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ABSTRACT

Iterated Semi-Direct Product of the Integers of Modulo Two

By

Matthew Aivazian

A topic in graph theory, namely the construction of certain sequences of graphs

called expander families, leads to a question about iterated semi-direct products of the

integers modulo two and the abelianization of their derived subgroups. Specifically,

the question is, “Can we construct these semi-direct products so that the resulting

sequences of abelianizations are bounded?” In this thesis, we will discuss but not

answer this question.
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CHAPTER 1

Introduction

A sequence of finite groups is said to be “potentially expanding” if the groups

become arbitrarily large but all the corresponding sequences of abelianizations are

bounded. (See Definition 2.12 for details.)

One method for constructing a sequence of groups is the following. Begin with

the simplest non-trivial group, namely, the integers modulo two. Then at each step,

take a semi-direct product of the previous group with the integers modulo two. Now,

the main question is, “Using this method, can we construct a potentially expanding

sequence of groups?”

The motivation for the definition of “potentially expanding” comes from graph

theory. Certain sequences of graphs are called “expander families.” A necessary

condition for a sequence of groups to yield an expander family, via the Cayley graph

construction, is that it be potentially expanding. It is an open problem to find

conditions that are both necessary and sufficient.

All infinite families of finite non-abelian simple groups are potentially expanding.

In fact, it was recently proven that all infinite families of finite non-abelian simple

groups yield expander families. This result is the culmination of many years’ work by

several mathematicians. The last case was completed by Emmanuel Breuillard, Ben

Green, and Terence Tao in 2011 (see [1]).
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However, in the second stage of this research project, namely the graph theory

phase, we want to have particularly nice groups. Therefore, we prefer to work with

groups constructed recursively in the manner described above.

In this thesis, we will:

• Prove that if a potentially expanding sequence is constructed in this manner,

then infinitely many automorphisms used to induce the semi-direct products

must be outer. (Corollary 4.9)

• Show, by means of an example, that the converse of the previous item will fail.

(Theorem 5.9)

In addition, we will discuss many other examples of this construction in our attempt

to answer the (as yet) unresolved main question.

2



CHAPTER 2

Basic Information About Commutator Subgroups and Semi-Direct Products

In this chapter we will present some basic definitions and theorems concerning the

parts of group theory we will need in order to state our main objectives. We refer the

reader to [2] for general background on group theory.

Definition 2.1. Let G be a group and a, b ∈ G. Then [a, b] = a−1b−1ab is called the

commutator of a and b.

Note: We denote the identity element of a group G by eG, or simply by e, when

the group is understood.

Theorem 2.2. Let G be a group and a, b, c ∈ G. Then c−1[a, b]c = [c−1ac, c−1bc].

Proof.

[c−1ac, c−1bc] = (c−1ac)−1(c−1bc)−1(c−1ac)(c−1bc)

= c−1a−1(c−1)−1c−1b−1(c−1)−1c−1acc−1bc

= c−1a−1cc−1b−1cc−1acc−1bc

= c−1a−1eb−1eaebc

= c−1a−1b−1abc

= c−1[a, b]c,

as claimed.

Definition 2.3. Let G be a group. Then G′ = [G,G] = 〈[a, b] | a, b ∈ G〉 is called the

commutator subgroup of G.
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Theorem 2.4. Let G be a group. Then G′ E G.

Proof. Let g ∈ G and x ∈ G′. Then there exist elements a1, b1, a2, b2, . . . , an, bn ∈ G

such that x = [a1, b1][a2, b2] · · · [an, bn]. Hence

g−1xg = g−1[a1, b1][a2, b2] · · · [an, bn]g

= g−1[a1, b1]e[a2, b2]e · · · e[an, bn]g

= g−1[a1, b1]gg
−1[a2, b2]gg

−1 · · · gg−1[an, bn]g

= [g−1a1g, g
−1b1g][g−1a2g, g

−1b2g] · · · [g−1ang, g−1bng] ∈ G′.

Since g ∈ G and x ∈ G′ are arbitrarily chosen elements, G′ E G, as claimed.

Theorem 2.5. Let G be a group. Then G/G′ is an abelian group.

Proof. Let x, y ∈ G/G′. Then there exist a, b ∈ G such that x = aG′ and y = bG′.

Since a, b ∈ G, a−1b−1ab = [a, b] ∈ G′ and consequently

yx = bG′aG′

= baG′

= baa−1b−1abG′

= beb−1abG′

= bb−1abG′

= eabG′

= abG′

= aG′bG′

= xy.

Since x, y ∈ G/G′ are arbitrarily chosen elements, G/G′ is an abelian group, as
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claimed.

Definition 2.6. Let G be a group and N E G. Then the function π : G −→ G/N

defined by π(x) = xN is called the natural projection of G on N .

Theorem 2.7. Let G be a group and N EG. Then the natural projection of G on N

is a group homomorphism with ker(π) = N .

Proof. Let x, y ∈ G. Then π(xy) = xyN = xNyN = π(x)π(y). This shows that π

is a group homomorphism, as claimed. On the other hand, since N is the identity

element of the quotient group G/N and xN = N if and only if x ∈ N for all x ∈ G,

we have

ker(π) = {x ∈ G | π(x) = N}

= {x ∈ G | xN = N}

= {x ∈ G | x ∈ N}

= G ∩N

= N,

as claimed.

Theorem 2.8. Let G be a group and N E G such that G/N is an abelian group.

Then G′ ⊆ N .

Proof. Let π : G −→ G/N defined by π(x) = xN be the natural projection of G on

N and let x ∈ G′. Then there exist elements a1, b1, a2, b2, . . . , an, bn ∈ G such that

x = [a1, b1][a2, b2] · · · [an, bn]. Now, let i be an integer satisfying 0 ≤ i ≤ n. Then

since ai, bi ∈ G and G/N is an abelian group, we have

π([ai, bi]) = π([a−1i b−1i aibi])
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= π(a−1i )π(b−1i )π(ai)π(bi)

= (π(ai))
−1(π(bi))

−1π(ai)π(bi)

= (π(ai))
−1(π(bi))

−1π(bi)π(ai)

= (π(ai))
−1Nπ(ai)

= (π(ai))
−1π(ai)

= N.

Therefore [ai, bi] ∈ ker(π) = N , by Theorem 2.7. Since i is an arbitrarily chosen

integer satisfying 0 ≤ i ≤ n, it follows that for every integer i satisfying 0 ≤ i ≤ n,

[ai, bi] ∈ N . Since for every integer i satisfying 0 ≤ i ≤ n, [ai, bi] ∈ N and N ≤ G,

x = [a1, b1][a2, b2] · · · [an, bn] ∈ N . Since x ∈ G′ is an arbitrarily chosen element,

G′ ⊆ N , as claimed.

Definition 2.9. Suppose that G is a group and m is a positive integer. We define

G(0) = G. Then G(m) = [G(m−1), G(m−1)] is called the mth derived subgroup of G

and G(m−1)/G(m) is called the mth abelianization of G.

Theorem 2.10. Let G be an abelian group. Then G′ = {e}.

Proof. Since G is an abelian group, for every a, b ∈ G,

[a, b] = a−1b−1ab

= a−1b−1ba

= a−1ea

= a−1a

= e
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and consequently G′ = [G,G] = 〈[a, b] | a, b ∈ G〉 = {e}, as claimed.

Theorem 2.11. Suppose that G and H are groups and θ is a group homomorphism

defined from H to Aut(G). Then the Cartesian product G × H under the binary

operation defined by (g1, h1)(g2, h2) = (g1θ(h1)(g2), h1h2) forms a group, called the

semi-direct product of G and H induced by θ, that will be denoted by Goθ H.

Proof. First, we will prove that the binary operation is associative. In order to do

so, let (g1, h1), (g2, h2), (g3, h3) ∈ G oθ H. Since the binary operations defined on G

and H are associative, θ is a group homomorphism defined from H to Aut(G), and

θ(h1), θ(h2) ∈ Aut(G),

((g1, h1)(g2, h2))(g3, h3) = (g1θ(h1)(g2), h1h2)(g3, h3)

= ((g1θ(h1)(g2))θ(h1h2)(g3), (h1h2)h3)

= ((g1θ(h1)(g2))θ(h1)θ(h2)(g3), (h1h2)h3))

= (g1(θ(h1)(g2)θ(h1)θ(h2)(g3)), h1(h2h3))

= (g1θ(h1)(g2θ(h2)(g3)), h1(h2h3))

= (g1, h1)(g2θ(h2)(g3), h2h3)

= (g1, h1)((g2, h2)(g3, h3)).

This shows that the binary operation defined on Goθ H is associative, as claimed.

Second, we will prove that (eG, eH) is the identity element of G oθ H. To do so,

let (g, h) ∈ G oθ H. Then g ∈ G and h ∈ H. We know that θ(h) ∈ Aut(G), and

consequently θ(h)(eG) = eG. Since θ(h)(eG) = eG and eG and eH are the identity
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elements of G and H, respectively,

(g, h)(eG, eH) = (gθ(h)(eG), heH)

= (geG, h)

= (g, h).

On the other hand, since θ is a group homomorphism defined from H to Aut(G)

and eH is the identity element of H, θ(eH) is the identity element of Aut(G) and

consequently θ(eH)(g) = g. Since θ(eH)(g) = g and eG and eH are the identity

elements of G and H, respectively,

(eG, eH)(g, h) = (eGθ(eH)(g), eHh)

= (eGg, h)

= (g, h).

This shows that (eG, eH) is the identity element of Goθ H, as claimed.

