1 x4 = x−11 x3x4.

ψ(x1)ψ(x4) = x−11 x3x4.

(6) The relation x4x2 = x2x4:

ψ(x4)ψ(x2) = x3x4x1x2 = x3x1x4x2 = x1x3x2x4 = x1x2x3x4.

ψ(x2)ψ(x4) = x1x2x3x4.

(7) The relation x4x3 = x−13 x4:

ψ(x4)ψ(x3) = x3x4x
−1
3 = x3(x

−1
3 )−1x4 = x23x4.

(ψ(x3))
−1ψ(x4) = (x−13 )−1x3x4 = x23x4.

(8) The relation x5x1 = x3x5:

ψ(x5)ψ(x1) = x5x
−1
1 = x−13 x5.

ψ(x3)ψ(x5) = x−13 x5.

(9) The relation x5x2 = x4x5:

ψ(x5)ψ(x2) = x5x1x2 = x3x5x2 = x3x4x5.

ψ(x4)ψ(x5) = x3x4x5.

(10) The relation x5x3 = x1x5:

ψ(x5)ψ(x3) = x5x
−1
3 = x−11 x5.
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ψ(x1)ψ(x5) = x−11 x5.

(11) The relation x5x4 = x2x5:

ψ(x5)ψ(x4) = x5x3x4 = x1x5x4 = x1x2x5.

ψ(x2)ψ(x5) = x1x2x5.

ψ respects all the relations, so ψ is a homomorphism.

Now, we’ll show that ψ is bijective, i.e. that ψ is both injective and surjective. It

suffices to show that ψ is its own inverse, i.e. it has order 2. So, we need to verify that

ψ(ψ(xi)) = xi for all i = 1, 2, ..., 5. We’ll be using the fact that ψ is a homomorphism,

since we already established that fact.

(1) ψ(ψ(x1)) = ψ(x−11 ) = ψ(x1)
−1 = (x−11 )−1 = x1.

(2) ψ(ψ(x2)) = ψ(x1x2) = ψ(x1)ψ(x2) = x−11 x1x2 = x2.

(3) ψ(ψ(x3)) = ψ(x−13 ) = ψ(x3)
−1 = (x−13 )−1 = x3.

(4) ψ(ψ(x4)) = ψ(x3x4) = ψ(x3)ψ(x4) = x−13 x3x4 = x4.

(5) ψ(ψ(x5)) = ψ(x5) = x5.

With this being confirmed, now we know that ψ is an automorphism of order two

from the group H to itself.

Now, we get back to the proof of the theorem. Let G = H oψ Z2. Then,

|G| = |H| · |Z2| = 22n+1 · 2 = 22n+2

Obviously, G is a 2-group. We’ll show that it has derived length three and that

|G/G′| = 8 and |G′/G′′| = 8 and |G′′/G′′′| is an arbitrary even number.

Lemma 4.2. Let K = {(rmsn, rusv, x, y) ∈ G : b + d is even, e = 0, f = 0}. Then,
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K = G′.

Proof. We want to show that K = G′. We’ll show this in two steps.

(1) Showing K ≤ G′.

The group H defined in the beginning of Theorem 4.1 above could be written as:

H = {(rasb, rcsd, e, f) : a, b, c, d, e, f are integers and f = 0}.

Then, by Lemma 3.5 we get that

H ′ = {(rasb, rcsd, 0, 0) : a+ c is even and c+ d is even}. (4.1)

One thing to note is that we need n ≥ 3 to apply Theorem 3.4, because that is one

of the hypotheses of Theorem 3.4.

