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A B S T R A C T

A significant portion of fuel energy in internal combustion engines is lost as waste heat, yet limited efforts have 
been made to recover it effectively. This research explores the utilization of exhaust heat from a diesel engine to 
produce H2-rich syngas through the methanol-steam reforming (MSR) process. The engine operates at varying 
loads (15, 30, 45, and 60 Nm) while maintaining a constant speed of 2000 rpm. Exhaust heat is redirected to an 
MSR reactor, where the methanol-to-water (MtW) molar ratio is adjusted (0.5, 1, 1.5, and 2). Results reveal that 
the highest hydrogen content in syngas (70.3 %) is achieved at an engine load of 30 Nm and an MtW ratio of 1. 
To further optimize hydrogen production, three novel algorithms (DSC-MOPSO, MOSPO, and MOGWO) are 
applied to key operation parameters. Optimization increases hydrogen content to 72.5 % with DSC-MOPSO, 72.4 
% with MOSPO, and 72.1 % with MOGWO, with error margins below 0.7 %.

Nomenclature

Abbreviations
CI Compression-Ignition
ICEs Internal Combustion Engines
MSR Methanol-Steam Reforming
MtW Methanol-to-Water
EGT Exhaust Gas Temperature
CFD Computational Fluid Dynamics
IPCC Intergovernmental Panel on Climate Change
ANOVA Analysis of Variance
RT Reaction Temperature
RP Reactor Pressure
DSC Dynamic Switched Crowding
PSO Particle Swarm Optimization
GWO Grey Wolf Optimizer
SPO Stochastic Paint Optimizer
RSM Response Surface Methodology
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MOSPO Multi-Objective Stochastic Paint Optimizer
MOGWO Multi-Objective Grey Wolf Optimizer
DSC-MOPSO Dynamic Switched Crowding-Based Multi-Objective Particle Swarm 

Optimization
Symbols
Nm Newton-Meter
rpm Rotations Per Minute
H2 Hydrogen
CO Carbon Monoxide
CO2 Carbon Dioxide
CuGa2O4 Copper Gallium Oxide
Cu/ZnO/ 

Al2O3

Copper–Zinc Oxide-Aluminum Oxide

Al2O3 Aluminum Oxide
H2O Water
MeOH Methanol
K Kelvin
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(continued )
◦C Centigrade
Ni Nickel
CH4 Methane
atm Atmospheric Pressure
kW Kilowatt
cm3 Cubic Centimeter
mm Millimeter
Ni/Cr Nickel–Chromium
B25 Waste Biodiesel Fuel of 25 % and Diesel fuel of %75 (v/v)
D100 Conventional Diesel Fuel
B25 + 15H2 B25 + 15 lpm hydrogen
B25 + 30H2 B25 + 30 lpm hydrogen
lpm Litre Per Minute
kg Kilogram
m3 Cubic Meter
MJ Mega Joule
cSt Centistokes
CH3OH Methanol

1. Introduction

The efficiency of transportation networks plays a crucial role in a 
nation’s economic development and competitiveness on a global scale 
[1]. Economic growth depends on increased trade, efficient distribution 
of goods and services, a thriving tourism sector, and workforce mobi
lity—all of which require a well-developed transportation infrastruc
ture. However, the transportation sector is also one of the largest energy 
consumers worldwide, accounting for 20–30 % of total energy con
sumption, depending on the country. In the United States, for example, 
transportation contributed approximately 27 % of total energy con
sumption in 2022 [2]. Energy consumption in transportation is a major 
concern for sustainable energy transitions, as it is primarily met through 
fossil fuel use in internal combustion engines (ICEs). Emissions from 
ICEs contribute to air pollution and climate change [3–5]. In response, 
some governments introduced plans to ban diesel vehicles in major 
cities, demonstrating a commitment to reducing fossil fuel reliance and 
promoting alternative energy sources [6,7]. Despite these efforts, the 
accelerating pace of climate change has revealed that current targets, 
including those set by the Intergovernmental Panel on Climate Change, 
are insufficient. As a result, researchers have prioritized the develop
ment of alternative energy sources and clean fuel technologies.