Third, we will prove that each element of G oθ H has an inverse. To do so, let

(g, h) ∈ G oθ H. Then g ∈ G and h ∈ H. Since g ∈ G, h ∈ H, and G and H

are groups, g−1 and h−1 exist. Since θ is a group homomorphism defined from H to

Aut(G) and h ∈ H, θ(h) ∈ Aut(G). Since θ(h) ∈ Aut(G) and Aut(G) is a group,

θ(h)−1 exists and θ(h)−1 = θ(h−1). Moreover, since θ is a group homomorphism

defined from H to Aut(G) and eH is the identity element of H, θ(eH) is the identity

element of Aut(G). Since θ(eH) is the identity element of Aut(G), for every x ∈ G,

θ(eH)(x) = x. Specifically, since g−1 ∈ G, θ(eH)(g−1) = g−1. Thus

(g, h)(θ(h−1)(g−1), h−1) = (gθ(h)(θ(h−1)(g−1)), hh−1)
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= (gθ(h)θ(h−1)(g−1), eH)

= (gθ(hh−1)(g−1), eH)

= (gθ(eH)(g−1), eH)

= (gg−1, eH)

= (eG, eH).

On the other hand, Since θ is a group homomorphism defined from H to Aut(G)

and h−1 ∈ H, θ(h−1) ∈ Aut(G). Since θ(h−1) ∈ Aut(G) and eG is the identity element

of G, θ(h−1)(eG) = eG. Thus

(θ(h−1)(g−1), h−1)(g, h) = (θ(h−1)(g−1)θ(h−1)(g), h−1h)

= (θ(h−1)(g−1g), eH)

= (θ(h−1)(eG), eH)

= (eG, eH).

This shows that each element of G oθ H has an inverse, as claimed. Hence the

Cartesian product G×H under the given binary operation forms a group, as claimed.

Definition 2.12. A sequence of finite groups {Gn}∞n=1 is said to be potentially

expanding if it satisfies both conditions below:

a) |Gn| → ∞ as n→∞

b) For every non-negative integer m, {|G(m)
n /G

(m+1)
n |}∞n=1 is a bounded sequence.

The motivation for the definition above comes from the theory of expander families.

For more on expander families, we refer the reader to [4]. If a sequence of finite groups

9



yields an expander family, via the Cayley graph construction, then the sequence

is necessarily potentially expanding. However, this condition is not sufficient. A

counterexample (referring to [3]) is the sequence of n-fold direct products of the

alternating group A5. No one has found conditions that are both necessary and

sufficient under which a sequence of finite groups yields an expander family.

We know that for every positive integer n ≥ 5, we have A
(1)
n = A′n = An where

An = {σ ∈ Sn | σ is an even permutation} is the alternating group on n letters and

Sn is the symmetric group on n letters. So, if for every positive integer n, Gn = An+4,

then {Gn}∞n=1 will satisfy both conditions above. So {Gn}∞n=1 is potentially expanding.

More generally, for the same reason all infinite families of finite non-abelian simple

groups are potentially expanding.

10



CHAPTER 3

General Properties of Semi-Direct Products

In this chapter we will present general properties of semi-direct products. We

begin our discussion by showing that a semi-direct product induced by the trivial

homomorphism and the corresponding direct product are the same. At the end of the

chapter we will present a sequence of finite groups that is not potentially expanding.

Theorem 3.1. Suppose that G and H are groups. Then the semi-direct product of

G and H induced by the trivial homomorphism defined from H to Aut(G) and the

direct product of G and H are the same.

Proof. Let θ be the trivial homomorphism defined from H to Aut(G) that maps every

h ∈ H to the identity element of Aut(G) and (g1, h1), (g2, h2) ∈ G×H. Moreover, let

?1 : (G×H)×(G×H) −→ G×H and ?2 : (G×H)×(G×H) −→ G×H be the binary

operations defined on G×H by ?1((x1, y1), (x2, y2)) = (x1, y1)?1 (x2, y2) = (x1x2, y1y2)

and ?2((x1, y1), (x2, y2)) = (x1, y1) ?2 (x2, y2) = (x1θ(y1)(x2), y1y2), respectively. Since

θ maps every h ∈ H to the identity element of Aut(G), for every g ∈ G and every

h ∈ H, θ(h)(g) = g. Therefore

(g1, h1) ?2 (g2, h2) = (g1θ(h1)(g2), h1h2)

= (g1g2, h1h2)

= (g1, h1) ?1 (g2, h2).

11



Hence the semi-direct product of G and H induced by the trivial homomorphism

defined from H to Aut(G) and the direct product of G and H are the same, as

claimed.

Definition 3.2. Let G be a group and g ∈ G. If there exists a positive integer m

such that gm = e, then the well-ordering principle guarantees the existence of the least

positive integer n with gn = e. Such a positive integer n is called the order of g and

is denoted by |g|.

Theorem 3.3. Suppose that G1 and G2 are groups and θ is a group homomorphism

defined from G1 to G2. Let g ∈ G1. If |g| is finite, then |θ(g)| is also finite and divides

|g|.

Proof. Let |g| = n where n is a positive integer. Then gn = e where e1 is the identity

element of G1. Since θ is a group homomorphism, θ(e1) = e2 where e2 is the identity

element of G2. Hence θ(g)n = θ(gn) = θ(e1) = e2 and consequently |θ(g)| is finite

and |θ(g)| ≤ n, by the definition of the order of an element of a group. Now, assume

to the contrary that |θ(g)| = m does not divide |g|. Hence by the division theorem,

there exist unique integers q and r such that n = mq + r and 0 < r < m. Since

|θ(g)| = m and n = mq + r, θ(g)m = e2 and r = n−mq. Therefore

θ(g)r = θ(g)n−mq

= θ(g)nθ(g)−mq

= θ(gn)(θ(g)m)−q

= θ(e1)e
−q
2

= e2e2

12



= e2

which is a contradiction, because m is the least positive integer satisfying θ(g)m = e2.

Hence |θ(g)| divides |g|, as claimed.

Corollary 3.4. Suppose that G is a group and θ ∈ Aut(G). Let g ∈ G. Then |g| is

finite if and only if |θ(g)| is finite. Furthermore |θ(g)| = |g|.

Proof. Since θ is a group homomorphism defined from G to G and |g| is finite, |θ(g)|

is also finite and divides |g|, by Theorem 3.3. On the other hand, since θ−1 is a group

homomorphism defined from G to G and |θ(g)| is finite, |g| = |θ−1(θ(g))| is also finite

and divides |θ(g)|, by Theorem 3.3. Since |g| and |θ(g)| are positive integers, |θ(g)|

divides |g|, and |g| divides |θ(g)|, we have |θ(g)| = |g|, as claimed.

Corollary 3.5. Suppose G is a group and θ is a group homomorphism defined from

Z2 to Aut(G). Then θ(1) is either the trivial automorphism or an automorphism of

order two.

Proof. Since 1 ∈ Z2 is of order two and the only positive divisors of 2 are 1 and

2, either |θ(1)| = 1 or |θ(1)| = 2, by Theorem 3.3. If |θ(1)| = 1, then θ(1) is the

trivial automorphism. If |θ(1)| = 2, then θ(1) is an automorphism of order two, as

claimed.

Theorem 3.6. Let G and H be abelian groups. Then G×H is also an abelian group.

Proof. Let x, y ∈ G × H. Then there exist g1, g2 ∈ G and h1, h2 ∈ H such that

x = (g1, h1) and y = (g2, h2). Since g1, g2 ∈ G, h1, h2 ∈ H, and G and H are abelian

groups, g1g2 = g2g1 and h1h2 = h2h1 and consequently

xy = (g1, h1)(g2, h2)

13



= (g1g2, h1h2)

= (g2g1, h2h1)

= (g2, h2)(g1, h1)

= yx.

Since x, y ∈ G×H are arbitrarily chosen elements, this shows that the direct product

of G and H is an abelian group, as claimed.

Corollary 3.7. Let n > 1 be a positive integer and let G1, . . . , Gn be abelian groups.

Then the direct product G1 × . . .×Gn is also an abelian group.

Proof. This follows immediately from Theorem 3.6 and mathematical induction on n.

Corollary 3.8. For every positive integer n, Zn2 is an abelian group.

Proof. This follows immediately from Corollary 3.7 and the fact that Z2 is an abelian

group.

Corollary 3.9. For every positive integer n, (Zn2 )′ is the proper trivial subgroup.

Proof. This follows immediately from Theorem 2.10 and Corollary 3.8.

Corollary 3.10. For every positive integer n, |Zn2/(Zn2 )′| = 2n.

Proof. Since for every positive integer n, |Zn2 | = 2n and |(Zn2 )′| = |{e}| = 1,

|Zn2/(Zn2 )′| =
|Zn2 |
|(Zn2 )′|

=
2n

1

= 2n,

as claimed.
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Corollary 3.11. Since for every positive integer n, the semi-direct product of Zn2 and

Z2 induced by the trivial homomorphism defined from Z2 to Aut(Zn2 ) is Zn2×Z2
∼= Zn+1

2 ,

the sequence {Zn2}∞n=1 obtained in this manner is not potentially expanding.

Proof. This follows immediately from Corollary 3.10 and Definition 2.12.

Remark. This is why we look at semi-direct products instead of direct products.
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CHAPTER 4

Inner Automorphisms and Related Semi-Direct Products

In this chapter we will present general properties of inner automorphisms of a group

induced by elements of order two. At the end of the chapter we will prove a general

theorem showing that certain sequences of finite groups are not potentially expanding.

Theorem 4.1. Let G be a group and a ∈ G. Then the function ϕa : G −→ G defined

by ϕa(x) = axa−1 is an automorphism of G, called the inner automorphism of G

induced by a.

Proof. First, we will prove that ϕa is a group homomorphism. To do so, let x, y ∈ G.

Then

ϕa(xy) = axya−1

= axeya−1

= axa−1aya−1

= ϕa(x)ϕa(y).

This shows that ϕa is a group homomorphism, as claimed.

Next, we will prove that ϕa is a bijection by showing that ϕa−1 is the inverse

function of ϕa. To do so, let x ∈ G. Then

(ϕaϕa−1)(x) = ϕa(ϕa−1(x))

= ϕa(a
−1x(a−1)−1)
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= aa−1x(a−1)−1a−1

= exe

= x

and

(ϕa−1ϕa)(x) = ϕa−1(ϕa(x))

= ϕa−1(axa−1)

= a−1axa−1(a−1)−1

= exe

= x.