Since G = H oψ Z2, we get that H ′ ⊂ G′ by Theorem 2.22. Let x6 = (e, e, 0, 1),

the generator that comes from the map ψ. Then from the map ψ we get the new

relations:

x6x1 = x−11 x6

x6x2 = x1x2x6

x6x3 = x−13 x6

x6x4 = x3x4x6

x6x5 = x5x6

From the second relation of this list of relations, we get

x6x2x6x2 = x1

and so x1 ∈ G′. This is essentially the Miller trick—in a semidirect product of A by

a cyclic group defined by a homomorphism ψ, any element of the form ψ(a)a−1 is in
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the commutator subgroup ([6]). Now the claim is that x1 and H ′ generate K. If we

show this, we can conclude that K ≤ G′ using the two facts (i) x1 ∈ G′, (ii) H ′ ≤ G′.

Let (rasb, rcsd, 0, 0) be an element of K, so we know that b + d is an even number.

Then, we have a + c is either even or odd. If it is even then clearly it is an element

of H ′ by (4.1). If a+ c is odd, however, then we get the following:

(rasb, rcsd, 0, 0) = (ra, rb, 0, 0) (if b = d = 0)

= (r, e, 0, 0)(ra−1, rc, 0, 0)

= x1(r
a−1, rc, 0, 0)

Obviously if a + c is odd then a − 1 + c = a + c − 1 will be even which means that

the element (ra−1, rc, 0, 0) is an element of H ′. Therefore, if a+ c is odd the element

(rasb, rcsd, 0, 0) could be expressed as a product of x1 and an element of H ′. If we

consider the case where b = d = 1, then we’ll have

(rasb, rcsd, 0, 0) = x1(r
a−1, rc, 0, 0)x2x4

Therefore x1, x2, x4 and H ′ generate the group K. So knowing that H ′ ≤ G′ and

x1 ∈ G′, we conclude that K ≤ G′.

(2) Showing G′ ≤ K.

Define the map h : G→ Z2 × Z2 × Z2 by

h(rasb, rcsd, x, y) = (b+ d, x, y) mod 2.

To see that h is onto, let (`1, `2, `3) ∈ Z2×Z2×Z2. Then h(s`1 , e, `2, `3) = (`1, `2, `3).

So h is surjective.

Now, we want to show that h is a homomorphism. To do this, we’ll need to check
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that h respects all the relations of G, which could be written as

G = 〈x1, x2, x3, x4, x5, x6| x2
n−1

1 = x22 = x2
n−1

3 = x24 = x25 = x26 = 1G,

x2x1 = x−11 x2,

x3x1 = x1x3, x3x2 = x2x3,

x4x1 = x1x4, x4x2 = x2x4, x4x3 = x−13 x4,

x5x1 = x3x5, x5x2 = x4x5, x5x3 = x1x5, x5x4 = x2x5

x6x1 = x−11 x6, x6x2 = x1x2x6, x6x3 = x−13 x6,

x6x4 = x3x4x6, x6x5 = x5x6〉.

(1) The relations x2
n−1

1 = x22 = x2
n−1

3 = x24 = x25 = x26 = 1G.

h(x1)
2n−1

= 2n−1 · (0, 0, 0) = (0, 0, 0).

h(x2)
2 = 2 · (1, 0, 0) = (0, 0, 0).

h(x3)
2n−1

= 2n−1 · (0, 0, 0) = (0, 0, 0).

h(x4)
2 = 2 · (1, 0, 0) = (0, 0, 0).

h(x5)
2 = 2 · (0, 1, 0) = (0, 0, 0).

h(x6)
2 = 2 · (0, 0, 1) = (0, 0, 0).

(2) The relation x2x1 = x−11 x2.

h(x2)h(x1) = (1, 0, 0) + (0, 0, 0) = (1, 0, 0).

h(x1)
−1h(x2) = −(0, 0, 0) + (1, 0, 0) = (1, 0, 0).

(3) The relation x3x1 = x1x3.

h(x3)h(x1) = (0, 0, 0) + (0, 0, 0) = (0, 0, 0).
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h(x1)h(x3) = (0, 0, 0) + (0, 0, 0) = (0, 0, 0).

(4) The relation x3x2 = x2x3.

h(x3)h(x2) = (0, 0, 0) + (1, 0, 0) = (1, 0, 0).

h(x2)h(x3) = (1, 0, 0) + (0, 0, 0) = (1, 0, 0).

