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ABSTRACT
Proper Orthogonal Decomposition Analysis on Cycle-to-cycle Variability of High-
pressure Gasoline Sprays for Internal Combustion Engines
By
Blakeley Ficenec Williams

Data analytics has grown in recent years and a commonly used technique is called
model reduction, which helps reduce high-dimensional dynamics into low dimensions.
Model order reduction is a general category of techniques, which include proper orthogonal
decomposition or POD. Generally, POD decomposes a physical field like turbulent fluid
flows or vibrations from structures and extracts “mode shapes” or basis functions from
experimental data to yield low-dimensional dynamic models [1]. The basis functions
represent the dominant or coherent structures from a given scalar fields set [2]. POD
methods like balanced truncation, minimize the difference between the basis function and
the data set, however, it is not as sensitive to detail like POD and becomes computationally
intractable for very large dimensions (> 10,000 states) [3].

This research consisted of applying the snapshot POD method on fuel injector spray
data, characterizing coherent structures, and quantifying the variability exhibited in the
spray images between operating conditions. This POD method was chosen because of its
ability to handle images and the capacity to eliminate statistical noise from the data. The
data consists of high-pressure gasoline sprays injected inside a constant volume chamber
at various operating conditions, i.e., injection pressures of 300 — 1500 bar and chamber

pressures of 1 — 20 bar. Results contain information on cycle-to-cycle variability between

v



injection events. The cycle-to-cycle variability allowed for quantitative differences in the

spray patterns and intensity in the variations.
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CHAPTER 1
Introduction

Background

The field of data analysis has grown significantly in the past several years with
advancements in new technologies and increased data generation. Facial recognition in cell
phones, autonomous/assisted driving, chatGPT, neural networks are examples of data
driven tools [4]. While these technologies generate/use large datasets, there remains a
challenge to increase interpretability while preserving the most amount of information.
Principal component analysis (PCA) is a widely used statistical tool for dimensionality
reduction while also facilitating visualization of multidimensional data. PCA remains the
most well-known, but there are similar methods such as proper orthogonal decomposition
(POD), factor analysis, and singular value decomposition (SVD) that were introduced in
different fields by different people, all with an intent of dimensionality reduction. POD was
first developed by Lumley in 1967 and was applied to turbulent flows to analyze coherent
structures [5]. Since its first use, POD has been applied to a wide range of fluid flows
including in-cylinder engine flows [5] [6], cycle-to-cycle variability (CCV) [2] [7] and
turbulent gaseous and liquid jets [8] [9]. The POD method provides a generic, analytic tool
that can be used efficiently [10]. In this method there exists an optimal basis in which a
given system can be written so that in this basis, all redundancies have been removed, and
the largest variances of measurements are ordered and written in terms of its principal
components [10]. Like POD, SVD can also be used as a method for data reduction. SVD
is a method for identifying and ordering dimensions along which data points exhibit the

most variation [11]. Once identification is made on where the most variation is, it is then



possible to find the best approximation of the original data points using fewer dimensions
[11]. Ultimately, SVD takes a high dimensional, highly variable set of data points and
reduces it to a lower dimensional space that exposes the substructure of the original data
more clearly and orders it from most variation to the least [11].

Varying applications have required various developments of POD throughout the
years. Some of the most common are balanced truncation, balanced POD, and snapshot
POD. Each method provides slight advantages over others and will be briefly described
here. Balanced truncation was first introduced by Moore for control theory of stable, linear
input-output systems [12]. This method is notable for minimal error bounds compared
with other reduced order models including PCA [3]. Additionally, balanced truncation has
been applied to nonlinear fluid systems. However, such flows become computationally
intractable given the large number of dimensions (>10,000 states) [3]. Primarily, the
technique is unsuitable for turbulent flows, but works well in balanced linear systems, since
these systems allow for the number of equations and variables to balance and create an
algebraic solution. Balanced POD combines the attractive qualities of POD and balanced
truncation. It obtains an approximation to balanced truncation by minimizing the error
bounds to the lowest error possible from any reduced-order model, which is
computationally tractable for large systems [3]. POD computes a set of linearly
independent basis vectors indirectly allowing for large datasets [3]. The major limitation
of balanced POD is applicability for stable and linear systems. Several studies highlight
this method including Moore and Lall et al. [12] [13]. Lastly, snapshot POD
advantageously computes the set of linearly independent basis vectors directly using

singular value decomposition (SVD) of an n x n data matrix [3]. Similarly, a direct solution



can be computed from the eigenvalue problem if the systems contain less than 10°
dimensions [3]. This method also separates time away from the data allowing for more
simplicity of the snapshot POD and making it an attractive technique for turbulent flow
problems.
Visual Comparison of POD Methods

The three POD methods described above have been analyzed and compared by
Rowley et al. [3]. The POD modes are calculated to be the eigenvectors and the columns
of the n x m matrix. This is done for each method that was discussed in section 1.1 above.
Balanced truncation is able to provide better reduced-order models whereas balanced POD
is a more tractable method for computing approximate balanced truncations, and snapshot
POD decomposes a data set into a linear combination of orthonormal basis with
corresponding coefficients. A visual representation of the first three modes for each method
is shared below in Figures 1.1 — 1.3 [3]. The analysis was applied using balanced
truncation, balanced POD, and snapshot POD (called POD). All three figures represent a

fluid flow example where the flow runs parallel within a plane channel.
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The analysis decomposes the data in order of strength such that mode 1 contains
the strongest features shared in each velocity and vorticity field. Such is the case in Figure
1.1, the velocity field is highest in the first mode and begins to decrease in the second and
third modes. The vorticity is interpreted the same as the velocity, where it is the highest in
the first mode for each method. By mode 3, the vorticity has split as the rotations in the
channel flow have decreased. In Chapter 2 and 3, similar findings are shown with the spray
images that are being analyzed under this research and conclusions are made about the first
mode describing the highest spatial differences between the spray cycles.

Under the snapshot POD method, the modes look relatively the same for the general
structure, especially for the first mode, but there are great differences for the second and
third modes [3].