This shows that ϕa is a bijection, as claimed.

Theorem 4.2. Let G be a group and a, b ∈ G. Then ϕab = ϕaϕb where ϕab, ϕa, and

ϕb are the inner automorphisms of G induced by ab, a, and b, respectively.

Proof. Let x ∈ G. Then

ϕab(x) = abx(ab)−1

= abxb−1a−1

= aϕb(x)a−1

= ϕa(ϕb(x))

= (ϕaϕb)(x).

Since x ∈ G is an arbitrarily chosen element, this shows that ϕab = ϕaϕb, as claimed.
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Corollary 4.3. Let G be a group. Then the function ψ : G −→ Aut(G) defined by

ψ(a) = ϕa is a group homomorphism.

Proof. By corollary 4.1, ψ is a well-defined function. Now, let a, b ∈ G. Then

ϕab = ϕaϕb, by Theorem 4.2 and consequently

ψ(ab) = ϕab

= ϕaϕb

= ψ(a)ψ(b).

This shows that ψ is a group homomorphism, as claimed.

Theorem 4.4. Let G be a group and a ∈ G with a2 = e. Then the inner automor-

phism ϕa of G induced by a is an automorphism of order either one or two.

Proof. Since a2 = e, either |a| = 1 or |a| = 2. Now, let ψ : G −→ Aut(G) be defined

by ψ(a) = ϕa. Then by Corollary 4.3 ψ is a group homomorphism and consequently

|ϕa| = |ψ(a)| is finite and divides |a|, by Theorem 3.3. Since either |a| = 1 or |a| = 2,

|ϕa| = 1 or |ϕa| = 2 and therefore ϕa is an automorphism of order either one or two,

as claimed.

Now, we fix a group G, an element a ∈ G with a2 = e, and let G oθa Z2 be the

semi-direct product induced by the homomorphism θa defined from Z2 to Aut(G)

that maps 1 to the inner automorphism ϕa of G induced by a.

Theorem 4.5. For every g ∈ G, (g, 0)−1 = (g−1, 0) and (g, 1)−1 = (ag−1a, 1).

Proof. Let g ∈ G. Then since a2 = e, a−1 = a and consequently for every x ∈ G,

θa(1)(x) = ϕa(x) = axa−1 = axa. Moreover, since the additive inverses of the

elements 0 ∈ Z2 and 1 ∈ Z2 are 0 and 1, respectively and θa(0) ∈ Aut(G) is the
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trivial automorphism of G, we have

(g, 0)−1 = (θa(0)(g−1), 0)

= (g−1, 0)

and

(g, 1)−1 = (θa(1)(g−1), 1)

= (ag−1a, 1),

by Theorem 2.11. Since g ∈ G is an arbitrarily chosen element, this shows that for

every g ∈ G, (g, 0)−1 = (g−1, 0) and (g, 1)−1 = (ag−1a, 1), as claimed.

Theorem 4.6. Let G and H be groups and GoθH be the semi-direct product induced

by a homomorphism θ defined from H to Aut(G). Then for every a, b ∈ G we have

[(a, eH), (b, eH)] = ([a, b], eH).

Proof. Let a, b ∈ G. Then since e−1H = eH and θ(eH) is the trivial automorphism of

G, we have

(a, eH)−1 = (θ(e−1H )(a−1), e−1H )

= (θ(eH)(a−1), eH)

= (a−1, eH)

and

(b, eH)−1 = (θ(e−1H )(b−1), e−1H )

= (θ(eH)(b−1), eH)

= (b−1, eH),
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by Theorem 2.11 and consequently

[(a, eH), (b, eH)] = (a, eH)−1(b, eH)−1(a, eH)(b, eH)

= (a−1, eH)(b−1, eH)(a, eH)(b, eH)

= (a−1θ(eH)(b−1), eHeH)(aθ(eH)(b), eHeH)

= (a−1b−1, eH)(ab, eH)

= (a−1b−1θ(eH)(ab), eHeH)

= (a−1b−1ab, eH)

= ([a, b], eH),

as claimed.

Theorem 4.7. We have that (Goθa Z2)
′ = {(g′, 0) | g′ ∈ G′}.

Proof. First, we will prove that (G oθa Z2)
′ ⊆ {(g′, 0) | g′ ∈ G′}. In order to do so,

let x, y ∈ G oθa Z2. Then there exist g, h ∈ G and m,n ∈ Z2 such that x = (g,m)

and y = (h, n).

If m = 0 and n = 0, then since 0 is the identity element of Z2 we have

[x, y] = [(g,m), (h, n)] = [(g, 0), (h, 0)] = ([g, h], 0) ∈ {(g′, 0) | g′ ∈ G′},

by Theorem 4.6.

If m = 0 and n = 1, then

[x, y] = x−1y−1xy = (g,m)−1(h, n)−1(g,m)(h, n)

= (g, 0)−1(h, 1)−1(g, 0)(h, 1)

= (g−1, 0)(ah−1a, 1)(g, 0)(h, 1)
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= (g−1θa(0)(ah−1a), 0 + 1)(gθa(0)(h), 0 + 1)

= (g−1ah−1a, 1)(gh, 1)

= (g−1ah−1aθa(1)(gh), 1 + 1)

= (g−1ah−1aagha, 0)

= (g−1ah−1gha, 0)

= ([g, ha], 0) ∈ {(g′, 0) | g′ ∈ G′}.

If m = 1 and n = 0, then

[x, y] = x−1y−1xy = (g,m)−1(h, n)−1(g,m)(h, n)

= (g, 1)−1(h, 0)−1(g, 1)(h, 0)

= (ag−1a, 1)(h−1, 0)(g, 1)(h, 0)

= (ag−1aθa(1)(h−1), 1 + 0)(gθa(1)(h), 1 + 0)

= (ag−1aah−1a, 1)(gaha, 1)

= (ag−1h−1a, 1)(gaha, 1)

= (ag−1h−1aθa(1)(gaha), 1 + 1)

= (ag−1h−1aagahaa, 0)

= (ag−1h−1gah, 0)

= ([ga, h], 0) ∈ {(g′, 0) | g′ ∈ G′}.

If m = 1 and n = 1, then

[x, y] = x−1y−1xy = (g,m)−1(h, n)−1(g,m)(h, n)

= (g, 1)−1(h, 1)−1(g, 1)(h, 1)
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= (ag−1a, 1)(ah−1a, 1)(g, 1)(h, 1)

= (ag−1aθa(1)(ah−1a), 1 + 1)(gθa(1)(h), 1 + 1)

= (ag−1aaah−1aa, 0)(gaha, 0)

= (ag−1ah−1, 0)(gaha, 0)

= (ag−1ah−1θa(0)(gaha), 0 + 0)

= (ag−1ah−1gaha, 0)

= ([ga, ha], 0) ∈ {(g′, 0) | g′ ∈ G′}.

Since x, y ∈ G oθa Z2 are arbitrarily chosen elements, for every x, y ∈ G oθa Z2,

[x, y] ∈ {(g′, 0) | g′ ∈ G′} and consequently

(Goθa Z2)
′ = 〈[x, y] | x, y ∈ Goθa Z2〉 ⊆ {(g′, 0) | g′ ∈ G′},

as claimed.

Second, we will prove that {(g′, 0) | g′ ∈ G′} ⊆ (G oθa Z2)
′. In order to do so, let

x ∈ {(g′, 0) | g′ ∈ G′}. Then there exits g′ ∈ G′ such that x = (g′, 0). Since g′ ∈ G′,

there exist a1, b1, a2, b2, . . . , an, bn ∈ G such that g′ = [a1, b1][a2, b2] · · · [an, bn]. Hence

x = (g′, 0)

= ([a1, b1][a2, b2] · · · [an, bn], 0)

= ([a1, b1], 0)([a2, b2], 0) · · · ([an, bn], 0)

= [(a1, 0), (b1, 0)][(a2, 0), (b2, 0)] · · · [(an, 0), (bn, 0)] ∈ (Goθa Z2)
′.

Since x ∈ {(g′, 0) | g′ ∈ G′} is arbitrarily chosen, for every x ∈ {(g′, 0) | g′ ∈ G′},

x ∈ (Goθa Z2)
′ and consequently {(g′, 0) | g′ ∈ G′} ⊆ (Goθa Z2)

′, as claimed. Thus

(Goθa Z2)
′ = {(g′, 0) | g′ ∈ G′}, as claimed.
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Corollary 4.8. Let G be a finite group. Then |(Goθa Z2)/(Goθa Z2)
′| = 2|G/G′|.

Proof. Since (Goθa Z2)
′ = {(g′, 0) | g′ ∈ G′},

|(Goθa Z2)/(Goθa Z2)
′| =

|Goθa Z2|
|(Goθa Z2)′|

=
|Goθa Z2|

|{(g′, 0) | g′ ∈ G′}|

=
|G||Z2|
|G′|

=
2|G|
|G′|

= 2
|G|
|G′|

= 2|G/G′|,

as claimed.

Corollary 4.9. Let G1 be an arbitrary finite group and for every positive integer

n, let Gn+1 = Gn oθn Z2 where Gn oθn Z2 is the semi-direct product induced by the

homomorphism θn defined from Z2 to Aut(Gn) that maps 1 to the inner automorphism

ϕn of Gn induced by an element an ∈ Gn of order one or two. Then {Gn}∞n=1 is not

potentially expanding.

Proof. This follows immediately from Corollary 4.8 and Definition 2.12.

Hence, in order to construct a potentially expanding sequence of finite groups the

way we want to, infinitely many of the semi-direct products must be induced by outer

automorphisms.
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CHAPTER 5

Dihedral Groups as Semi-Direct Products

In this chapter we will show that dihedral groups of order 2n can be constructed

by iterating semi-direct products with Z2. Then, we will show that the sequence

{D2n}∞n=2 so constructed is not potentially expanding.