In the past decade, hydrogen-based combustion has emerged as one 
of the most promising methods to enhance engine performance while 
reducing emissions [8–11]. Several key advantages make hydrogen an 
attractive alternative fuel: Zero emissions – Hydrogen combustion pro
duces only water vapor, eliminating harmful pollutants [8]. Higher en
ergy efficiency – Its superior calorific value enhances energy efficiency 
[12]. Improved engine performance – Hydrogen’s low ignition energy and 
high flame speed contribute to more efficient combustion [13]. How
ever, hydrogen storage presents a significant challenge [14]. Hydrogen 
can be stored as a compressed gas or in liquid form, but both methods 
have their own limitations related to high costs, safety concerns, and 
technical feasibility. Furthermore, integrating hydrogen into existing 
fuel infrastructure requires substantial investments and technological 
innovations. To address hydrogen storage challenges, onboard hydrogen 
production in ICEs has emerged as a promising alternative. One poten
tial solution is hydrogen production from methanol and water. Histor
ically, industrial methanol production relied on fossil fuels, raising 
concerns about greenhouse gas emissions. However, recent advance
ments in renewable energy sources and carbon capture technologies 
have made sustainable methanol production increasingly viable 
[15–17]. In fact, studies predict that renewable methanol could reach 
price parity with fossil-derived methanol by 2030 [17].

Methanol, often referred to as a hydrogen carrier, enables efficient 
storage and on-demand reforming, making it an attractive option for 
onboard hydrogen production [18]. Among various reforming methods 

methanol steam reforming (MSR) is the most suitable option for ICE 
applications due to its high hydrogen yield, and optimal H2/CO ratio 
[19,20]. Unlike ethanol or methane reforming, which require temper
atures above 400–500 ◦C, MSR operates efficiently at lower tempera
tures (200–300 ◦C), making it more practical for use with ICEs [21,22].

In ICEs, a large portion of the fuel energy–approximately 30-40 %–is 
lost as waste heat through exhaust gases. The exact percentage varies 
depending on factors such as engine type, design, age, maintenance 
status, fuel type, ambient temperature, and load conditions [19,23–25]. 
Therefore, the use of waste heat not only contributes to fuel savings by 
reducing the need for additional energy but also contributes to a more 
sustainable hydrogen production. The recent studies in the literature on 
hydrogen production and analysis by MSR are given below.

In a study by Bayramoğlu [26], the effects of exhaust waste heat on 
hydrogen production efficiency were investigated numerically. Using 
Computational Fluid Dynamics (CFD) methods, the study analyzed heat 
transfer, hydrogen, CO, and CO2 formation in the MSR reactor were 
analyzed by for each load condition. In the study, the amounts of 
hydrogen, CO, and CO2 formation in the MSR reactor under different 
load conditions. The results indicated that hydrogen production in
creases with increasing temperature and catalyst usage, with the 
maximum hydrogen production mass flow rate reaching approximately 
7020 g/h at 25 % engine load condition. Zhao et al. [27] developed a 
comprehensive model, including a kinetic model, to simulate the con
version and utilization of solar energy in photothermal reactors. 
Furthermore, they implemented an integrated evaluation system using 
Taguchi design, ANOVA, and grey relational analysis methods to opti
mize methanol conversion, hydrogen yield, and CO selectivity. The 
optimized parameters resulted in a methanol conversion rate of 99.99 
%, a hydrogen yield of 3.196 %, and the lowest CO selectivity of 
1.71x10−3. In another work, Chen et al. [28] explored the application of 
CuGa2O4 spinel catalyst for low-temperature methanol vapor reforming. 
Their findings revealed that the catalyst surface consists of highly 
porous, interconnected particle chains, contributing to an impressive gas 
selectivity of 98 % for hydrogen and 0.0 % for CO. Additionally, the 
catalyst demonstrated exceptional durability, showing no deactivation 
over 50 h.