The comparison of these figures helps to confirm findings from other researchers
where the first mode provides the most dominant pattern in the data set, the second mode

represents the secondary dominant pattern in the data, and so on [6].



Snapshot POD

The foundational concept of POD is to decompose a data set into a linear
combination of orthonormal basis with corresponding coefficients. For a 2-D data set, the
basis functions are representative unit vectors that minimize the Euclidean error, distance
between two points, and the coefficients are scalar transformations. These basis functions
are often called “modes” and they contain dominant features or representative trends within
the data. For liquid jets, this may be vortex structures, cycle-to-cycle variability, cavitating
flows, or other flow patterns [14]. Specifically, the snapshot POD method has been
commonly applied to discretized data that is repeatable and develops temporally and
spatially. The snapshot POD was originally introduced by Sirovich in the 1980’s [15]. In
the context of this thesis, the data set is the temporal and spatial development of a liquid
spray for various operating conditions (i.e., injection pressure and chamber pressures).

The mathematical representation of snapshot POD is as follows. For an experiment
imaged K times, each image is a scalar field represented by S®). The image S is a matrix
of'size I x | pixels. The entire data set is represented as a matrix of size [ x / x K. The POD

decomposes the input data set into a linear combination of K spatial basis functions, ¢,

(k)

i .

K
k
S = zcg s
i=1

and their corresponding coefficients ¢

(1.1)

The POD “modes” or spatial basis functions describe the coherent structures of the
data set S and the coefficients represents the strength or dominance of what the ith mode

has for the kth snapshot [7]. In vector notation, the modes are the vectors, and the



coefficients are the amplitudes to recover the kth image. The decomposition presents the
coefficients and modes in decreasing order, such that the first mode describes the strongest
features shared in all images, S, followed by the second mode which represents the second
most dominant features and so on, with the kth mode capturing statistical noise. Under
certain applications, the first mode describes the average behavior of the entire data set,
S®) while the second mode represents the most shared dominant features, i.e., a vortex
structure, directionality, distance, or variability.

The snapshot POD can be calculated with different approaches. Weiss [5] provides
a detailed description of POD and discusses three algorithms for calculating the
decomposition of a turbulent separation-bubble flow. The study does not provide visual
comparisons between methods, but instead refers to the data in abstract form. In fact, many
studies use slightly different methods with limited comparisons [6] [2] [1]. Given the
numerous POD and PCA techniques mentioned, there is a need to understand the
fundamental differences between techniques. Thus, metrics for comparison must first be
discussed.

The results of the decomposition have been commonly interpreted using similar
metrics even when different methods are applied. These include the energy fraction, the
modes, and their coefficients. The energy fraction explains the energy distribution between
the modes. With repeatable data, the vectors of the images form a cluster and point in the
same direction, concentrating most of the energy in the first few modes. On the other hand,
large variation within a data set will translate into a larger length of space. More energy

will be distributed throughout the modes.



The modes that are observed in the images of the sprays are compared for each
mode. The modes are a measure of how the velocity is correlated at different points in the
flow [5]. A zone of correlation can represent a coherent structure when the corresponding
energy is dominant compared to the other modes [5]. There are many POD modes that add
up to complete the flow when multiplied by their time coefficients and some of these zones
of correlation appear randomly often due to the turbulent nature of most practical flows,
meaning that these modes are a manifestation of the randomness of turbulence [5].
Motivation, Research Objectives, and Thesis Contents

Free shear flows serve as a great canvas to study turbulent structures, cycle-to-cycle
variability, cavitation-induced variability and forced variability induced by experimental
conditions. Additionally, the results of a POD analysis can inform turbulence models to
improve modeling and prediction. Liquid jets are a free shear flow where atomization and
entrainment are important physical processes that govern a wide range of applications
including power generation, emissions control, agriculture, and manufacturing. Fuel
injection for internal combustion engines serve a crucial role in performance and emissions
and are subjugated to the physics mentioned above.

The objective of the present work is to contribute to the existing research on POD
by taking data in the form of raw spray images from a high-pressure liquid fuel spray for
an internal combustion engine and characterize the coherent structures and quantify the
variability. The data is in the form of high-speed images (> 50,000 fps) recorded using
diffuse back-lit shadowgraph in a constant volume chamber (CVC). The idea is to research
and evaluate different approaches to snapshot POD and find ways to compare them

quantitatively. These approaches are the eigenvalue problem, SVD with a correlation



matrix, and SVD using the economy size decomposition. Variability is studied between
repetitions of the same condition i.e., cycle-to-cycle variability, and among different
operating conditions 1i.e., injection pressure and chamber pressure. The present work
focuses on a POD analysis for experimental data that was previously collected. The full
details of the experimental matrix are provided in Medina et al. [16] [17] and briefly
summarized in the next section.

Chapter 2 presents the technical approach of the POD analysis. Firstly, the
fundamental linear algebra is discussed in the context of images. From constructing the
data matrix to defining the decomposition and its outcomes. Also introduced is a qualitative
analysis of the “modes”. Given the vast applicability and numerous techniques, discussing
the differences between a handful of POD techniques was necessary. Specifically, the
“snapshot” method is solved using three techniques: using the eigenvalue problem, using
SVD with a correlation matrix, and using SVD with an economy-size decomposition. The
results are presented as energy fractions and are the primary metrics for comparison for
each technique.

Chapter 3 presents the results of the snapshot POD technique solved by using SVD
with an economy-size decomposition applied to the entire experimental matrix discussed
in section 1.5. A qualitative analysis is discussed for POD modes to identify coherent
structures and cycle-to-cycle variability for the extreme conditions in the experimental
matrix. A quantitative analysis is presented to identify mechanisms of cycle-to-cycle
variability and forced variability induced by experimental conditions. Energy fractions and

qualitative analyzations of the modes are compared for experimental conditions.



The final chapter summarizes the key conclusions of each chapter and provides
recommendations for future work.

Fuel Injectors and Experimental Setup

Portions of the following section appear in the technical papers written by Dr.
Medina and referenced under [16] [17].