Theorem 5.1. Suppose that Dn = 〈r, s | rn = s2 = e and rs = sr−1〉 is the dihedral

group of order 2n where n is a positive integer no less than three. Then we have

Dn oθ Z2 = 〈(r, 0), (s, 0), (e, 1)〉 where the semi-direct product Dn oθ Z2 is induced by

a non-trivial homomorphism θ defined from Z2 to Aut(Dn).

Proof. Since (r, 0), (s, 0), (e, 1) ∈ Dn oθ Z2, 〈(r, 0), (s, 0), (e, 1)〉 ⊆ Dn oθ Z2. Now,

we will prove that Dn oθ Z2 ⊆ 〈(r, 0), (s, 0), (e, 1)〉. To do so, let x ∈ Dn oθ Z2.

Then there exist integers i, j, and k such that 0 ≤ i ≤ n − 1, 0 ≤ j ≤ 1, and

0 ≤ k ≤ 1 such that x = (risj, k). On the other hand, (risj, k) = (r, 0)i(s, 0)j(e, 1)k

and (r, 0)i(s, 0)j(e, 1)k ∈ 〈(r, 0), (s, 0), (e, 1)〉. Therefore

x = (risj, k) = (r, 0)i(s, 0)j(e, 1)k ∈ 〈(r, 0), (s, 0), (e, 1)〉

and consequently DnoθZ2 ⊆ 〈(r, 0), (s, 0), (e, 1)〉. So DnoθZ2 = 〈(r, 0), (s, 0), (e, 1)〉,

as claimed.

Now, we will show that a sequence of dihedral groups of order 2n can be

constructed by iterating semi-direct products.

Theorem 5.2. Let G and H be groups and let ϕ : G −→ H be a group homomor-
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phism. Then ϕ is injective if and only if ker(ϕ) = {eH}.

Proof. For a proof, we refer the reader to [2].

Theorem 5.3. Suppose that n is a positive integer no less than three. Let a, b ∈ Dn

such that |a| = n, |b| = 2, and ab = ba−1. Moreover, let ϕa,b : Dn −→ Dn be the

homomorphism that maps r to a and s to b. Then ϕa,b ∈ Aut(Dn).

Proof. First, observe that ϕa,b is a well-defined homomorphism, because it maps r to

a and s to b where a, b ∈ Dn satisfying |a| = n, |b| = 2, and ab = ba−1. Since Dn is

a finite group, to prove that ϕa,b is bijective, it suffices to prove that it is injective.

To do so, let x ∈ Dn such that ϕa,b(x) = e. Then since x ∈ Dn, there exist integers i

and j satisfying 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ 1 such that x = risj. Hence

aibj = (ϕa,b(r))
i(ϕa,b(s))

j

= ϕa,b(r
i)ϕa,b(s

j)

= ϕa,b(r
isj)

= ϕa,b(x) = e.

Thus, if j = 1, then ai = aie = aibb = aibjb = eb = b and consequently

a1+i = aai = ab = ba−1 = aia−1 = ai−1.

Since a1+i = ai−1, we have

a2 = a1+i−i+1 = a1+ia−i+1 = ai−1(ai−1)−1 = e

which is a contradiction, because |a| = n ≥ 3.

So j = 0 and therefore ai = aie = aib0 = aibj = e. Since ai = e and |a| = n,

we have i ≡ 0 (modn) which implies i = 0, because 0 ≤ i ≤ n − 1. Therefore
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x = risj = r0s0 = ee = e. Since x ∈ Dn is an arbitrarily chosen element, this shows

that ϕa,b is injective, by Theorem 5.2. Hence ϕa,b ∈ Aut(Dn), as claimed.

Theorem 5.4. Suppose that n is a positive integer no less than two. Then we have

D2n oϕr−1,rs
Z2
∼= D2n+1 where ϕr−1,rs ∈ Aut(D2n) maps r to r−1 and s to rs, and

the semi-direct product D2n oϕr−1,rs
Z2 is induced by the non-trivial homomorphism

defined from Z2 to Aut(D2n) that maps 1 to ϕr−1,rs.

Proof. First, observe that since r−1, rs ∈ D2n such that |r−1| = 2n, |rs| = 2, and

r−1(rs) = (rs)(r−1)−1, we have ϕr−1,rs ∈ Aut(D2n), by Theorem 5.3. Now, suppose

that ψ : D2n+1 −→ D2n oϕr−1,rs
Z2 is the group homomorphism that maps r to (rs, 1)

and s to (s, 0). Observe that ψ is a well-defined homomorphism, because it maps r to

(rs, 1) and s to (s, 0) where (rs, 1), (s, 0) ∈ D2n oϕr−1,rs
Z2 satisfying |(rs, 1)| = 2n+1,

|(s, 0)| = 2, and (rs, 1)(s, 0) = (s, 0)(rs, 1)−1. Since D2n+1 is a finite group, to prove

that ψ is bijective, it suffices to prove that it is surjective. Since

(r, 0) = (rs, 1)(rs, 1)

= ψ(r)ψ(r)

= ψ(rr)

= ψ(r2) ∈ ψ(D2n+1),

(s, 0) = ψ(s) ∈ ψ(D2n+1), and

(e, 1) = (rs, 1)(rs, 1)(s, 0)(rs, 1)

= ψ(r)ψ(r)ψ(s)ψ(r)

= ψ(rrsr)

= ψ(r2sr) ∈ ψ(D2n+1),
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it can be concluded that 〈(r, 0), (s, 0)(e, 1)〉 ⊆ ψ(D2n+1). On the other hand,

D2n oϕr−1,rs
Z2 = 〈(r, 0), (s, 0)(e, 1)〉

and consequently

D2n oϕr−1,rs
Z2 = 〈(r, 0), (s, 0)(e, 1)〉 ⊆ ψ(D2n+1) ⊆ D2n oϕr−1,rs

Z2.

Hence ψ(D2n+1) = D2n oϕr−1,rs
Z2. So ψ is surjective and therefore bijective. Thus

D2n oϕr−1,rs
Z2
∼= D2n+1 , as claimed.

Now, we will show, though, that {D2n}∞n=1 gives a negative answer to our main

question.

Lemma 5.5. For every even positive integer n > 2, (Dn)′ = 〈r2〉.

Proof. Let ψ : Dn −→ Z2×Z2 be the group homomorphism that maps r to (1, 0) and

s to (0, 1). First, observe that ψ is a well-defined homomorphism, because it maps r

to (1, 0) and s to (0, 1) where (1, 0), (0, 1) ∈ Z2×Z2 satisfying |(1, 0)| = 2, |(0, 1)| = 2,

and (1, 0) + (0, 1) = (0, 1) + (1, 0). Since

ψ(r2) = ψ(rr)

= ψ(r) + ψ(r)

= (1, 0) + (1, 0)

= (1 + 1, 0 + 0)

= (0, 0),

ψ(r) = (1, 0),

ψ(s) = (0, 1), and
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ψ(rs) = ψ(r) + ψ(s)

= (1, 0) + (0, 1)

= (1 + 0, 0 + 1)

= (1, 1),

ψ is surjective. Hence Dn/ker(ψ) ∼= Z2 × Z2 by the First Isomorphism Theorem.

Since Dn/ker(ψ) ∼= Z2 × Z2 and Z2 × Z2 is an abelian group, Dn/ker(ψ) is also an

abelian group. Hence D′n ⊆ ker(ψ). Now, we will prove that ker(ψ) = 〈r2〉. To do

so, let x ∈ ker(ψ) ⊆ Dn. Then ψ(x) = (0, 0) and x = risj where i and j are integers

with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ 1. Since ψ is a homomorphism,

(0, 0) = ψ(x)

= ψ(risj)

= ψ(ri) + ψ(sj)

= iψ(r) + jψ(s)

= i(1, 0) + j(0, 1)

= (i, j)

which implies i ≡ 0(mod 2) and j ≡ 0(mod 2). Hence there exists an integer k with

0 ≤ k ≤ n−1
2

such that i = 2k and j = 0. Thus x = risj = r2ks0 = (r2)k ∈ 〈r2〉

and consequently ker(ψ) ⊆ 〈r2〉. Conversely, since ψ(r2) = (0, 0), r2 ∈ ker(ψ) and

consequently 〈r2〉 ⊆ ker(ψ). So ker(ψ) = 〈r2〉. SinceD′n ⊆ ker(ψ) and ker(ψ) = 〈r2〉,
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D′n ⊆ 〈r2〉. On the other hand, since

r2 = rr

= rer

= rs2r

= rssr

= sr−1sr

= s−1r−1sr

= [s, r] ∈ D′n,

〈r2〉 ⊆ D′n. Therefore D′n = 〈r2〉, as claimed.

Lemma 5.6. For every even positive integer n > 2, (Dn)′ is an abelian group.

Proof. By Lemma 5.5, D′n = 〈r2〉. On the other hand, 〈r2〉 is a cyclic group and every

cyclic group is an abelian group. Therefore (Dn)′ is an abelian group, as claimed.

Remark. Corollary 4.8 and Lemma 5.5 show that the automorphisms ϕr−1,rs are

outer.

Lemma 5.7. For every positive integer n > 1, |(D2n)′| = 2n−1 and |D2n/(D2n)′| = 4.

Proof. Since D′2n = 〈r2〉 and |r| = 2n,

|D′2n| = |〈r2〉|

= |r2|

=
|r|

gcd(2, |r|)

=
2n

gcd(2, 2n)

=
2n

2

29



= 2n−1

and consequently

|D2n/(D2n)′| =
|D2n|
|(D2n)′|

=
2n+1

2n−1

= 4,

as claimed.

Lemma 5.8. For every positive integer n > 1, |(D2n)′/(D2n)′′| = 2n−1.