(5) The relation x4x1 = x1x4.

h(x4)h(x1) = (1, 0, 0) + (0, 0, 0) = (1, 0, 0).

h(x1)h(x4) = (0, 0, 0) + (1, 0, 0) = (1, 0, 0).

(6) The relation x4x2 = x2x4.

h(x4)h(x2) = (1, 0, 0) + (1, 0, 0) = (0, 0, 0).

h(x2)h(x4) = (1, 0, 0) + (1, 0, 0) = (0, 0, 0).

(7) The relation x4x3 = x−13 x4.

h(x4)h(x3) = (1, 0, 0) + (0, 0, 0) = (1, 0, 0).

h(x3)
−1h(x4) = −(0, 0, 0) + (1, 0, 0) = (1, 0, 0).

(8) The relation x5x1 = x3x5.

h(x5)h(x1) = (0, 1, 0) + (0, 0, 0) = (0, 1, 0).

h(x3)h(x5) = (0, 0, 0) + (0, 1, 0) = (0, 1, 0).

(9) The relation x5x2 = x4x5.

h(x5)h(x2) = (0, 1, 0) + (1, 0, 0) = (1, 1, 0).

h(x4)h(x5) = (1, 0, 0) + (0, 1, 0) = (1, 1, 0).
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(10) The relation x5x3 = x1x5.

h(x5)h(x3) = (0, 1, 0) + (0, 0, 0) = (0, 1, 0).

h(x1)h(x5) = (0, 0, 0) + (0, 1, 0) = (0, 1, 0).

(11) The relation x5x4 = x2x5.

h(x5)h(x4) = (0, 1, 0) + (1, 0, 0) = (1, 1, 0).

h(x2)h(x5) = (1, 0, 0) + (0, 1, 0) = (1, 1, 0).

(12) The relation x6x1 = x−11 x6.

h(x6)h(x1) = (0, 0, 1) + (0, 0, 0) = (0, 0, 1).

h(x1)
−1h(x6) = −(0, 0, 0) + (0, 0, 1) = (0, 0, 1).

(13) The relation x6x2 = x1x2x6.

h(x6)h(x2) = (0, 0, 1) + (1, 0, 0) = (1, 0, 1).

h(x1)h(x2)h(x6) = (0, 0, 0) + (1, 0, 0) + (0, 0, 1) = (1, 0, 1).

(14) The relation x6x3 = x−13 x6.

h(x6)h(x3) = (0, 0, 1) + (0, 0, 0) = (0, 0, 1).

h(x3)
−1h(x6) = −(0, 0, 0) + (0, 0, 1) = (0, 0, 1).

(15) The relation x6x4 = x3x4x6.

h(x6)h(x4) = (0, 0, 1) + (1, 0, 0) = (1, 0, 1).

h(x3)h(x4)h(x6) = (0, 0, 0) + (1, 0, 0) + (0, 0, 1) = (1, 0, 1).

(16) The relation x6x5 = x5x6.

h(x6)h(x5) = (0, 0, 1) + (0, 1, 0) = (0, 1, 1).

35



h(x5)h(x6) = (0, 1, 0) + (0, 0, 1) = (0, 1, 1).

This shows that h is also a homomorphism. The kernel of the function h defined

above is:

Ker(h) = {(rasd, rcsd, e, f) ∈ G : b+ d ≡ 0 (mod 2), e = 0, f = 0}

= {(rasb, rcsd, 0, 0) : b+ d is even }

= K

Therefore, we get that the quotient group G/K is abelian, and by Theorem 2.19 we

get that G′ ≤ K.

By (1) and (2) we get that G′ = K = {(rasb, rcsd, e, f) : b + d is even, e = 0, f = 0}.

Further, from the function h and using the first isomorphism theorem, Theorem 2.21,

we get that G/G′ is isomorphic to Z2 × Z2 × Z2. Hence |G/G′| = 8.