Fuel injectors are the devices that are used to force and atomize fuel straight into
internal combustion engines. The experiment that gathered the raw data utilized three
different fuel injectors. Injector 1 is a single hole injector and injectors 2 and 3 are both
double hole injectors. A summary of the experimental conditions is shown in Table 1.1.
The spray development was examined by diffusing backlit shadowgraph imaging and the
setup consisted of a constant volume chamber with an internal spherical diameter of 12.4
cm. The chamber used for this experiment was equipped with three optical access ports, of
which only two were utilized, and others for instrumentation and measurement. The optical
access ports that were used are those perpendicular to the axis of the injector, each having
a viewing diameter of 7.6cm. One of the ports was to allow for the diffusion of light to
illuminate the chamber and the other was used for imaging.

The chamber had a maximum chamber pressure of 100 bar and was pressurized with
the use of an ultra-high purity grade nitrogen, PurityPlus Gases with a purity rating of
99.999%. The Supco-DPG1000 pressure gauge was used to observe the chamber pressure
and a K-type thermocouple was used to monitor the chamber temperature. The range of
chamber pressures used in the study was 1 to 20 bar with a repeatability of + 0.2 bar at a

temperature of 298 K.
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Table 1.1 — Experimental Conditions

Chamber gas Nitrogen

Fuel type Reference grade gasoline
Injector 1 type Single hole, centered
Injector 2 type Double hole

Injector 3 type Double hole

Injector 1 hole size (um) 110

Injector 2 hole size 1 & 2 (um) | 109.8; 190

Injector 3 hole size 1 & 2 (um) | 149.9; 149.9

Injection duration (ms) 1

Injection pressure (bar) 300, 600, 900, 1200, 1500
Chamber temperature (K) 298

Chamber pressure (bar)
(chamber density (kg/m?®) at
298K)

1 (1.133), 5 (5.65), 10
(11.33), 20 (22.66)

The Vision Research Phantom v7.11 12-bit CMOS array was the high-speed camera
used to capture the injection events under this experiment. Over the course of the
experiment, there were two data sets recorded: near-nozzle images and bulk spray images.
Those used under this research are the sets of bulk spray images. The camera settings are
all listed in Table 1.2. The lenses that were utilized for both data sets were a Nikon Nikkor
105 mm lens.

Table 1.2 — Camera Conditions

Setting Macro Spray Imaging
Frame rate (fps) 69,000

Exposure time (pm) 14

Lens aperture (f/#) 5.6

Iiiréllf):ra resolution (pixel x 608 x 152

Image resolution (pixels/mm) | 13.9

The fuel type that was used for this experiment is a reference grade gasoline from Gage

Products Co., product number 40665-55F, and the fuel properties are in Table 1.3.
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Table 1.3 — Fuel Properties™

Property Test Method Value
Reference grade gasoline,
Fuel Type ] 40665-55F
Specific gravity 289 K ASTM D4052 0.743
Reid vapor pressure (kPa) ASTM D5191 61.46
Research octane number ASTM D2699 91.5
Motor octane number ASTM D2700 83.4
Heat of combustion (MJ/kg) | ASTM D240 43.6
H/C ratio (Mole basis) Gage-calculated 1.91
Distillation, IBP (K) ASTM D86 305.2
Distillation, 10% (K) ASTM D86 322.9
Distillation, 50% (K) ASTM D86 3724
Distillation, 90% ASTM D86 428.2

*As per manufacturer specifications.

For the purposes of the experiment, the fuel was blended with 350 ppm by volume of
lubricity additive (Infineum R655) to allow operation with the diesel pump and injection
system. The fuel pressure range was 300 to 1500 bar. The injectors used for this experiment
were prototype research-grade injectors developed by Bosch. The injector bodies were
production diesel hardware, and the nozzles were custom designed with canonical internal
architectures to study specific geometric features. Injector 1 has one hole centrally located
with a converging nozzle and a high percentage of hydro-erosion rounding of the nozzle
inlet. Hydro-erosion increases the statis flow rate by rounding the nozzle inlet edges. The
percentage of hydro-erosion rounding reflects the percent increase in the static flow rate.
Injector 2 and 3 both have two holes oriented on the same plane with 30° of separation and
the holes are located 15° above and below the horizontal plane. Injector 2 had two nozzles
with two different outlet diameters each with straight nozzle passages and no inlet
rounding. Injector 3 had two nozzles, each with the same outlet diameter and each with
hydro-erosion rounding of the nozzle inlet. However, one nozzle passageway was
diverging and the other was converging. Nozzle passage conicity was measured relative to

the nozzle exit diameter, where a straight or uniform passageway had a conicity of 0, a

12



converging nozzle had a positive conicity, and a diverging nozzle had a negative conicity.
The injectors were all controlled electronically using a LabView based program with 1 ms
injection events. Labview was also programmed to synchronize the injection events with
the camera trigger.

The experiment that gathered all the raw data that is used in this research was completed

prior to the onset of the research and is not part of the analysis.
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CHAPTER 2
Specifics of the Math

Methods and Equations

In this section the fundamental elements of the snapshot POD are discussed. The
decomposition was performed using the eigenvalue problem, SVD with a correlation
matrix, and SVD with “economy-size” decomposition. The general structure is specified
here and remains the same for all approaches. The outcomes of each approach are
described in their respective sections.

Suppose a repeatable, discrete scalar field is represented as a matrix with size -
I x ] x K, where I x ] represent the scalar field and K represents the number of repetitions.
The data matrix can be restructured such that each field is stacked into one row (L) and the

number of rows indicate the number of repetitions, K, as shown in Equation 2.1:

(1) (1) ® ®
s z 11 1 Si=1j=2 = Si=1j=j Si=2j=1 - Si=1j=J

2 (2) (2) (2) @) 2
= IS( )‘ Si=1,j=1 Si=1,j=2 - Si=1j=) Si=2j=1 = Si=lj=J
S (K) (K')" (K) S(K')" S(K')" J
Si= 1,j=1 Si= 1,j=2 Si= 1,j=J i=2,j=1 i=1,j=]

(2.1)

The data matrix S is an L x K matrix where L = I x J. Velocity, temperature, and pressure
fields are examples of such a scalar field. For images of turbulent flows, the light intensity
captured by the camera sensor also serves as a discrete scalar field. These images can be

decomposed into a linear combination as shown in Equation 2.2.