Proof. Since (Dn)′ is an abelian group, (Dn)′′ = ((Dn)′)′ = {e} and consequently

|(Dn)′′| = |{e}| = 1. On the other hand, |(D2n)′| = 2n−1. So

|(D2n)′/(D2n)′′| =
|(D2n)′|
|(D2n)′′|

=
2n−1

1

= 2n−1,

as claimed.

Theorem 5.9. The sequence {D2n}∞n=1 is not potentially expanding.

Proof. This follows immediately from Lemma 5.8 and Definition 2.12.
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CHAPTER 6

A Non-Potentially Expanding Sequence of Finite Groups

In this chapter we will present some specific semi-direct products of D2n and Z2.

Using these specific semi-direct products, at the end of the chapter, we will present

a sequence of finite groups that is not potentially expanding.

Lemma 6.1. Let m and n be positive integers such that 0 < 2m+1 < 2n. Let ϕr2m+1,s

be the automorphism of D2n that maps r to r2m+1 and s to s. Then ϕr2m+1,s is of

order one or two if and only if m(m+ 1) ≡ 0(mod 2n−2).

Proof. First, observe that

|r2m+1| =
|r|

gcd(2m+ 1, |r|)

=
2n

gcd(2m+ 1, 2n)

=
2n

1

= 2n.

Hence ϕr2m+1,s is a well-defined homomorphism, because it maps r to r2m+1 and s to

s where r2m+1, s ∈ D2n satisfying |r2m+1| = 2n, |s| = 2, and r2m+1s = s(r2m+1)−1.

Also, notice that m(m + 1) ≡ 0(mod 2n−2) if and only if 4m(m + 1) ≡ 0(mod 2n) if

and only if 4m2 + 4m ≡ 0(mod 2n) if and only if 4m2 + 4m + 1 ≡ 1(mod 2n) if and

only if (2m + 1)2 ≡ 1(mod 2n). Now, observe that ϕr2m+1,s has order less than or

equal to two if and only if

r = ϕ2
r2m+1,s(r)
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= (ϕr2m+1,sϕr2m+1,s)(r)

= ϕr2m+1,s(ϕr2m+1,s(r))

= ϕr2m+1,s(r
2m+1)

= (ϕr2m+1,s(r))
2m+1

= (r2m+1)2m+1

= r(2m+1)2

if and only if

(2m+ 1)2 ≡ 1(mod 2n)

if and only if

m(m+ 1) ≡ 0(mod 2n−2).

Lemma 6.2. Let m and n be positive integers such that 0 < 2m + 1 < 2n and

m(m + 1) ≡ 0(mod 2n−2). Let ϕr2m+1,s ∈ Aut(D2n) be the automorphism that maps

r to r2m+1 and s to s. Then (D2n oϕr2m+1,s
Z2)

′ = 〈(r2, 0)〉 where the semi-direct

product D2n oϕr2m+1,s
Z2 is induced by the non-trivial homomorphism θ defined from

Z2 to Aut(D2n) that maps 1 to ϕr2m+1,s.

Proof. By Theorem 5.1, D2n oϕr2m+1,s
Z2 = 〈(r, 0), (s, 0), (e, 1)〉. Now, suppose that

ψ : D2n oϕr2m+1,s
Z2 −→ Z2 × Z2 × Z2 is the group homomorphism that maps (r, 0)

to (1, 0, 0), (s, 0) to (0, 1, 0), and (e, 1) to (0, 0, 1).

First, we will prove that ψ is a group homomorphism. In order to do so, let

x, y ∈ D2n oϕr2m+1,s
Z2. Then x = (ri1sj1 , k1) and y = (ri2sj2 , k2) where i1, i2, j1, j2,
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k1, and k2 are integers with 0 ≤ i1 ≤ 2n − 1, 0 ≤ i2 ≤ 2n − 1, 0 ≤ j1 ≤ 1, 0 ≤ j2 ≤ 1,

0 ≤ k1 ≤ 1, and 0 ≤ k2 ≤ 1.

If j1 = 0 and k1 = 0, then

ψ(xy) = ψ((ri1sj1 , k1)(r
i2sj2 , k2))

= ψ((ri1 , 0)(ri2sj2 , k2))

= ψ((ri1θ(0)(ri2sj2), 0 + k2))

= ψ((ri1ri2sj2 , k2))

= ψ((ri1+i2sj2 , k2))

= ψ((ri1+i2 , 0)(sj2 , 0)(e, k2))

= ψ((r, 0)i1+i2(s, 0)j2(e, 1)k2)

= ψ((r, 0)i1+i2) + ψ((s, 0)j2) + ψ((e, 1)k2)

= (i1 + i2)ψ((r, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= i1ψ((r, 0)) + i2ψ((r, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= ψ((r, 0)i1) + ψ((r, 0)i2) + ψ((s, 0)j2) + ψ((e, 1)k2)

= ψ((r, 0)i1) + ψ((r, 0)i2(s, 0)j2(e, 1)k2)

= ψ((ri1 , 0)) + ψ((ri2 , 0)(sj2 , 0)(e, k2))

= ψ((ri1sj1 , k1)) + ψ((ri2sj2 , k2))

= ψ(x) + ψ(y).

If j1 = 1 and k1 = 0, then

ψ(xy) = ψ((ri1sj1 , k1)(r
i2sj2 , k2))
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= ψ((ri1s, 0)(ri2sj2 , k2))

= ψ((ri1sθ(0)(ri2sj2), 0 + k2))

= ψ((ri1sri2sj2 , k2))

= ψ((ri1r−i2ssj2 , k2))

= ψ((ri1−i2s1+j2 , k2))

= ψ((ri1−i2 , 0)(s1+j2 , 0)(e, k2))

= ψ((r, 0)i1−i2(s, 0)1+j2(e, 1)k2)

= ψ((r, 0)i1−i2) + ψ((s, 0)1+j2) + ψ((e, 1)k2)

= (i1 − i2)ψ((r, 0)) + (1 + j2)ψ((s, 0)) + k2ψ((e, 1))

= (i1 + i2)ψ((r, 0)) + (1 + j2)ψ((s, 0)) + k2ψ((e, 1))

= i1ψ((r, 0)) + i2ψ((r, 0)) + ψ((s, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= i1ψ((r, 0)) + ψ((s, 0)) + i2ψ((r, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= ψ((r, 0)i1) + ψ((s, 0)) + ψ((r, 0)i2) + ψ((s, 0)j2) + ψ((e, 1)k2)

= ψ((r, 0)i1(s, 0)) + ψ((r, 0)i2(s, 0)j2(e, 1)k2)

= ψ((ri1 , 0)(s, 0)) + ψ((ri2 , 0)(sj2 , 0)(e, k2))

= ψ((ri1s, k1)) + ψ((ri2sj2 , k2))

= ψ((ri1sj1 , k1)) + ψ((ri2sj2 , k2))

= ψ(x) + ψ(y).

If j1 = 0 and k1 = 1, then

ψ(xy) = ψ((ri1sj1 , k1)(r
i2sj2 , k2))
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= ψ((ri1 , 1)(ri2sj2 , k2))

= ψ((ri1θ(1)(ri2sj2), 1 + k2))

= ψ((ri1(r2m+1)i2sj2 , 1 + k2))

= ψ((ri1r(2m+1)i2sj2 , 1 + k2))

= ψ((ri1+(2m+1)i2sj2 , 1 + k2))

= ψ((ri1+(2m+1)i2 , 0)(sj2 , 0)(e, 1 + k2))

= ψ((r, 0)i1+(2m+1)i2(s, 0)j2(e, 1)1+k2)

= ψ((r, 0)i1+(2m+1)i2) + ψ((s, 0)j2) + ψ((e, 1)1+k2)

= (i1 + (2m+ 1)i2)ψ((r, 0)) + j2ψ((s, 0)) + (1 + k2)ψ((e, 1))

= (i1 + i2)ψ((r, 0)) + j2ψ((s, 0)) + (1 + k2)ψ((e, 1))

= i1ψ((r, 0)) + i2ψ((r, 0)) + j2ψ((s, 0)) + ψ((e, 1)) + k2ψ((e, 1))

= i1ψ((r, 0)) + ψ((e, 1)) + i2ψ((r, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= ψ((r, 0)i1) + ψ((e, 1)) + ψ((r, 0)i2) + ψ((s, 0)j2) + ψ((e, 1)k2)

= ψ((r, 0)i1(e, 1)) + ψ((r, 0)i2(s, 0)j2(e, 1)k2)

= ψ((ri1 , 0)(e, 1)) + ψ((ri2 , 0)(sj2 , 0)(e, k2))

= ψ((ri1 , 1)) + ψ((ri2sj2 , k2))

= ψ((ri1sj1 , k1)) + ψ((ri2sj2 , k2))

= ψ(x) + ψ(y).