Getting back to Theorem 4.1, we are now ready to compute the second group of the

derived series of G, namely G′′. We’ll also start this by a claim, which will be the

next lemma.

Lemma 4.3. Let L = {(ra, rc, 0, 0) : a and c are both even}. Then L = G′′.
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Proof. We’ll first show that L < G′′. We’ll first compute the following:

[(r, e, 0, 0), (s, s, 0, 0)] = (r, e, 0, 0)(s, s, 0, 0)(r−1, e, 0, 0)(s, s, 0, 0)

= (rsr−1s, eses, 0, 0)

= (r2, e, 0, 0)

[(e, r, 0, 0), (s, s, 0, 0)] = (e, r, 0, 0)(s, s, 0, 0)(e, r−1, 0, 0)(s, s, 0, 0)

= (eses, rsr−1s, 0, 0)

= (e, r2, 0, 0)

This shows that (r2, e, 0, 0) and (e, r2, 0, 0) are elements of G′′ as they are obtained

from commutating elements of G′.

Now pick an element (ra, rc, 0, 0) from L, then clearly we can write this element as

(ra, rc, 0, 0) = (r2, e, 0, 0)a/2(e, r2, 0, 0)c/2.

We know that this is possible as a and c are both even. Hence, (ra, rc, 0, 0) ∈ G′′, and

so L < G′′.

To show that G′′ < L, define the function j : G′ → Z2 × Z2 × Z2 by

j(rasb, rcsd, 0, 0) = (a, b, c) mod 2 .

Then j is a surjective homomorphism. To see that it is surjective we must prove that

any element of Z2 × Z2 × Z2 will be the image of at least one element of G′. This

is because that a, b, c are integers, so they are even or odd and the odd ones will

map to 1 and the even ones will map to 0. This will cover all of the eight cases (as

Z2 × Z2 × Z2 has 8 elements).

To see that j is a homomorphism, pick two elements from G′, say (rasb, rcsd, 0, 0) and
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(rmsn, rusv, 0, 0). Then we know that b+ d, n+ v are both even, and since

(rasb, rcsd, 0, 0)(rmsn, rusv, 0, 0) = (rasbrmsn, rcsdrusv, 0, 0)

= (ra+(−1)bmsb+n, rc+(−1)dusd+v, 0, 0).

We need to show

j(ra+(−1)bmsb+n, rc+(−1)dusd+v, 0, 0) = j(rasb, rcsd, 0, 0) + j(rmsn, rusv, 0, 0).

On one hand we get

j(rasb, rcsd, 0, 0) + j(rmsn, rusv, 0, 0) = (a, b, c) + (m,n, u)

= (a+m, b+ n, c+ u).

On the other hand, we have

j(ra+(−1)bmsb+n, rc+(−1)dusd+v, 0, 0) = (a+ (−1)bm, b+ n, c+ (−1)du)

= (a±m, b+ n, c± u).

Since we are dealing with Z2 × Z2 × Z2 , then a+m ≡ a−m (mod 2) and similarly

for c+u and c−u. This allows us to conclude that the function j is a homomorphism.

The kernel of j is the set L defined in the beginning of this proof, and therefore, by

Theorem 2.19, we get G′′ < L. From (1) and (2) we get G′′ = L.

From this lemma we get

G′′ = {(ra, rc, 0, 0) : both a and c are even}.