K
k
= Z o
i=1

(22)
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Where ci(k) are the coefficients that represent the strength features of what an ith basis has
on the k™ image and ¢ represents the spatial basis functions of size I x J. The basis
functions are obtained by minimizing the Euclidean error following Equation 2.3 [3] [7].

K
k=1

r

5= Py,
i=1

2
- min

(23)

Where || || denotes the L? norm, and r < K for any subset of the S. The basis functions are
normalized in the Euclidean space such that the sum of the squares of the vectors is unity.
Each basis function is also orthogonal to all others, resulting in orthonormal basis
functions. The basis functions contain “flow patterns” for every structure of every image,
however the modes may not be physical coherent structures [18]. Since each structure is
present in every basis function, the magnitude of the structure is represented by the
coefficients. Suppose a repetition does not contain a structure present in the basis function,
the coefficient that corresponds to that image will have a zero magnitude.

To determine the coefficients, the original matrix S is projected onto the computed
basis functions, ¢. Thus, each repetition can be reconstructed using Equation 2.2, summing
all the modes with the respective coefficient for that repetition. The coefficients can also
be used to understand how the energy is distributed between the modes. In other words,
when most of the energy is concentrated in the first few modes, the repetitions can be
considered consistent. The concept of “low-order modeling” arises from this result because
only a few modes are necessary to capture a majority of the flow behavior. While more
energy distributed throughout more modes signifies larger variation in the data. The energy

fraction is calculated using Equation 2.4. It should be noted that the concept of energy does
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not refer to a thermodynamic property when applied to a scalar field of light intensity, but

rather “information” of the data set [1] [19].

(24)

Eigenvalue Problem

The standard algebraic eigenvalue problem finds the eigenvectors and eigenvalues

that satisfies Equation 2.5, where the eigenvectors are a nonzero vector and

Cx = Ax

(2.5)
A represents the eigenvalues, x represents the eigenvectors, and C represents a n x n matrix.
To solve the eigenvalue problem for an n x m image, such as the data matrix S, the matrix
requires truncation or modification. A spatial correlation matrix can be constructed using

S demonstrated by Equation 2.6.

(2.6)

The correlation matrix is symmetric and thus restricts the eigenvectors from forming an
orthonormal basis. Solving the eigenvalue problem results in ordered eigenvalues from
largest to smallest and obtaining the eigenvectors requires a projection of the data matrix.
Lastly, the spatial coefficients shown in Equation 2.2 are obtained by projecting the data

matrix S onto the eigenvectors [5].
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SVD with Correlation Matrix
A more direct method of solving for the basis functions and their respective
coefficients results from computing the SVD of the data matrix S as shown in Figure 2.1

below.

STLJC m UTlXTL E nxm

!
— V mxm

Figure 2.1 — SVD Representation

The decomposition results with orthonormal matrices, U and V and a diagonal matrix with
decreasing and nonnegative diagonal entries, X. Conveniently, the columns of matrix U are
the POD modes while the coefficients are obtained by matrix multiplication of X and V.
Secondly, the matrix, X, contains the singular values, g, of S which are associated with the
eigenvalues (1 = ¢?). The eigenvalues in this case have the same meaning as the
eigenvalue problem in the previous section. It should be noted that the decomposition is
suitable for square matrices with lower dimensions.

SVD decomposes one complex transformation into simpler transformations of
rotation and scaling. When focused on transformations, matrices U and V' cause the
rotation and the diagonal matrix X causes the scaling. This ultimately allows for the original

matrix to be displayed as a linear combination of low-rank matrices.
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Economy-size SVD without Correlation Matrix

Economy-size decomposition is computed using the SVD, but requires truncation
when using a rectangular matrix, such as matrix S. Assuming S is an L x K matrix such
that L > K, only the first K eigenvectors are computed using this method.
Since this approach does not require that L = K, such as the correlation matrix C necessary
in the previous approaches, the SVD does not require the data to be centered by the mean,
normalized, or standardized resulting in a faster execution. The SVD approaches are more
direct compared with the eigenvalue approach [5]. However, economy size SVD does not
require additional processing. The advantage of the economy-size decomposition removes
extra rows/columns of zeros from the diagonal matrix of singular values, X. A similar

procedure is followed as described in the previous section.

Examples

The three approaches that are described in the previous section have each been
compared and evaluated under a single condition. The selected condition is an injection
pressure of 600 bar and a chamber pressure of 20 bar (600 & 20). Each method uses the
same set of images with the same start of injection (SOI). A montage evolution of the raw
spray images is shown in Figure 2.2 below to help describe the progress in the x-direction
as a function of time. The first image is the SOI followed by six other images varying with

after start of injection (ASOI) time.
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To understand the key differences across each approach of the snapshot method, POD
needs to be related to the raw sets of spray-imaging data. The development begins with the
use of a matrix as described in the previous section of the first frame ASOI of each set of
images, applying the POD to that matrix, calculating the energy fraction for each one of
the POD modes, and then repeating the steps for the next frame ASOIL.

An example of a calculated energy fraction for the first 20 modes of time stamp 1, 2, and
30 of the 600 & 20 condition is shown in Figure 2.3. This graph is one of the key
comparisons that is used across each approach. To be able to show high variability amongst
each mode, the ensemble mean is subtracted from the data set. When the ensemble mean
is subtracted, the first mode does not represent the average, however, it represents the most
statistically large spatial differences between the cycles.