Huang et al. [29] investigated the effect of various Al2O3 precursors 
and the catalytic performances of Cu/ZnO/Al2O3 catalysts in MSR. Their 
findings showed that the precursor selection significantly affected the 
precipitation process and, consequently, catalytic efficiency. The study 
reported a methanol conversion rate of 94.8 % and an H2 time-space 
yield of 97.5 mol kg−1 h−1 at an H2O/MeOH mole ratio of 1.2 and a 
temperature of 493 K. Achomo et al. [30] compared the catalytic per
formance of Cu/ZnO/Al2O3 catalysts synthesized by three different 
methods (coprecipitation, hydrothermal, and sol-gel). The study 
analyzed the physicochemical, morphological, and thermal properties of 
these catalysts. The highest methanol conversion (91.5 %) and H2 yield 
(90.9 %) at 280 ◦C were achieved using the coprecipitation method, 
with a low CO selectivity of 0.61 %. On the other hand, the catalysts 
synthesized via hydrothermal and sol-gel methods showed significantly 
lower methanol conversion (39.2 % and 73.5 %) and H2 yields (39.0 % 
and 72.7 %), with CO selectivity values of 1.46 % and 0.91 %, respec
tively. In another study, Alfuhaid et al. [31] explored the use of red mud, 
an industrial waste material, as a cost-effective and efficient catalyst for 
steam conversion of diesel fuel into hydrogen. Nickel was impregnated 
into the red mud at different concentrations, significantly enhancing the 
water-gas conversion process and achieving three times higher 
hydrogen selectivity compared to pure red mud. Their results showed 
that a 20 % Ni-loaded catalyst produced hydrogen with high selectivity 
(up to 75 %), while maintaining very low selectivity for CO2, CH4, and 
CO. Additionally, the catalyst exhibited stable performance over 20 h. 
Finaly, Ağbulut et al. [32] designed a thermodynamic equilibrium 
reactor to analyze the impact of reaction temperature (RT: 100–500 ◦C), 
reactor pressure (RP: 1–7 atm), and methanol-to-water ratio (MtW: 0.25, 
0.5, 1, 2 and 4) on synthesis gas composition. The authors employed 
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Pareto-based multi-objective evolutionary algorithms (MOEAs) 
including Improved Multi-Objective Manta-Ray Foraging Optimization 
(IMOMRFO), Multimodal Multi-Objective Differential Evolution with 
Improved Crowding Distance (MMODE_ICD), and Multi-Objective Slime 
Mould Algorithm (MOSMA). Through optimization, the highest 
hydrogen content obtained was 67.90 %, which could be increased by 
7.22 % with MMODE_ICD.

The literature review highlights that a substantial portion of the 
energy in ICEs is lost as waste heat, particularly through the exhaust 
manifold. However, research specifically focusing on harnessing this 
waste heat for hydrogen production in engines remains limited.

In this framework, the present research aims to produce hydrogen- 
rich synthesis gas (syngas) with high energy density by leveraging 
waste heat from ICEs. As a key innovation, this study focuses on maxi
mizing the hydrogen content in syngas by optimizing operational pa
rameters using DSC-MOPSO, MOSPO, and MOGWO algorithms.

This objective is achieved through a three-stage approach: 

1. Engine Testing: The test engine is operated at different load con
ditions (15, 30, 45, and 60 Nm) at a constant speed of 2000 rpm. Four 
different fuel types are tested, and the exhaust gas temperature under 
each operational condition is recorded.

2. MSR Unit Design: Using the recorded exhaust gas temperature data, 
an MSR unit is designed in the Aspen Plus environment. Various 
methanol-water molar ratios (0.5, 1, 1.5, and 2) are considered, and 
the synthesis gas composition (H2, CO2, CO, MeOH, and H2O) is 
determined.