If j1 = 1 and k1 = 1, then

ψ(xy) = ψ((ri1sj1 , k1)(r
i2sj2 , k2))
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= ψ((ri1s, 1)(ri2sj2 , k2))

= ψ((ri1sθ(1)(ri2sj2), 1 + k2))

= ψ((ri1s(r2m+1)i2sj2 , 1 + k2))

= ψ((ri1sr(2m+1)i2sj2 , 1 + k2))

= ψ((ri1r−(2m+1)i2ssj2 , 1 + k2))

= ψ((ri1−(2m+1)i2s1+j2 , 1 + k2))

= ψ((ri1−(2m+1)i2 , 0)(s1+j2 , 0)(e, 1 + k2))

= ψ((r, 0)i1−(2m+1)i2(s, 0)1+j2(e, 1)1+k2)

= ψ((r, 0)i1−(2m+1)i2) + ψ((s, 0)1+j2) + ψ((e, 1)1+k2)

= (i1 − (2m+ 1)i2)ψ((r, 0)) + (1 + j2)ψ((s, 0)) + (1 + k2)ψ((e, 1))

= (i1 − i2)ψ((r, 0)) + (1 + j2)ψ((s, 0)) + (1 + k2)ψ((e, 1))

= (i1 + i2)ψ((r, 0)) + (1 + j2)ψ((s, 0)) + (1 + k2)ψ((e, 1))

= i1ψ((r, 0)) + i2ψ((r, 0)) + ψ((s, 0)) + j2ψ((s, 0)) + ψ((e, 1)) + k2ψ((e, 1))

= i1ψ((r, 0)) + ψ((s, 0)) + ψ((e, 1)) + i2ψ((r, 0)) + j2ψ((s, 0)) + k2ψ((e, 1))

= ψ((r, 0)i1) + ψ((s, 0)) + ψ((e, 1)) + ψ((r, 0)i2) + ψ((s, 0)j2) + ψ((e, 1)k2)

= ψ((r, 0)i1(s, 0)(e, 1)) + ψ((r, 0)i2(s, 0)j2(e, 1)k2)

= ψ((ri1 , 0)(s, 0)(e, 1)) + ψ((ri2 , 0)(sj2 , 0)(e, k2))

= ψ((ri1s, 1)) + ψ((ri2sj2 , k2))

= ψ((ri1sj1 , k1)) + ψ((ri2sj2 , k2))

= ψ(x) + ψ(y).
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This shows that ψ is a group homomorphism, as claimed.

Second, we will prove that ψ is surjective. In order to do so, observe that since

ψ((r, 0)) = (1, 0, 0), ψ((s, 0)) = (0, 1, 0), and ψ((e, 1)) = (0, 0, 1), we have

〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉 ≤ ψ(D2n oϕr2m+1,s
Z2)

and consequently 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉 = ψ(D2n oϕr2m+1,s
Z2), because obviously

ψ(D2n oϕr2m+1,s
Z2) ≤ 〈(1, 0, 0), (0, 1, 0), (0, 0, 1)〉. Hence ψ is surjective, as claimed.

So (D2n oϕr2m+1,s
Z2)/ker(ψ) ∼= Z2 × Z2 × Z2 by the First Isomorphism Theorem.

Since (D2n oϕr2m+1,s
Z2)/ker(ψ) ∼= Z2×Z2×Z2 and Z2×Z2×Z2 is an abelian group,

(D2n oϕr2m+1,s
Z2)/ker(ψ) is also an abelian group.

Hence (D2n oϕr2m+1,s
Z2)

′ ⊆ ker(ψ). Now, we will prove that ker(ψ) = 〈(r2, 0)〉. To

do so, let x ∈ ker(ψ) ⊆ (D2n oϕr2m+1,s
Z2)

′. Then ψ(x) = (0, 0, 0) and x = (risj, k)

where i, j, and k are integers with 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1, and 0 ≤ k ≤ 1. Since ψ

is a homomorphism,

(0, 0, 0) = ψ(x)

= ψ((risj, k))

= ψ((ri, 0)(sj, 0)(e, k))

= ψ((r, 0)i(s, 0)j(e, 1)k)

= ψ((r, 0)i) + ψ((s, 0)j) + ψ((e, 1)k)

= iψ((r, 0)) + jψ((s, 0)) + kψ((e, 1))

= i(1, 0, 0) + j(0, 1, 0) + k(0, 0, 1)

= (i, j, k)
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which implies i ≡ 0(mod 2), j ≡ 0(mod 2), and k ≡ 0(mod 2). Hence there exists an

integer k with 0 ≤ k ≤ n−1
2

such that i = 2k, j = 0, and k = 0. Thus

x = (risj, k) = (r2ks0, 0) = (r2, 0)k ∈ 〈(r2, 0)〉

and consequently ker(ψ) ⊆ 〈(r2, 0)〉.

Conversely, since ψ((r2, 0)) = (0, 0, 0), we have (r2, 0) ∈ ker(ψ) and consequently

〈(r2, 0)〉 ⊆ ker(ψ). So ker(ψ) = 〈(r2, 0)〉. Since (D2n oϕr2m+1,s
Z2)

′ ⊆ ker(ψ) and

ker(ψ) = 〈(r2, 0)〉, (D2n oϕr2m+1,s
Z2)

′ ⊆ 〈(r2, 0)〉. On the other hand, since

(r2, 0) = (r, 0)(r, 0)

= (r, 0)(e, 0)(r, 0)

= (r, 0)(s2, 0)(r, 0)

= (r, 0)(s, 0)(s, 0)(r, 0)

= (rs, 0)(s, 0)(r, 0)

= (sr−1, 0)(s, 0)(r, 0)

= (s, 0)(r−1, 0)(s, 0)(r, 0)

= (s, 0)−1(r, 0)−1(s, 0)(r, 0)

= [(s, 0), (r, 0)] ∈ (Dn oθ Z2)
′,

〈(r2, 0)〉 ⊆ (D2noϕr2m+1,s
Z2)

′. Therefore (D2noϕr2m+1,s
Z2)

′ = 〈(r2, 0)〉, as claimed.

Now, suppose that m and n are positive integers satisfying 0 < 2m + 1 < 2n

and ϕr2m+1,s ∈ Aut(D2n) is the automorphism that maps r to r2m+1 and s to s, and

the semi-direct product D2noϕr2m+1,s
Z2 be induced by the non-trivial homomorphism

defined from Z2 to Aut(D2n) that maps 1 to ϕr2m+1,s.
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Lemma 6.3. (D2n oϕr2m+1,s
Z2)

′ is an abelian group.

Proof. By Lemma 6.2, (D2noϕr2m+1,s
Z2)

′ = 〈(r2, 0)〉. On the other hand, 〈(r2, 0)〉 is a

cyclic group and every cyclic group is an abelian group. Therefore (D2n oϕr2m+1,s
Z2)

′

is an abelian group, as claimed.

Lemma 6.4. |(D2n oϕr2m+1,s
Z2)

′| = 2n and

|(D2n oϕr2m+1,s
Z2)/(D2n oϕr2m+1,s

Z2)
′| = 8.

Proof. Since (D2n oϕr2m+1,s
Z2)

′ = 〈(r2, 0)〉 and |(r, 0)| = 2n,

|(D2n oϕr2m+1,s
Z2)

′| = |〈(r2, 0)〉|

= |(r2, 0)|

=
|(r, 0)|

gcd(2, |(r, 0)|)

=
2n

gcd(2, 2n)

=
2n

2

= 2n−1

and consequently

|(D2n oϕr2m+1,s
Z2)/(D2n oϕr2m+1,s

Z2)
′| =

|D2n oϕr2m+1,s
Z2|

|(D2n oϕr2m+1,s
Z2)′|

=
2n+2

2n−1

= 8,

as claimed.

Corollary 6.5. |(D2n oϕr2m+1,s
Z2)

′/(D2n oϕr2m+1,s
Z2)

′′| = 2n−1.
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Proof. Since (D2n oϕr2m+1,s
Z2)

′ is an abelian group, we have

(D2n oϕr2m+1,s
Z2)

′′ = ((D2n oϕr2m+1,s
Z2)

′)′ = {e}

and consequently |(D2n oϕr2m+1,s
Z2)

′′| = |{e}| = 1. On the other hand, we have

|(D2n oϕr2m+1,s
Z2)

′| = 2n−1. So

|(D2n oϕr2m+1,s
Z2)

′/(D2n oϕr2m+1,s
Z2)

′′| =
|(D2n oϕr2m+1,s

Z2)
′|

|(D2n oϕr2m+1,s
Z2)′′|

=
2n−1

1

= 2n−1,

as claimed.

Theorem 6.6. The sequence {D2n oϕr2m+1,s
Z2}∞n=1 is not potentially expanding.

Proof. This follows immediately from Corollary 6.5 and Definition 2.12.
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CHAPTER 7

Miscellaneous Computations

In this chapter we will start iterating semi-direct products of the integers modulo

two. But, first we will present some important facts about some useful isomorphisms

that will be used in the iteration process.

Definition 7.1. Let G be a group and x, y ∈ G. Then x is said to be conjugate to y

if there exists an element g ∈ G such that x = g−1yg.

Theorem 7.2. Let G be a group and ∼ be a relation on G defined as follows:

x ∼ y if and only if x is conjugate to y.

Then ∼ is an equivalence relation that partitions G into equivalence classes, called

the conjugacy classes of G.

Proof. For a proof, we refer the reader to [2].

Theorem 7.3. Let G be a group and θ1 and θ2 be group homomorphisms defined

from Z2 to Aut(G) with (θ1(1))θ = θ2(1) where θ ∈ Aut(G) and (θ1(1))θ = θ−1θ1(1)θ

is the conjugate of θ1(1) by θ. Then Goθ1 Z2
∼= Goθ2 Z2. In other words, if θ1 and

θ2 are two homomorphisms defined from Z2 to Aut(G) such that θ1(1) and θ2(1) are

two conjugate elements of Aut(G), then θ1 and θ2 will induce isomorphic semi-direct

products of G and Z2.

Proof. Define ϕ : Goθ1 Z2 −→ Goθ2 Z2 by ϕ(g,m) = (θ−1(g),m). We will prove that

ϕ is a group isomorphism. First, we will prove that ϕ is a group homomorphism. To
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do so, let (g,m), (h, n) ∈ Goθ1 Z2. If m = 0, then

ϕ((g,m)(h, n)) = ϕ((g, 0)(h, n))

= ϕ(gθ1(0)(h), 0 + n)

= ϕ(gh, n)

= (θ−1(gh), n)

= (θ−1(g)θ−1(h), n)

= (θ−1(g)θ2(0)(θ−1(h)), 0 + n)

= (θ−1(g), 0)(θ−1(h), n)

= ϕ(g, 0)ϕ(h, n)

= ϕ(g,m)ϕ(h, n).