Figure 2.3 is from the eigenvalue problem approach describing the changes at each instant
of time on how the energy is distributed. The changes depend on how steady or variable
the spray distribution is at the time the snapshot is taken. In this approach, the ensemble
mean was subtracted from the dataset, and so the first mode describes a higher energy
fraction than the remaining modes, representing that the pattern of the spray is similar from
one cycle to the next. Furthermore, this shows that there is a low amount of variability
between each cycle and the first mode can capture majority of the ensemble behavior. If
the first mode’s energy fraction were to be lower, this would tell that the differences in the

sets of spray data are more complicated.
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Figure 2.3 — Energy Fraction for Eigenvalue Problem

matrix and this graph is displayed in Figure 2.4.
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Figure 2.4 — Energy Fraction for SVD with Correlation Matrix

With this approach, this study found that the energy fraction of the first mode is also the
highest for each time stamp. This approach also subtracts the ensemble mean from the data
set, therefore, similarly telling that the first mode has a higher energy fraction than the
remaining modes, indicating that the pattern of the spray is similar from one cycle to the
next. Like the previous approach, the first mode has the highest energy fraction, which
indicates that the pattern of the spray is consistent from one cycle to the next. Comparing
the differences among these first two approaches it is noticed that each time stamp is
different, especially the first and second. There is a significant drop for the third mode of
time stamp one in Figure 2.4 compared to that of Figure 2.3. Time stamp one drops from
an energy fraction of 0.8293 at mode one to an energy fraction of 0.0031 at mode three. In

Figure 2.3 time stamp one drops from an energy fraction of 0.5279 at mode one to an
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energy fraction of 0.0322 at mode three. SVD with the correlation matrix approach shows
a similar trend as the eigenvalue problem, however, in magnitude the energy fractions are
much larger by almost double. The third approach has an identical trend to the eigenvalue
problem, therefore, also being a similar trend to the previously discussed approach. Figure

2.5 shows the energy fraction graph for the third approach that was assessed under this

research.
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Figure 2.5 — Energy Fraction for SVD with Economy-size Decomposition

Even though this third approach and the second approach both utilize the MATLAB SVD
function, the magnitudes are still double for the SVD with the correlation matrix approach.
With this third approach the data is not centered by the mean, normalized, or standardized
since the purpose of the SVD economy-size decomposition is to remove any extra rows or

columns of zeros from the diagonal matrix of singular values, S. With the removal of these
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zeros and columns, it can improve execution time and reduce storage requirements without
comprising the accuracy of the decomposition. With the economy-size decomposition, it
indicates that the magnitude in the energy fraction would not be present in the data like it
is in the second approach.

Regardless of the energy fraction for each mode, the sum of energy fractions for the first

20 modes gives the value of 1, which confirms all data has been accounted for.

Discussion

With all three approaches under this research, it is found that there is a small amount
of variability between each cycle and the first mode captures majority of the ensemble
behavior. Figure 2.6 below displays the first time stamp from the above energy fraction
graphs from the first 20 modes for each approach onto a single graph. With this visual, of
all three, the eigenvalue problem and SVD without the correlation matrix overlap each
other as they are identical. The study also observes the key differences of the SVD with
correlation matrix approach. The main difference is the magnitude. The energy fraction of
the first mode has a difference of 0.3014. What is unusual is the intersection between mode
one and two. The energy fraction is the same for all three approaches around the middle of
mode one and two, and then leads to the SVD with correlation matrix approach having a
lower energy fraction than the other two approaches. The difference at mode two is 0.072,
whereas the rest of the modes are close to double in magnitude, however, still following
the same trend. The difference with these modes is assumed to be due to the MATLAB

SVD function not requiring the use of a correlation matrix as other researchers and
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mathematicians have found that the correlation matrix is performed within the function and

the data does not need to be centered by the mean, normalized, or standardized.
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Figure 2.6 — Combined Energy Fraction Graph

Figure 2.6 also provides support on which approach should be used for the actual data
analysis portion of this research. Ultimately, any approach could be used to analyze the
variability amongst conditions, evaluate the quantitative differences in the spray patterns,
and intensity in the variations. It is clear that the SVD is more economical when it comes
to the number of lines within the code itself. The decision of which approach to use comes
down to the dimensions of matrix S, depending on the size, solving the eigenvalue problem
is often faster. This is caused by the SVD function still needing to compute the n x n matrix
S'S to obtain its eigenvectors V [5]. Therefore, for most applications in experimental or

numerical fluid dynamics (where n > m), solving the eigenvalue problem is the method of
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choice [5]. With the snapshot POD method, being the method of choice for this research
and having an end goal of solving an optimization problem that gives the best
representation of data, the economy-size SVD without the correlation matrix is chosen.
This approach can handle mega pixel images and is one of the most useful matrix
decompositions. It can also be used as a basis for principal component analysis for taking
high dimensional data and trying to understand it in terms of its dominant patterns or
correlations. When researching this approach, it was initially found in use by Dr. Brunton,
a Mechanical Engineering professor at the University of Washington. Dr. Brunton provides
a big picture overview of SVD and the use of an economy-size SVD in his videos. He
shares examples of physical systems of snapshots that evolve in time into a data matrix and
further shares that SVD is numerically robust and an efficient method of extracting patterns
from data.

Another focus when studying the math under this research was the differences
between A (lambda) and X (sigma). Dr. Brunton describes the S matrix as containing the
singular values ¥ (ordered by importance diagonally) and that X are the eigenvalues.
Sirovich who developed the snapshot POD describes the eigenvalues as being A. Another
researcher and professor, Weiss, also describes that the matrix S is the singular values of
matrix U and the eigenvalues are 2. The last individual that discusses £ and 4 in his thesis
is Luis G. Gutierrez Arsuaga who is another researcher that describes matrix S containing
the singular values of ¥ and A is X2. With analyzing the research of four others, allowed for
further interpretation of the differences between A and X. Each mention these symbols and
what they represent slightly differently, however, it concludes the same meaning across

each mention: A are the eigenvalues, which are X°.
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CHAPTER 3
Data Analysis and Interpretation

Cycle-to-cycle Variability

The behavior of the spray plays a role in how the cycle variability is controlled. To
identify coherent structures and cycle-to-cycle variability for extreme conditions in this
experimental matrix the POD modes are analyzed under seven different conditions. The
conditions are the injection pressure and chamber pressure ranging from 600 bar to 1500
bar and 1 bar to 20 bar, respectively. A quantitative analysis is performed to recognize
processes of cycle-to-cycle variability and forced variability induced by experimental
conditions.