3. Multi-Objective Optimization: Finally, efforts are made to maxi
mize the hydrogen content in the produced synthesis gas (syngas) 
using recently introduced state-of-the-art multi-objective optimiza
tion algorithms including Dynamic Switched Crowding-based Multi- 
Objective Particle Swarm Optimization (DSC-MOPSO) [33], 
Multi-Objective Stochastic Paint Optimizer (MOSPO) [34], and 
Multi-Objective Grey Wolf Optimizer (MOGWO) [35].

2. Methodology

2.1. Waste heat source and experimental data collection

In this work, hydrogen-rich syngas is produced via the steam 
reforming method, which uses methanol and water as hydrogen sources. 
This system requires an external heat source to initiate hydrogen pro
duction. The present work intends to harness waste heat from a three- 
cylinder, indirect-ignition diesel engine as the heat source. The key 
technical specifications of this engine are given in Table 1.

Engine tests were conducted under an ambient temperature of 23 ◦C 
(±2 ◦C). In parallel, test fuels were prepared and stored in the Fuel 
Preparation Laboratory under the same conditions. During testing, the 
crankshaft was operated at a constant speed of 2000 rpm. A 22-kW 
dynamometer was employed to vary the engine load from 15 to 60 
Nm while maintaining a constant speed. To ensure repeatability and 
measurement reliability, the engine oil temperature was allowed to 
reach 50 ◦C before collecting experimental data for each fuel. Engine 
speed and torque values were recorded magnetically using a Kistler 

Table 1 
Technical specification of heat source.

Model Lombardini LDW 1003

Total cylinder volume 1028 cm3

Maximum power 19.5 kW
Maximum speed 3600 rpm
Maximum torque @2000 rpm 67 Nm

Fig. 1. Experimental rig of the test engine.

Table 2 
Sensitivity and ranges of the instruments used in the experiments.

Instrument Range Sensitivity

Thermocouple 0–1200 ◦C 1 ◦C
Torque meter 0-100 Nm 0.05 Nm
Fuel flow rate 0–100 mL 1 mL
Hydrogen flow rate 0-250 lpm 0.1 lpm
Engine speed 0–5000 rpm 1 rpm
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4550A-brand sensor with an accuracy of 0.05 Nm and 1 rpm, directly 
from the crankshaft. Exhaust Gas Temperature (EGT) values were 
measured approximately 500 mm from the exhaust manifold through a 
Ni/Cr-coated K-type thermocouple, which has a measurement range of 
0–1000 ◦C with an accuracy of 1 ◦C. Additionally, hydrogen flow rates 
were recorded using a SUTO S418 thermal mass flowmeter, with an 
accuracy of 1.5 %, based on the DIN1343 standard. The experimental rig 
setup is illustrated in Fig. 1, and details of the experimental equipment 
used in this study are given in Table 2.

In this study, the engine was operated using various fuel blends. The 
first fuel was 100 % conventional diesel (D100), supplied by a com
mercial company. The second fuel blend, B25, consisted of 75 % diesel 
fuel and 25 % waste oil biodiesel (by volume). Additionally, hydrogen 
gas at flow rates of 15 and 30 lpm was mixed with fresh air when the 
engine was fueled with B25. The properties of these fuels are summa
rized in Table 3.

2.2. Design of hydrogen production unit

This paper focuses on producing hydrogen-rich gas using the MSR 
process, based on the Gibbs energy minimization method. The thermo
dynamic system is modeled in Aspen Hysys under chemical equilibrium 
conditions, utilizing the Peng-Robinson equation of state to calculate the 
physicochemical properties of the reactants under varying operation 
conditions. In this study, methanol and water are used as liquid-phase 
reactants and hydrogen carriers, both starting at initial conditions of 
25 ◦C and 1 atm. Methanol offers significant advantages as an alcohol for 
systems utilizing waste heat. For instance, its reforming temperature is 
relatively low compared to natural gas, biogas, ethanol, and ammonia 
[32,36]. Moreover, its storage is easy at atmospheric conditions [37,38].

The reactants are mixed using a two-way inlet and single-way outlet 
mixer. The resulting mixture was transferred to a heat exchanger using a 
pump with an adiabatic efficiency of 75 %. At this stage, the temperature 
of the mixture is raised to 100 ◦C, converting it completely from liquid to 
vapor.