Also, from the function j and by using the first isomorphism theorem, Theorem 2.21,

we get G′/G′′ is isomorphic to Z2 × Z2 × Z2, and this tells us that |G′/G′′| = 8. One
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thing to note here that G′′ is an abelian group, which means that its commutator

subgroup G′′′ is trivial and this implies

22n+2 = |G|

= |G/G′||G′|

= |G/G′||G′/G′′||G′′|

= |G/G′||G′/G′′||G′′/G′′′||G′′′|.

and so |G′′/G′′′| = 22n+2

64
= 22n−4. For c even, let n = c+4

2
, and so a group of derived

length 3, G, exists with |G/G′| = 8, |G′/G′′| = 8 and |G′′/G′′′| = 22n−4 and clearly

22n−4 is even.
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CHAPTER 5

Higher Order Quotient Groups

This last chapter of this thesis will discuss the case when we increase the values of

aG and bG, where aG = log2 |G/G′| and bG = log2 |G′/G′′| and cG = log2 |G′′/G′′′|, as

in the previous chapter. Specifically, we will prove that:

(1) Let a, b, and c be positive integers. If a ≥ 3 and b = 3, then there exists a

finite 2-group G with derived length 3 such that aG = a and bG = b and cG = c.

(Theorem 5.9).

(2) If a is at least 5 and b is at least 4, then there exists a finite 2-group G with

derived length 3 such that aG = a and bG = b and cG = c (Theorem 5.10).

Theorem 5.1. If G and H are two groups, then (G×H)′ = G′ ×H ′.

Proof. The two groups (G×H)′ and G′ ×H ′ are defined, in set notation, as follows:

(G×H)′ = 〈[(g1, h1), (g2, h2)] : (g1, h1), (g2, h2) ∈ G×H〉

G′ ×H ′ = 〈([g1, g2], [h1, h2]) : g1, g2 ∈ G, h1, h2 ∈ H〉

We’ll show that (G×H)′ = G′ ×H ′.

(1) Showing (G×H)′ ⊂ G′ ×H ′

Pick an arbitrary generator [(g1, h1), (g2, h2)] from (G × H)′, we’ll show that

it is also an element of G′ ×H ′.

[(g1, h1), (g2, h2)] = (g1, h1)(g2, h2)(g1, h1)
−1(g2, h2)

−1
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= (g1, h1)(g2, h2)(g
−1
1 , h−11 )(g−12 , h−12 )

= (g1g2g
−1
1 g−12 , h1h2h

−1
1 h−12 ).

Since g1g2g
−1
1 g−12 ∈ G′ and h1h2h

−1
1 h−12 ∈ H ′, then (g1g2g

−1
1 g−12 , h1h2h

−1
1 h−12 ) ∈

G′ ×H ′. Hence (G×H)′ ⊂ G′ ×H ′.

(2) Showing G′ ×H ′ ⊂ (G×H)′

The converse follows from the above equation. If we have an element (g1g2g
−1
1 g−12 , h1h2h

−1
1 h−12 ) ∈

G′ × H ′, then this element is equal to [(g1, h1), (g2, h2)] which is an element of

(G × H)′. Therefore, G′ × H ′ ⊂ (G × H)′. From (1) and (2), we can conclude

(G×H)′ = G′ ×H ′.

Remark 5.2. Note that the previous remark can be generalized. That is if H(n)

denotes the nth element of the derived series of a group H, then it follows by induction

on n that

(G×H)(n) = G(n) ×H(n).

Theorem 5.3. For any finite group J , let aJ = log2 |J/J ′|, bJ = log2 |J ′/J ′′|, and

cJ = log2 |J ′′/J ′′′|. Then aJ , bJ , and cJ are “additive,” in the sense that if G and H

are finite groups, then aG×H = aG + aH and bG×H = bG + bH and cG×H = cG + cH .

Proof. To prove this theorem, let G and H be two finite groups. Define J = G×H,

then

aG = log2 |G/G′|, bG = log2 |G′/G′′| and cG = log2 |G′′/G′′′|, and

aH = log2 |H/H ′|, bG = log2 |H ′/H ′′| and cH = log2 |H ′′/H ′′′|
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Referring back to Remarks 5.1 and 5.2, we know that (G × H)′ = G′ × H ′ and

(G×H)′′ = G′′ ×H ′′.

By Theorem 5.1,

aJ = aG×H

= log2 |(G×H)/((G×H)′)|

= log2 |(G×H)/(G′ ×H ′)|

= log2((|G| · |H|)/(|G′| · |H ′|))

= log2(|G|/|G′|) + log2(|H|/|H ′|) = aG + aH .