Injection Pressures of 600 bar

The first set that has been analyzed are the conditions of injection pressure 600 bar
and chamber pressures of 1 bar and 20 bar. The first figure, Figure 3.1, displays the energy
fraction for each condition. In both conditions, mode 1 is where the spray pattern intensity
is the highest. 600 bar and 20 bar has an intensity of 23.5%, whereas 600 bar and 1 bar is
12.2%. 600 bar and 20 bar has a higher energy fraction for the first mode by 0.11, almost
by half. This difference for the first mode could be linked to the higher chamber pressure
of 20 bar rather than 1 bar. With increased chamber pressure, the spray area is expected to
increase. What stands out among these two conditions is mode 3 where the energy fractions
are nearly identical, which are then followed by lower energy fractions for the rest of the

modes.
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Figure 3.1 — Energy Fractions for Injection Pressures of 600 bar for Time Frame 30

Viewing the third mode of 600 bar and 1 bar, it has a slightly higher intensity present than
what are in the 600 bar and 20 bar condition. As was described in the previous chapter, the
input spray images are equal to the POD modes and the input images can be reconstructed
with a lower-order estimation. The first three modes provide the greatest possible three-
term approximation. Analyzing Figure 3.1 in conjunction with Figure 3.2, visually, it is
evident that mode 1 has the highest energy fraction. The presence of the white color for the
spray image shows the features that exist in the input image, those that are in black are the
features that do not exist in the input image. Comparing mode 1 to modes 3 and 6, mode 1
for both conditions displays a greater presence of white, indicating that this mode has more
features like the input image. Another visual realization is that the spatial droplet dispersion
is one of the main differences between these two conditions. For the 600 bar and 1 bar

condition, the same time frame as 600 bar and 20 bar (frame 30), penetrates past the frame
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of the image. The droplets of the spray are dispersed at a much farther range for 600 bar

and 1 bar, as is expected with the lower chamber pressure.
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Figure 3.2 — Modes of 600 bar & 1 bar and 20 bar for Time Frame 30
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With 600 bar and 20 bar, we see a small vortex has formed at the top of the spray area for
mode 1. Since this vortex is displayed in white, it is also a present in the input images. For
modes 3 and 6, there is a greater presence of black color and less features exhibited from
the input images.

Coefficients are generated by the projection of each mode onto each snapshot [2]. Figures
3.3 and 3.4 include the coefficients of mode 1 for 20 spray images for the conditions being
discussed, 600 bar and 1 bar and 600 bar and 20 bar. There is a fluctuation between positive
and negative coefficients across the 20 spray images. In condition 600 bar and 1 bar, there
are nine spray images that have negative coefficients, and the remaining are all positive

indicating that more features from the original image are present.
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Figure 3.3 — Coefficients of Mode 1 for Condition 600 bar & 1 bar

Figure 3.4, condition 600 bar and 20 bar, on the other hand, has eleven spray images with
negative coefficients. The more negative coefficients denotes that there are more features

that do not exist in the input image. It is difficult to tell which condition is more like the
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input image with only the energy fraction data and visuals of the modes. With the analysis
of the first mode’s coefficients for the spray images, it aids in discovering which condition
exhibits more features from the input image. The mode 1 coefficients for these two
conditions do not have a similar trend. With the first spray image, it is distinct that 600 bar
and 1 bar has a positive coefficient of 532, whereas the 600 bar and 20 bar first spray image
is a negative coefficient of 977, almost double of what 600 bar and 1 bar is, but in the

opposite direction.
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Figure 3.4 — Coefficients of Mode 1 for Condition 600 bar & 20 bar

The above analysis of the coefficients has only been performed for the conditions of 600
bar and 1 bar and 600 bar and 20 bar. The rest of the CCV analysis focuses on the energy
fractions and modes for the remaining five conditions.

Chamber Pressures of 1 bar
The three conditions that were analyzed next under Figure 3.5 are that of chamber pressure

1 bar and injection pressures of 600 bar, 900 bar, and 1500 bar. The 1500 bar and 1 bar
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condition has the highest energy fraction for the first mode of 21.8%, followed by 900 bar
and 1 bar with 16.9%, and 600 bar and 1 bar with 12.2%. The higher the injection pressure,

the higher the energy fraction these conditions have for the first mode.
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Figure 3.5 — Energy Fractions for Chamber Pressures of 1 bar for Time Frame 30

High injection pressure results with proficient fuel atomization and mixing, which created
a more homogeneous charge that mitigates the formation of particulates [19]. This is what
is noticed in the high injection pressure of 1500 bar. The range and width of the particulates
is larger than that of the two other conditions. In Figure 3.6, the difference in the
disbursement of particulates for 600 bar and 1 bar and 1500 bar and 1 bar is more extreme
towards the right of the image. 600 bar and 1 bar presents a thinner width of particulates at

the end of the right side of the frame than 1500 bar and 1 bar.
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Figure 3.6 — First Mode of 600 bar, 900 bar, and 1500 bar and 1 bar for Time Frame 30

Like the images of the modes in Figure 3.2, Figure 3.6 also displays the white and black
colors, indicating what features are present in the input images. Another observation that
is made in the above figure is spray-induced turbulence. The fuel flow in the injector
provides this spray turbulence, which helps the way the spray is distributed. High injection
pressures that have high velocities produce more turbulence, which in return gives off an
improved mixing between the fuel and air.