Subsequently, the methanol-water stream is directed into an equi
librium reactor via a compressor with an isentropic efficiency of 75 %. 
The reactor, modeled in a vertical cylindrical geometry with a height of 
1 m and a diameter of 0.5 m (≈0.2 m3), operates under chemical equi
librium. The primary components within the reactor include hydrogen 
(H2), carbon monoxide (CO), carbon dioxide (CO2), water (H2O), and 
methanol (MeOH), as determined in the simulation. The MSR unit 
modeled in this study is illustrated in Fig. 2.

During the analysis of the waste-heated MSR unit designed in this 
work, the following assumptions were made to achieve the results: 

⁃ Steady-State and Equilibrium Conditions: The waste-heated MSR 
unit operates at steady-state and thermodynamic equilibrium con
ditions. All components in the streams exhibit Peng-Robinson state 
characteristics.

⁃ Constant Input Conditions: Methanol and water have constant 
temperature and pressure values when entering the system, with any 
impurities in the reactants neglected.

⁃ No Pre-Reaction: The hydrogen carriers do not react with each 
other before entering the equilibrium reactor.

⁃ Uniform Conditions: Temperature and pressure distribution are 
uniform in all components of the waste-heated MSR unit, and the 
modeled system is perfectly adiabatic with no heat loss to the 
environment.

2.3. Multi-objective optimization algorithms

This study employed recently developed robust Pareto-based multi- 
objective optimization techniques to maximize the hydrogen content in 
the produced syngas. To achieve this, the dynamic switched crowding- 
based multi-objective particle swarm optimization (DSC-MOPSO), 
multi-objective stochastic paint optimizer (MOSPO), and multi- 
objective grey wolf optimizer (MOGWO) are employed. The following 
subsections provide a brief introduction to the multi-objective optimi
zation algorithms used in this study.

Table 3 
Test fuel properties.

Test fuel Density, kg/ 
m3 at 15 ◦C

Calorific 
value, MJ/kg

Cetane 
number

Viscosity, cSt 
@ 40 ◦C

D100 835 42.3 54 2.84
B25 850 41.6 50 3.12
Hydrogen 

gas
0.08 120.0 – –

B25 + 15 
lpm H2

– 44.0c – –

B25 + 30 
lpm H2

– 46.7c – –

Fig. 2. Waste heated-methanol steam reforming unit.
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2.3.1. Dynamic switched crowding-based multi-objective particle swarm 
optimization (DSC-MOPSO)

DSC-MOPSO [33] is a recently developed state-of-the-art evolu
tionary optimization technique specifically designed to handle 
multi-objective optimization problems, where multiple conflicting ob
jectives must be optimized simultaneously. The algorithm effectively 
balances these objectives, identifying a set of non-dominated solutions 
that provide an optimal trade-off between competing criteria. The 
optimization framework of DSC-MOPSO consists of three key stages. 
These are Pareto-based archiving, dynamic switched crowding-based 
archive handling [39], and particle swarm optimization (PSO)-based 
metaheuristic search process [40]. For detailed information on the 
DSC-MOPSO algorithm, please refer to the original study by Bakır et al. 
[33].

2.3.2. Multi-objective stochastic paint optimizer (MOSPO)
MOSPO [34] is an innovative meta-heuristic optimization algorithm 

inspired by color theory and painting techniques. It is an efficient 
variant of the single-objective stochastic paint optimizer (SPO) [41], 
adapted to handle multi-objective optimization problems. MOSPO in
corporates several enhancements including archive, leader selection, 
and grid mechanism. The algorithm stores non-dominated solutions 
found during the optimization process with a Pareto-based archiving 
mechanism. The selection of leaders from the archive helps to guide the 
search towards promising regions of the solution space. The grid 
mechanism plays an important role in effectively managing the archive 
and increasing exploration. By incorporating these additional features, 
MOSPO can effectively handle complex multi-objective optimization 
problems and generate a diverse set of high-quality solutions. Further 
information about the MOSPO algorithm can be found in the original 
study by Khodadadi et al. [34].