If m = 1, then

ϕ((g,m)(h, n)) = ϕ((g, 1)(h, n))

= ϕ(gθ1(1)(h), 1 + n)

= (θ−1(gθ1(1)(h)), 1 + n)

= (θ−1(g)θ−1(θ1(1)(h)), 1 + n)

= (θ−1(g)(θ−1θ1(1))(h), 1 + n)

= (θ−1(g)(θ−1θ1(1)θθ−1)(h), 1 + n)

= (θ−1(g)(θ−1θ1(1)θ)(θ−1(h)), 1 + n)

= (θ−1(g)θ2(1)(θ−1(h)), 1 + n)

= (θ−1(g), 1)(θ−1(h), n)
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= ϕ(g, 1)ϕ(h, n)

= ϕ(g,m)ϕ(h, n).

This shows that ϕ is a group homomorphism.

Next, we will prove that ϕ is injective. To do so, let ϕ(g,m) = ϕ(h, n) with

(g,m), (h, n) ∈ Goθ1 Z2. Then (θ−1(g),m) = ϕ(g,m) = ϕ(h, n) = (θ−1(h), n) and so

θ−1(g) = θ−1(h) and m = n. Since θ ∈ Aut(G) and θ−1(g) = θ−1(h), g = h. Hence

(g,m) = (h, n). This shows that ϕ is injective.

Finally, we will prove that ϕ is surjective. In order to do so, let (h, n) ∈ Goθ2 Z2.

Then (θ(h), n) ∈ G oθ1 Z2 and ϕ(θ(h), n) = (θ−1(θ(h)), n) = ((θ−1θ)(h), n) = (h, n).

This shows that ϕ is surjective. Hence ϕ is a group isomorphism and therefore

Goθ1 Z2
∼= Goθ2 Z2, as claimed.

Theorem 7.4. Let φa,b : D4 −→ D4 be the group homomorphism that maps r to

a ∈ {r, r3} and s to b ∈ {s, rs, r2s, r3s}. Then we have φa,b ∈ Aut(D4). Moreover,

Aut(D4) = {φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s}.

Proof. A straight forward computation shows that for every a ∈ {r, r3} and for ev-

ery b ∈ {s, rs, r2s, r3s}, we have |a| = 4, |b| = 2, and ab = ba−1. Hence φa,b is a

well-defined homomorphism, because it maps r to a and s to b where a ∈ {r, r3}

and b ∈ {s, rs, r2s, r3s} satisfying |a| = 4, |b| = 2, and ab = ba−1. Table 7.1 shows

that each element of {φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s} is bijective. So

{φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s} ⊆ Aut(D4). On the other hand,

since D4 = 〈r, s | r4 = s2 = e and rs = sr−1〉, each φ ∈ Aut(D4) can be completely

determined by its values at r and s. Moreover, since s 6∈ Z(D4) and r2 ∈ Z(D4),
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for every φ ∈ Aut(D4), φ(s) 6= r2. Furthermore, since for every φ ∈ Aut(D4),

|φ(r)| = |r| = 4 and |φ(s)| = |s| = 2, for every φ ∈ Aut(D4), φ(r) ∈ {r, r3} and

φ(s) ∈ {s, rs, r2s, r3s}.

Thus |Aut(D4)| ≤ 8 and consequently |Aut(D4)| = 8. Since |Aut(D4)| = 8 and

{φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s} ⊆ Aut(D4), we have

Aut(D4) = {φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s},

as claimed.

Table 7.1: The elements of {φr,s, φr,rs, φr,r2s, φr,r3s, φr3,s, φr3,rs, φr3,r2s, φr3,r3s}

x e r r2 r3 s rs r2s r3s

φr,s(x) e r r2 r3 s rs r2s r3s

φr,rs(x) e r r2 r3 rs r2s r3s s

φr,r2s(x) e r r2 r3 r2s r3s s rs

φr,r3s(x) e r r2 r3 r3s s rs r2s

φr3,s(x) e r3 r2 r s r3s r2s rs

φr3,rs(x) e r3 r2 r rs s r3s r2s

φr3,r2s(x) e r3 r2 r r2s rs s r3s

φr3,r3s(x) e r3 r2 r r3s r2s rs s

Theorem 7.5. D4
∼= Aut(D4).

Proof. A straightforward computation shows that

φ4
r,rs = φ2

r3,s = id
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and

φr,rsφr3,s = φr3,sφ
−1
r,rs.

So there exists a well-defined homomorphism ψ : D4 −→ Aut(D4) that maps r to

φr,rs and s to φr3,s. By Theorem 7.4, ψ is surjective. Hence ψ is an isomorphism, by

the Pigeon-Hole Principle. Therefore D4
∼= Aut(D4), as claimed.

Theorem 7.6. Let φa,b : Z2 × Z2 −→ Z2 × Z2 be the group homomorphism that

maps (0, 1) to a and (1, 0) to b where a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b. Then

Aut(Z2 × Z2) = {φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b}.

Proof. Table 7.2 shows that each element of

{φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b}

is bijective. So {φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b} ⊆ Aut(Z2 × Z2).

On the other hand, since Z2 × Z2 = 〈(0, 1), (1, 0)〉, each φ ∈ Aut(Z2 × Z2) can be

completely determined by its values at (0, 1) and (1, 0). Moreover, since for every

φ ∈ Aut(Z2 × Z2), |φ((0, 1))| = |(0, 1)| = 2 and |φ((1, 0))| = |(1, 0)| = 2, for every

φ ∈ Aut(Z2×Z2), φ((0, 1)), φ((1, 0)) ∈ {(0, 1), (1, 0), (1, 1)}. Thus |Aut(Z2×Z2)| ≤ 6

and consequently |Aut(Z2 × Z2)| = 6.

Since |Aut(Z2 × Z2)| = 6 and

{φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b} ⊆ Aut(Z2 × Z2),

we have

Aut(Z2 × Z2) = {φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b},

as claimed.
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Table 7.2: The elements of {φa,b | a, b ∈ {(0, 1), (1, 0), (1, 1)} and a 6= b}

x (0, 0) (0, 1) (1, 0) (1, 1)

φ(0,1),(1,0)(x) (0, 0) (0, 1) (1, 0) (1, 1)

φ(1,0),(0,1)(x) (0, 0) (1, 0) (0, 1) (1, 1)

φ(1,1),(1,0)(x) (0, 0) (1, 1) (1, 0) (0, 1)

φ(0,1),(1,1)(x) (0, 0) (0, 1) (1, 1) (1, 0)

φ(1,0),(1,1)(x) (0, 0) (1, 0) (1, 1) (0, 1)

φ(1,1),(0,1)(x) (0, 0) (1, 1) (0, 1) (1, 0)

Theorem 7.7. S3
∼= Aut(Z2 × Z2)

Proof. Table 7.3 shows that ψ : S3 −→ Aut(Z2 × Z2) is a well-defined bijective

function and Table 7.4 shows that ψ is a homomorphism.

Table 7.3: ψ is a bijection

x (1) (1 2) (1 3) (2 3) (1 2 3) (1 3 2)

ψ(x) φ(0,1),(1,0) φ(1,0),(0,1) φ(1,1),(1,0) φ(0,1),(1,1) φ(1,0),(1,1) φ(1,1),(0,1)

Table 7.4: ψ is a homomorphism

φ(0,1),(1,0) φ(1,0),(0,1) φ(1,1),(1,0) φ(0,1),(1,1) φ(1,0),(1,1) φ(1,1),(0,1)

φ(0,1),(1,0) φ(0,1),(1,0) φ(1,0),(0,1) φ(1,1),(1,0) φ(0,1),(1,1) φ(1,0),(1,1) φ(1,1),(0,1)

φ(1,0),(0,1) φ(1,0),(0,1) φ(0,1),(1,0) φ(1,1),(0,1) φ(1,0),(1,1) φ(0,1),(1,1) φ(1,1),(1,0)

φ(1,1),(1,0) φ(1,1),(1,0) φ(1,0),(1,1) φ(0,1),(1,0) φ(1,1),(0,1) φ(1,0),(0,1) φ(0,1),(1,1)
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φ(0,1),(1,0) φ(1,0),(0,1) φ(1,1),(1,0) φ(0,1),(1,1) φ(1,0),(1,1) φ(1,1),(0,1)

φ(0,1),(1,1) φ(0,1),(1,1) φ(1,1),(0,1) φ(1,0),(1,1) φ(0,1),(1,0) φ(1,1),(1,0) φ(1,0),(0,1)

φ(1,0),(1,1) φ(1,0),(1,1) φ(1,1),(1,0) φ(0,1),(1,1) φ(1,0),(0,1) φ(1,1),(0,1) φ(0,1),(1,0)

φ(1,1),(0,1) φ(1,1),(0,1) φ(0,1),(1,1) φ(1,0),(0,1) φ(1,1),(1,0) φ(0,1),(1,0) φ(1,0),(1,1)

Hence S3
∼= Aut(Z2 × Z2), as claimed.

Now, we begin constructing groups in a recursive manner by starting with Z2,

the additive group of the integers modulo two, and by forming a semi-direct product

with Z2 at each step.

First Step:

Let G1 = Z2 . Since Aut(G1) is the trivial group, the only possible semi-direct

product of G1 and Z2 is their direct product.

Second Step:

Let G2 = G1 oθ1 Z2 where θ1 is the trivial homomorphism defined from Z2 to

Aut(G1). Since G2 = G1 oθ1 Z2 = Z2 × Z2 and Aut(Z2 × Z2) ∼= S3, Aut(G2) ∼= S3

and consequently the collection of all conjugacy classes of Aut(G2) whose elements

are automorphisms of order two is {{φ(1,0),(0,1), φ(1,1),(1,0), φ(0,1),(1,1)}}. The elements

of the conjugacy class {φ(1,0),(0,1), φ(1,1),(1,0), φ(0,1),(1,1)} are defined in Table 7.5.