Analyzing Figures 3.5 and 3.6 together, the results indicate that the first mode is higher for
the highest injection pressure, indicating that the morphology of the spray is more
consistent and lower CCV is related with higher injection pressures. As the injection
pressure decreases, the energy of the first mode decreases as we can see in the 900 bar and

600 bar condition in Figure 3.5, which here indicates that the differences in the spray
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distribution from each cycle are starting to be much more complex and substantial, and
therefore, will necessitate higher modes to determine the CCV.
Injection Pressures of 1500 bar

The last two conditions that were analyzed are 1500 bar and 1 bar and 1500 bar and 20 bar.
From the previous analysis comparing 600 bar, 900 bar, and 1500 bar and 1 bar conditions,
it is known that the high injection pressure is expected to have a higher energy fraction.
Unlike the comparison between the two 600 bar conditions, here the two 1500 bar
conditions have the same energy fraction for mode 1 of 21.8%. The first mode shows the
most statistically significant spatial differences between the cycles, therefore the spatial
differences are the same for this mode for both conditions. However, 1500 bar and 1 bar
drops significantly for mode 2 to 8.9%, whereas, 1500 bar and 20 bar had a slight decrease
to 16.2%. The differences in energy fractions for mode 2 is likely linked to the difference
in chamber pressure. With the higher chamber pressure of 20 bar, it is revealed that any
aerodynamic forces that are acting on the spray droplets decrease the spatial differences.
With the lower chamber pressure of 1 bar, there is less prevention of droplet movement
and therefore, an increased variability between modes 1 and 2. By mode 3, the energy

fractions become more consistent between the two conditions in a decreasing pattern.
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Figure 3.7 — Energy Fractions for Injection Pressures of 1500 bar for Time Frame 30

Interpreting the results in Figure 3.7 and 3.8 together, mode 1 shows the highest intensity.
There are a lot of white areas present in both modes for Figure 3.8, again indicating features
that are present in the input images. With the low chamber pressure of 1 bar, the spray
penetrates past the frame of the image, excluding the tip of the spray for the analysis. The
primary break-up and secondary break-up of the chamber pressure of 1 bar is still present
for analysis. There are some similarities that are seen between both conditions in the first
and second break-up periods. There is a pattern between black and white regions at the top
and bottom portions of the spray. Some features along this path are present in the input
images and some are not. What is most notable between the first modes of these conditions
is the two black areas at the top and bottom of condition 1500 bar and 1 bar and not present
in the 1500 bar and 20 bar condition. These are circled in red on the figure. The lower

chamber pressure played a role on how quickly the spray was able to penetrate, leaving the
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frame of the camera. The higher chamber pressure allowed for the spray droplets to

decrease in penetration and remain in the camera’s frame.

Figure 3.8 — First Mode of 1500 bar & 1 bar and 20

Mode 1 vs. Time for Injection Pressures of 600 bar
For each of the three analyzed cases above, the energy fractions of the first mode against
time were analyzed. Figure 3.9 focuses on the first case of comparing conditions 600 bar
and 1 bar and 600 bar and 20 bar. At the SOI up until around 0.072ms, both conditions
follow the same trend. 600 bar and 1 bar begins with a slightly higher intensity at the SOI
0f 55.9% and 600 bar and 20 bar is 52.8%. This is followed by a quick decrease and then
increase up to 70% for both conditions at 0.072ms. After 0.072ms, there is a significant
decrease in the energy fraction for 600 bar and 20 bar, the decrease for 600 bar and 1 bar
is more gradual. Since the chamber pressure is higher for 600 bar and 20 bar, this played a
role in the development of the energy fraction for the first mode over time. The results here
indicate that the image intensity from all the input images that are being captured are the
highest 0.072ms ASOI and that intensity decreases over time. The energy fraction between

the two conditions meets again at 0.159ms where now the 600 bar and 20 bar condition has
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a higher intensity at 31.5% and 600 bar and 1 bar is at 29.6%. The higher chamber pressure
of 20 reveals that a steep decline in intensity was needed prior to a stabilization that
occurred after 0.159ms. As was previously discussed in the analysis under section 3.1.1, a
higher chamber pressure relates to increased aerodynamic forces that act on the particulates
of the spray, which in turn intensify the interaction between the air and liquid. Over time,

the particulates break down into smaller particulates, and this is where we see less intensity.
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Figure 3.9 — Mode 1 vs. Time for Injection Pressure of 600 bar

Mode 1 vs. Time for Chamber Pressures of 1 bar
Figure 3.10 analyzes all three chamber pressures of 1 bar that were analyzed in section
3.1.2. Unlike the previous analysis for Figure 3.9, this case looks at three different injection
pressures, all with a low chamber pressure of 1 bar. The higher two injection pressures of
900 bar and 1500 bar have a higher intensity at the SOI, whereas the 600 bar intensity at
the SOI is not the highest throughout the time period. The 1500 bar injection pressure has

the highest energy fraction of 91% at the SOI, followed by 900 bar with an energy fraction
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of 85.2%, and lastly 600 bar with the lowest energy fraction of 55.9%. The energy fraction

for 600 bar and 1 bar is not at its highest point until 0.043ms ASOI, where it is at 70%.
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Figure 3.10 — Mode 1 vs. Time for Chamber Pressures of 1 bar

All three of these conditions have a similar trend over the time period shown. A decrease
is seen right ASOI followed with an increase up to around 0.058ms, and then another
decrease taking place to 0.174ms. After the last decrease in intensities, there is a stable
trend until the end of time.
Mode 1 vs. Time for Injection Pressures of 1500 bar

The last case where the energy fractions of the first mode are analyzed against time is for
the two conditions with the highest injection pressure of 1500 bar, 1500 bar and 1 bar and
1500 bar and 20 bar. Like the previous case, there is a decrease followed by a slight
increase, and then another decrease until more stability is reached around 0.116ms. In
section 3.1.4, the results indicated a higher energy fraction for 600 bar and 1 bar at the SOI.

Here the same trend is seen for the lower chamber pressure, where 1500 bar and 1 bar has
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a higher energy fraction that 1500 bar and 20 bar at the SOI. 1500 bar and 1 bar is at 91%,
whereas 1500 bar and 20 bar is at 87%. Prior to the increase, both conditions have a drop

in intensity by 0.029ms and then increase by 0.043ms ASOL.
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Figure 3.11 - Mode 1 vs. Time for Injection Pressure of 1500 bar

After 0.043ms is when the next decrease occurs followed by stabilization after the

overlap between the two conditions at 0.116ms.