2.3.3. Multi-objective grey wolf optimizer (MOGWO)
MOGWO [35] is a well-known multi-objective optimization tech

nique derived from the single-objective grey wolf optimizer (GWO) 
[42]. To adapt GWO to handle multiple conflicting objectives, MOGWO 
incorporates two key components: Pareto-based archiving and leader 
selection strategy. MOGWO simulates the social hierarchy of grey 
wolves, with alpha, beta, and delta wolves leading the pack in the 
metaheuristic search process. The social hierarchy and hunting mecha
nisms (encircling prey, hunting, and attacking) ensure a good balance 

between global exploration and local exploitation. MOGWO has gained 
significant attention from the research community since its introduction. 
Its strong performance and relatively simple implementation have made 
it a popular choice for solving a wide range of multi-objective optimi
zation problems. More information on the optimization process of 
MOGWO can be found in the original study by Mirjalili et al. [35].

2.4. Modelling of multi-objective optimization process

The present work aims to investigate the hydrogen production po
tential of an MSR reactor. Accordingly, in the experiments, three- 
cylinder, water-cooled, and indirect ignition diesel engine is run at 
varying engine loads and constant engine speeds. The system designed 
used the waste heat released to the atmosphere from the test engine. 
Then, the results are optimized by using DSC-MOPSO, MOSPO, and 
MOGWO algorithms, aiming to maximize the hydrogen composition at 
the outlet of the reactor. In the study, hydrogen (fH2 ), carbon dioxide 
(fCO2 ), water (fH2O), carbon monoxide (fCO), and methanol (fMeOH) 
amounts in syngas composition were selected as objective functions, and 
the best settings of input parameters (EGT and MtW) to optimize these 
objectives were investigated. The objective functions are described in 
Equation (1). 

Objective functions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

max OF1 = fH2

min OF2 = fCO2

min OF3 = fH2O
min OF4 = fCO

min OF5 = fMeOH

(1) 

As can be seen in Equation (1), multi-objective optimization aims to 
maximize the amount of hydrogen while minimizing the amount of 
other gases. To find the Pareto-optimal solution set that can well balance 
five objectives, multi-objective optimization was performed with DSC- 
MOPSO, MOSPO and MOGWO algorithms. The mathematical models 
of the objective functions are derived from response surface methodol
ogy (RSM) analysis [43–45] using the data shown in Fig. 3. Accordingly, 
a regression model between optimization objectives and input param
eters was fitted and presented in Equations (2)–(6). 

fH2 = 0.738 + 0.000146 × EGT − 0.0291 × MtW − 0.000001 × EGT2

− 0.0223 × MtW2 + 0.000313 × EGT × MtW
(2) 

Fig. 3. Visual representation of measured data.
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fCO2 = 0.4033 − 0.00038 × EGT − 0.1403 × MtW + 0.01644 × MtW2

+ 0.000094 × EGT × MtW
(3) 

fH2O = 0.07726 + 0.000169 × EGT − 0.11012 × MtW + 0.000001

× EGT2 + 0.03936 × MtW2 − 0.000163 × EGT × MtW (4) 

fCO = − 0.236 + 0.000643 × EGT + 0.1959 × MtW − 0.000001 × EGT2

− 0.0358 × MtW2 + 0.000015 × EGT × MtW
(5) 

fMeOH = 0.0174 − 0.000577 × EGT + 0.0836 × MtW + 0.000001 × EGT2

+ 0.0023 × MtW2 − 0.000259 × EGT × MtW
(6) 

The objective functions described in Equation (1) should be opti
mized subject to various equality and inequality constraints. The sum of 
the amounts of the syngas composition components should be equal to 1 
mol. This represents the equality constraint of the problem and can be 
written as in Equation (7). The limits of the decision variables given in 
Equation (8) represent the inequality constraint of the problem. 

fH2 + fCO2 + fH2O + fCO + fMeOH = 1 (7) 