By Remark 5.2,

bJ = bG×H

= log2 |(G×H)′/((G×H)′′)|

= log2 |(G′ ×H ′)/(G′′ ×H ′′)|

= log2((|G′| · |H ′|)/(|G′′| · |H ′′|))

= log2(|G′|/|G′′|) + log2(|H ′|/|H ′′|) = bG + bH .

Also by Remark 5.2,

cJ = cG×H

= log2 |(G×H)′′/((G×H)′′′)|
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= log2 |(G′′ ×H ′′)/(G′′′ ×H ′′′)|

= log2((|G′′| · |H ′′|)/(|G′′′| · |H ′′′|))

= log2(|G′′|/|G′′′|) + log2(|H ′′|/|H ′′′|) = cG + cH .

Definition 5.4. A cyclic group is a group that is generated by a single element.

For example, Zn, where n is an integer is a cyclic group generated by 1.

Theorem 5.5. Let Z = Z2n denote the cyclic group of order 2n. Then

aZ = n, bZ = cZ = 0.

Proof. We know that for an abelian group, the commutator subgroup is trivial. The

claim here is that Z is abelian.

Lemma 5.6. Let G be a cyclic group. Then G is abelian.

Proof. As assumed, let G be a cyclic group and pick two elements g1, g2 ∈ G. We’ll

show that g1g2 = g2g1. Using the fact that G is cyclic, then there exists a g ∈ G that

generates the whole group. That is to say

G = 〈g〉

This also means that there exists n and k, integers, such that g1 = gn and g2 = gk.

g1g2 = gngk

= gn+k

= gk+n
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= gkgn

= g2g1

By this lemma, we know that Z = Z2n is abelian. We also know that for an abelian

group, the commutator subgroup is trivial. This means that Z ′ is trivial, and so is

Z ′′.

Therefore, the order the quotient groups are |Z/Z ′| = 2n, |Z ′/Z ′′| = 1 and

|Z ′′/Z ′′′| = 1, i.e. aZ = log2(2
n) = n, bZ = log2 1 = 0 and cZ = log2 1 = 0.

Now, let D2n denote the dihedral group of order 2n.

Theorem 5.7. Let D = D2n, with n ≥ 3. Then

aD = 2, bD = n− 2 and cD = 0.

Proof. We first want to recall that

D = 〈r, s : r2
n−1

= e, s2 = e, sr = r−1s〉.

We now want to compute some of the elements of the group D′.

[r, s] = rsr−1s

= rrss

= r2 ∈ D′.

Then, we can claim the following:

Lemma 5.8. The commutator subgroup of D is given by

D′ = {ra : a is even}

Proof. Let A = {ra : a is even}. Then, we’ll prove that (1) A ⊂ D′ and

(2) D′ ⊂ A. We’ll first do (1).

44



(1) Showing A ⊂ D′.

Pick an element ra ∈ A, and we’ll show that ra ∈ D′. Since ra ∈ A, then a is

an even number; and so we can find an integer k such that a = 2k. Then

ra = r2k

= (r2)k.

Then, since r2 ∈ D′, by the computation done above in Lemma 5.8, we also get that

ra ∈ D′. Therefore, we proved that A ⊂ D′.

(2) Showing D′ ⊂ A.

Let f : D → Z2 × Z2 be defined by

f(rasb) = (a, b) mod 2.

To see that f is well defined suppose that rasb = rcsd. We’ll show that f(rasb) =

f(rcsd). Clearly, if a is even, then c has to be even otherwise we could have r = r2

which is not true. This means that a and c are the same mod 2. Similarly for b and

d, so (a, b) = (c, d) and f is well defined.