Discussion

The cycle-to-cycle variability analysis provided a depth of insight into the use of
POD. Seven different conditions were able to be analyzed and interpreted by comparing
energy fractions, modes, coefficients, and the coefficients of the first mode over time. In
the first section, 3.1.1, where the two conditions of injection pressure 600 bar were
analyzed, the results provided a conclusion that 600 bar and 20 bar has a higher energy
fraction for the first mode by 0.11, almost by half. This difference for the first mode is

suspected to be linked to the higher chamber pressure of 20 bar rather than 1 bar. With
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increased chamber pressure, the spray area is expected to increase. The comparison of
modes and coefficients between these two conditions further confirmed that an increased
chamber pressure would provide a higher intensity. When three different injection
pressures were looked at for the same chamber pressure of 1, it was identified that the
higher the injection pressure, the higher the energy fraction these conditions had for the
first mode. This scenario also showed the range and width of the particulates is larger for
the higher injection pressure of 1500 bar than that of the two other conditions (600 bar and
900 bar). Another observation that was made for this same case is spray-induced
turbulence. The fuel flow in the injector provides this spray turbulence, which helps the
way the spray is distributed. High injection pressures that have high velocities produce
more turbulence, which was seen in the 1500 bar condition. This then gives off an improved
mixing between the fuel and air and the particulates are seen to cover more of the camera’s
frame than in the other two conditions with a lower injection pressure. Under the last case,
the two highest injection pressures are interpreted against each other, with each having a
different chamber pressure. The effects of the higher chamber pressure of 20 bar exposed
that any aerodynamic forces that are acting on the spray droplets decrease the spatial
differences. With the lower chamber pressure of 1 bar, there is less prevention of droplet
movement and therefore, increased the variability between modes 1 and 2.

In sections 3.1.4 to 3.1.6 the results indicate that the higher the injection pressure,
the higher the intensity is at the SOI, which confirms what has been discussed in the first
three sections under 3.1. As time progresses the intensity decreases and then stabilizes. The
higher chamber pressure leads to a more drastic decrease ASOI. The lower chamber

pressure has a higher energy fraction at the SOI.
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CHAPTER 4
Conclusion and Recommendations for Future Work

Conclusions

The objective of this research was to evaluate different approaches to snapshot POD
and find ways to compare them quantitatively. These approaches are the eigenvalue
problem, SVD with a correlation matrix, and SVD using the economy size decomposition.
Variability is studied between repetitions of the same condition i.e., cycle-to-cycle
variability, and among different operating conditions i.e., injection pressure and chamber
pressure. This research began with analyzing three different methods to approach snapshot
POD. The analysis consisted of comparing the energy fractions between each method. The
energy fractions of the eigenvalue method and the SVD econ method returned the same
results for the energy fraction, whereas SVD with the use of a correlation matrix differed.
All three methods subtracted the ensemble mean from the data matrix, which to this
research meant that the first mode of the data would be interpreted as the structure that has
the higher variance. Therefore, the first mode is a representation of the most statistically
significant spatial differences between the cycles. Any method could have been chosen to
move forward with analyzing the cycle-to-cycle variability amongst conditions.
Ultimately, the SVD econ method was selected as it can handle mega pixel images and is
one of the most useful matrix decompositions. It can also be used as a basis for principal
component analysis for taking high dimensional data and trying to understand it in terms
of its dominant patterns or correlations. The SVD econ method was able to provide results
on cycle-to-cycle variability amongst seven selected conditions. Key conclusions,

outcomes, and contributions of this research include the following:
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e The eigenvalue problem, SVD with the use of a correlation matrix, or SVD econ
could all be used to analyze the variability amongst conditions and evaluate the
quantitative differences in the spray patterns, and intensity in the variations,
however, it is clear that the SVD is more economical when it comes to the number
of lines within the code itself.

e With increased chamber pressure, the spray area is expected to increase. The
comparison of modes and coefficients between conditions of different chamber
pressure indicated that an increased chamber pressure would provide a higher
intensity.

e When analyzing conditions of high injection pressures such as 1500, it was
observed that high injection pressures that have high velocities produce more
turbulence giving off an improved mixing between the fuel and air. This results in
the particulates of the spray being seen to cover more of the camera’s frame than in
the other two conditions with a lower injection pressure, leading to higher energy
fractions.

e The results generated for the energy fractions against time, exhibited that the higher
the injection pressure, the higher the intensity is at the SOI. As time progresses the
intensity decreases and then stabilizes. The higher chamber pressure leads to a more
drastic decrease ASOI. The lower chamber pressure has a higher energy fraction at
the SOI.

The work shared in this thesis provides expansions and intuitions on valuable
impacts to high-pressure gasoline sprays for internal combustion engines, specifically that

of particulate formation across cycle-to-cycle variability. Even though this work focused
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on the data analysis technique of POD, other methods could be used and this work could

be expanded upon to analyze additional aspects of the spray and injector.

Recommendations for Future Work

The work described within this thesis analyzed three different approaches to
snapshot POD, however, only one was selected to move forward with for data analysis and
interpretation. Future work could consider including all three approaches into the data
analysis for further insights into any differences as well as interpreting space-time POD.
Also, the ensemble mean was subtracted from the data matrix. A comparison to the
ensemble mean not being subtracted would help to provide awareness of the useful features
that are given from each effect and a description for the average spray structure for the first
mode.

The experiment that was performed for the analysis portion of this work included
the use of three different injectors. The injector that was focused on for this analysis is
Injector 1, which is a single hole centered injector. Injectors 2 and 3 are both double hole
injectors and have different hole sizes than that of Injector 1. Performing POD on all three
injector types would provide an additional contribution to this research. Looking into other
variability like internal nozzle geometry would allow for more discussion and conclusions.

Lastly, there are several features of the spray images that were not focused on such
as the spray contour, axis, diameter, penetration, droplet size and velocity, spatial
distribution, and potential cavitation effects. Additional features and spray characteristics
could be added to this list. Ultimately, inspecting more features of the spray for the different

conditions would give meaningful contributions to this research.
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