Decision variables =

{
131 ≤ EGT ≤ 410
0.5 ≤ MtW ≤ 2.00 (8) 

The settings followed in the experimental studies regarding multi- 
objective optimization are as follows: the maximum number of itera
tions is 100, the population and maximum archive size are equal and its 
value is 200. Fig. 4 shows the flowchart of a multi-objective optimization 

study with DSC-MOPSO, MOSPO, and MOGWO algorithms. The opti
mization steps in the figure are explained in detail below: 

Step 1-Poblem Description: The first step includes defining the math
ematical model of the optimization problem. The objective functions 
of the hydrogen content maximization problem are defined in 
Equations (1)–(6), and the equality and inequality constraints of the 
problem are given in Equations (7) and (8).
Step 2-Initialization: In this step, population (P) and archive (A) 
vectors are created based on the defaults of the optimization prob
lem. The objective function values of the solution candidates in the P- 
population and the non-dominated solutions in the A-archive are 
stored in the OFP and OFA vectors, respectively.
Step 3-Solving Pareto-Front: The third step covers the crowding 
distance-based Pareto archiving and metaheuristic search process to 
obtain Pareto-optimal solution sets. In this direction, archive update, 
crowding distance-based ranking, archive handling and meta
heuristic search with exploration and exploitation operators are 
conducted for DSC-MOPSO, MOSPO, and MOGWO algorithms. The 
operations of Step 3 are continued until the stopping criterion is met.
Step 4-Archive of Non-Dominated Solutions: In the last step of the 
optimization process, the non-dominated solution vectors in the 
decision and objective spaces are archived in PS and PF vectors, 
respectively. In the hydrogen content maximization problem, the 
optimal values of the decision variables (EGT and MtW) are selected 
from the PS vector and the corresponding objective function values 
(fH2 , fco2 , fH2O, fCO, fMeOH) are selected from the PF vector.

3. Result and discussion

This section consists of three main parts. First, the diesel engine’s 

Fig. 4. Flowchart of multi-objective optimization process with Pareto-based algorithms.
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exhaust gas temperature (EGT) data for different engine loads and fuel 
types will be analyzed. In the next subsection, a methanol steam 
reformer unit will be modeled based on these exhaust gas temperatures, 
considering different methanol-water molar ratios, to evaluate the us
ability potential of waste heat for syngas production. Finally, the pa
rameters from the previous two subsections will be optimized using 
three novel algorithms to maximize the hydrogen amount in the pro
duced syngas.

3.1. Exhaust gas temperature

Fig. 5 presents the EGT values for the engine operating under 
different load conditions. As shown in the figure, EGT values increase as 
the engine increases for all test fuels. This is because, at higher loads, the 
engine requires more fuel to maintain the same speed, resulting in 
higher fuel combustion rates and consequently higher EGT values.

The EGT value is influenced by both the physical and chemical 
properties of fuel mixtures and engine operating conditions. Specif
ically, the calorific value of the fuel and the combustion rate 

Fig. 5. Exhaust gas temperature at varying engine loads.

Fig. 6. Syngas composition at the outlet of the reactor a) D100, b) B25, c) B25 + 15 lpm, and d) B25 + 30 lpm.
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significantly affect the EGT measurements. The thermocouple used for 
EGT measurement was installed approximately 50 cm from the engine 
exhaust pipe. Therefore, if combustion is delayed due to incomplete 
combustion in the combustion chamber, the EGT value may increase as 
more fuel continues to burn in the exhaust phase. The average EGT 
values recorded for all loads were 256, 262.25, 257.75, and 252.75 ◦C 
for D100, B25, B25 + 15H2, and B25 + 30H2 fuels, respectively. Each 
experiment was repeated three times under the same conditions for all 
test fuels, and the obtained data were averaged, with error margins 
between 0.244 % and 0.763 %. With B25, which has the smallest calo
rific value (see Table 2), the largest average EGT value was obtained for 
all loads. This can be attributed to the higher specific fuel consumption 
value of B25 compared to D100, the higher latent heat of vaporization of 
B25, and the lower cetane number of B25 [46].