Table 7.5: The elements of the conjugacy class {φ(1,0),(0,1), φ(1,1),(1,0), φ(0,1),(1,1)}

x (0, 0) (0, 1) (1, 0) (1, 1)

φ(1,0),(0,1)(x) (0, 0) (1, 0) (0, 1) (1, 1)

φ(1,1),(1,0)(x) (0, 0) (1, 1) (1, 0) (0, 1)

φ(0,1),(1,1)(x) (0, 0) (0, 1) (1, 1) (1, 0)
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Therefore, all non-trivial homomorphisms defined from Z2 to Aut(G2) induce iso-

morphic semi-direct products of G2 and Z2.

Third Step:

Let G3 = G2 oθ2 Z2 where θ2 is a non-trivial homomorphism defined from Z2

to Aut(G2). Since G3
∼= D4

∼= Aut(D4), the conjugacy classes of Aut(G3) whose

elements are automorphisms of order two are as follows:

The conjugacy class {φr,r2s} whose element is defined in Table 7.6.

Table 7.6: The definitions of φr,r2s

x e r r2 r3 s rs r2s r3s

φr,r2s(x) e r r2 r3 r2s r3s s rs

The conjugacy class {φr3,s, φr3,r2s} whose elements are defined in Table 7.7.

Table 7.7: The definitions of φr3,s and φr3,r2s

x e r r2 r3 s rs r2s r3s

φr3,s(x) e r3 r2 r s r3s r2s rs

φr3,r2s(x) e r3 r2 r r2s rs s r3s

The conjugacy class {φr3,rs, φr3,r3s} whose elements are defined in Table 7.8.

Table 7.8: The definitions of φr3,rs and φr3,r3s

x e r r2 r3 s rs r2s r3s

φr3,rs(x) e r3 r2 r rs s r3s r2s

φr3,r3s(x) e r3 r2 r r3s r2s rs s
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Using cycle graphs, we can show that no two of the semi-direct products induced

by φr,r2s, φr3,s, and φr3,rs are isomorphic (see Figures 7.1, 7.2, and 7.3). Therefore,

there exist at most four non-isomorphic semi-direct products of G3 and Z2 that are

listed below:

1) The semi-direct product G3 oφr,r2s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr,r2s. This group of order sixteen is

isomorphic to the group of Pauli matrices that was used by, then named after, the

Austrian-born physicist Wolfgang Pauli in his 1925 study of spin in quantum me-

chanics (see Figure 7.1).

2) The semi-direct product G3 oφr3,s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr3,s (see Figure 7.2).

3) The semi-direct product G3 oφr3,rs
Z2
∼= D8 induced by the non-trivial homo-

morphism defined from Z2 to Aut(G3) that maps 1 to φr3,rs (see Figure 7.3).

4) G3 × Z2.

Fourth Step:

Let G4 = G3 oθ3 Z2 where θ3 is the non-trivial homomorphism defined from Z2

to Aut(G3) that maps 1 to φr3,rs. Since G4
∼= D8, the conjugacy classes of Aut(G4)

whose elements are automorphisms of order two are as follows:

The conjugacy class {φr,r4s} whose element is defined in Table 7.9.

49



Table 7.9: The definition of φr,r4s

x e r r2 r3 r4 r5 r6 r7

φr,r4s(x) e r r2 r3 r4 r5 r6 r7

x s rs r2s r3s r4s r5s r6s r7s

φr,r4s(x) r4s r5s r6s r7s s rs r2s r3s

The conjugacy class {φr3,s, φr3,r2s, φr3,r4s, φr3,r6s} whose elements are defined in tables

7.10, 7.11, 7.12, and 7.13:

Table 7.10: The definition of φr3,s

x e r r2 r3 r4 r5 r6 r7

φr3,s(x) e r3 r6 r r4 r7 r2 r5

x s rs r2s r3s r4s r5s r6s r7s

φr3,s(x) s r3s r6s rs r4s r7s r2s r5s

Table 7.11: The definition of φr3,r2s

x e r r2 r3 r4 r5 r6 r7

φr3,r2s(x) e r3 r6 r r4 r7 r2 r5

x s rs r2s r3s r4s r5s r6s r7s

φr3,r2s(x) r2s r5s s r3s r6s rs r4s r7s
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Table 7.12: The definition of φr3,r4s

x e r r2 r3 r4 r5 r6 r7

φr3,r4s(x) e r3 r6 r r4 r7 r2 r5

x s rs r2s r3s r4s r5s r6s r7s

φr3,r4s(x) r4s r7s r2s r5s s r3s r6s rs

Table 7.13: The definition of φr3,r6s

x e r r2 r3 r4 r5 r6 r7

φr3,r6s(x) e r3 r6 r r4 r7 r2 r5

x s rs r2s r3s r4s r5s r6s r7s

φr3,r6s(x) r6s rs r4s r7s r2s r5s s r3s

The conjugacy class {φr5,s, φr5,r4s} whose elements are defined in Tables 7.14 and 7.15.

Table 7.14: The definition of φr5,s

x e r r2 r3 r4 r5 r6 r7

φr5,s(x) e r5 r2 r7 r4 r r6 r3

x s rs r2s r3s r4s r5s r6s r7s

φr5,s(x) s r5s r2s r7s r4s rs r6s r3s
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Table 7.15: The definition of φr5,r4s

x e r r2 r3 r4 r5 r6 r7

φr5,r4s(x) e r5 r2 r7 r4 r r6 r3

x s rs r2s r3s r4s r5s r6s r7s

φr5,r4s(x) r4s rs r6s r3s s r5s r2s r7s

The conjugacy class {φr7,s, φr7,r2s, φr7,r4s, φr7,r6s} whose elements are defined in Tables

7.16, 7.17, 7.18, and 7.19.

Table 7.16: The definition of φr7,s

x e r r2 r3 r4 r5 r6 r7

φr7,s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,s(x) s r7s r6s r5s r4s r3s r2s rs

Table 7.17: The definition of φr7,r2s

x e r r2 r3 r4 r5 r6 r7

φr7,r2s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r2s(x) r2s rs s r7s r6s r5s r4s r3s
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Table 7.18: The definition of φr7,r4s

x e r r2 r3 r4 r5 r6 r7

φr7,r4s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r4s(x) r4s r3s r2s rs s r7s r6s r5s

Table 7.19: The definition of φr7,r6s

x e r r2 r3 r4 r5 r6 r7

φr7,r6s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r6s(x) r6s r5s r4s r3s r2s rs s r7s

The conjugacy class {φr7,rs, φr7,r3s, φr7,r5s, φr7,r7s} whose elements are defined in Tables

7.20, 7.21, 7.22, and 7.23.

Table 7.20: The definition of φr7,rs

x e r r2 r3 r4 r5 r6 r7

φr7,rs(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,rs(x) rs s r7s r6s r5s r4s r3s r2s
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Table 7.21: The definition of φr7,r3s

x e r r2 r3 r4 r5 r6 r7

φr7,r3s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r3s(x) r3s r2s rs s r7s r6s r5s r4s

Table 7.22: The definition of φr7,r5s

x e r r2 r3 r4 r5 r6 r7

φr7,r5s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r5s(x) r5s r4s r3s r2s rs s r7s r6s

In each one of the conjugacy classes above, φa,b ∈ Aut(D8) maps r to

a ∈ {r, r3, r5, r7} ⊂ D8

and s to

b ∈ {s, rs, r2s, r3s, r4s, r5s, r6s, r7s} ⊂ D8.

Therefore there exist at most six non-isomorphic semi-direct products of G4 and Z2

that are listed below:

1) The semi-direct product G4 oφr,r4s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G4) that maps 1 to φr,r4s (see Figure 7.4).

2) The semi-direct product G4 oφr3,s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr3,s (see Figure 7.5).
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Table 7.23: The definition of φr7,r7s

x e r r2 r3 r4 r5 r6 r7

φr7,r7s(x) e r7 r6 r5 r4 r3 r2 r

x s rs r2s r3s r4s r5s r6s r7s

φr7,r7s(x) r7s r6s r5s r4s r3s r2s rs s

3) The semi-direct product G4 oφr5,s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr5,s (see Figure 7.5).

4) The semi-direct product G4 oφr7,s
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr7,s (see Figure 7.6).

5) The semi-direct product G4oφr7,rs
Z2 induced by the non-trivial homomorphism

defined from Z2 to Aut(G3) that maps 1 to φr7,rs (see Figure 7.7).

6) G4 × Z2.

Fifth Step:

Let G5 = G4oθ4 Z2 where θ4 is the non-trivial homomorphism defined from

Z2 to Aut(G4) that maps 1 to φr3,s. Then G′5 = 〈(r2, 0)〉 where r ∈ D8, by Lemma

6.2 when m = 1 and n = 3 (see Figure 7.8).

Sixth Step:

Let G6 = G5oθ5Z2 = 〈a, b, c, d〉 where a = (r, 0, 0), b = (s, 0, 0), c = (e, 1, 0),

and d = (e, 0, 1) and θ5 is the non-trivial homomorphism defined from Z2 to Aut(G5)

that maps 1 to φabc,c,b. Then G′6 = 〈(a2, bc)〉 (see Figure 7.9).

55



LIST OF FIGURES

We can use cycle graphs (graphs that show relationships between powers of elements

of a finite group) to distinguish the corresponding isomorphism classes. The following

figures are the relevant cycle graphs.

Figure 7.1: The Cycle Graph of G3 oφr,r2s
Z2

Figure 7.2: The Cycle Graph of G3 oφr3,s
Z2
∼= D4 × Z2

Figure 7.3: The Cycle Graph of G3 oφr3,rs
Z2
∼= D8
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Figure 7.4: The Cycle Graph of G4 oφr,r4s
Z2

Figure 7.5: The Cycle Graph of G4 oφr3,s
Z2 and G4 oφr5,s

Z2

Figure 7.6: The Cycle Graph of G4 oφr7,s
Z2

Figure 7.7: The Cycle Graph of G4 oφr7,rs
Z2

Figure 7.8: The Cycle Graph of D4 × Z2
2
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Figure 7.9: The Cycle Graph of G5 oφabc,c,b Z2
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