We still need to show that f is a homomorphism. Pick two elements rasb, rcsd ∈
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D. Then

f(rasbrcsd) = f(rar(−1)
bcsbsd)

= f(ra+(−1)bcsb+d)

= (a+ (−1)bc, b+ d)

= (a+ c, b+ d) (mod 2)

= (a, b) + (c, d)

= f(rasb)f(rcsd)

So f is a homomorphism. To see what the kernel of f is, follow:

Ker(f) = {rasb ∈ D : a ≡ 0 (mod 2) and b ≡ 0 (mod 2)}

= {rasb ∈ D : a and b are both even}

= {ra : a is even}

= A.

So the set A is the kernel of the function f . Therefore, by Theorem 2.19 we get

D′ ⊂ A. Hence, D′ = A.

Now, by the first isomorphism theorem, Theorem 2.21, the image of D, under

f , is isomorphic to Z2 × Z2. So,

|D′| = |D|
|Z2×Z2| = 2n

4
= 2n−2

This implies that |D/D′| = 4, and hence aD = log2 4 = 2.

Now, we want to compute the second commutator subgroup, D′′. Pick up any

two elements ra, rb ∈ D′, then
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rarb(ra)−1(rb)−1 = rarbr−ar−b

= ra+b−a−b

= e.

This shows that, the commutator of any two arbitrary elements of D′ is the identity

element e. That is to say that D′′ is the trivial subgroup, D′′ = {e}.

From this last paragraph, we can conclude that

|D′/D′′| = |D′|
|D′′| = 2n−2

1 = 2n−2.

This means that bD = log2(2
n−2) = n−2. Further, cD = 0 because D′′′ will be trivial,

since D′′ is. Therefore, we showed that

aD = 2, bD = n− 2 and cD = 0.

It is time now to prove another theorem about the existence of certain groups

with certain values of the constants a, b and c.

Theorem 5.9. Let a, b, and c be positive integers. If a ≥ 3 and b = 3, then there

exists a finite 2-group G with derived length 3 such that aG = a and bG = b and

cG = c.

Proof. Let c be an odd integer. Let H be a 2-group of derived length 3 with

aH = 3, bH = 3, and cH = c,

which exists by Theorem 3.4 (if c is odd) or Theorem 4.1 (if c is even). Let Z = Z2k .

Then, by Theorem 5.5, we get:

aZ = k, and

bZ = cZ = 0.
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Then define G to be the direct product of H and Z:

G = H × Z.

Using Theorem 5.3 we get

aG = aH + aZ = 3 + k = k + 3,

bG = bH + bZ = 3 + 0 = 3, and

cG = cH + cZ = c+ 0 = c.

Let k = a − 3, then a ≥ 3. Therefore, this first case shows the existence of a

2-group G of derived length 3 with aG ≥ 3, bG = 3 and cG.

Theorem 5.10. Let a, b, and c be integers. If a ≥ 5 and b ≥ 4, then there exists a

finite 2-group G with derived length 3 such that aG = a and bG = b and cG = c.

Proof. As in Theorem 5.9, let H be a 2-group of derived length 3 with

aH = 3, bH = 3, and cH = c,

with c being odd. Such a group exists by Theorem 3.4 (if c is odd) or Theorem 4.1

(if c is even). Let D = D2k , then by Theorem 5.7 we get

aD = 2, bD = k − 2, and cD = 0.

Let Z = Z2m , then by Theorem 5.5 we have

aZ = m, and

bZ = cZ = 0.

Define G to be the direct product of the three groups H, Z and D, i.e.

G = H × Z ×D,

then by Theorem 5.3 we have

aG = aH + aZ + aD = 3 +m+ 2 = m+ 5,

bG = bH + bZ + bD = 3 + 0 + (k − 2) = k + 1, and
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cG = cH + cZ + cD = c+ 0 + 0 = c.

Now, if we pick m = a− 5 and k = b− 1. With c being odd, then G is a 2-group of

derived length 3, with

aG = a, bG = b, and cG = c,

with c is odd.

This shows the existence of a 2-group G with derived length 3 and aG ≥ 5,

bG = 4, and cG = c, with c being even or odd.
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