Due to its lower cetane number, B25 has a longer ignition delay 
compared to D100, causing more fuel to accumulate in the cylinder 
before combustion occurs. This leads to higher combustion temperature 
and shifts part of the combustion process into the exhaust phase, 
resulting in increased EGT values.

Furthermore, hydrogen’s high calorific value (Table 3) significantly 
impacts post-combustion temperature [47]. The calorific values for B25 
+ 15H2 and B25 + 30H2 fuels were calculated and are given in Table 2. 
The addition of H2 to B25 increased the average calorific value of the 
fuel blend. Since less B25 was required to produce the same engine 
torque, the specific fuel consumption decreased. In addition, hydrogen’s 
high flame speed shortened the combustion duration, preventing 

combustion from extending into the exhaust phase, which ultimately 
lowered the EGT values for B25 blends with H2.

For these reasons, although B25 + 30H2 has the highest calorific 
value, it exhibits the lowest average EGT values across all load condi
tions. The results indicate that combustion with B25 + 30H2 was 
completed more quickly, leading to the highest combustion efficiency. 
Consequently, a greater portion of the combustion energy was effec
tively converted into useful work, reducing heat loss through exhaust.

3.2. Hydrogen-rich gas production

Fig. 6 shows the impact of engine load on the syngas composition. In 
the methanol steam reforming (MSR) process, syngas composition varies 
significantly due to the thermodynamic and enthalpy properties of the 
reactants, which strongly depend on the reaction temperature. From the 
figure, it is evident that the hydrogen content is the highest among all 
gas components at any given engine load.

When comparing hydrogen percentages, the maximum hydrogen 
yield is consistently obtained when the engine operates at 30 Nm for all 
fuels. Numerically, the hydrogen content in syngas ranges from 
approximately 68.1 to 68.8 % at 30 Nm with reactor temperature 
recorded as 200, 205, 202, and 196 ◦C for D100, B25, B25 + 15 lpm H2, 
and B25 + 30 lpm H2, respectively. Methanol, unlike other hydrocar
bons, lacks carbon-carbon bonds, meaning it requires less energy for 
decomposition. As a result, these temperatures are considered relatively 
low for any steam reforming process [32,48,49].

Fig. 7. Syngas composition at the outlet of the reactor a) D100, b) B25, c) B25 + 15 lpm, and d) B25 + 30 lpm.

Table 4 
Comparative optimization results.

Algorithm Design parameters Objectives

EGT (◦C) MtW(molar ratio) fH2 (%) fCO2 (%) fH2O (%) fCO (%) fMeOH(%)

DSC-MOPSO 193.31 1.532 ​ 72.5 18.1 2.3 7.1 0.0
MOSPO 195.73 1.568 ​ 72.4 17.8 2.3 7.5 0.0
MOGWO 203.80 1.691 ​ 72.1 16.8 2.3 8.8 0.0
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Another key observation from Fig. 6 is the gradual decrease of 
unreacted methanol percentage as engine load increases. The main MSR 
reaction (CH3OH + H2O→CO2 + 3H2) is endothermic, and methanol 
decomposition via the side reaction (CH3OH→CO + 2H2) is limited at 
lower temperatures. Consequently, as seen in Fig. 6, the highest 

percentage of unreacted methanol appears at 15 Nm engine load, where 
the lowest temperatures are recorded. However, even at this low load, 
the unreacted methanol percentage remains below 0.5 %. At 30 Nm 
engine load, as temperature rises, the unreacted methanol percentage 
drops below 0.02 % for all test fuels. Beyond this load, no detectable 
unreacted methanol remains in the syngas, indicating a methanol con
version rate exceeding 99.9 % for all test fuels when the engine load 
exceeds 30 Nm.

Additionally, an inverse correlation between CO2 and CO formations 
is observed in Fig. 6. As the engine load increases, CO2 concentration 
gradually decreases, while CO concentration increases. Since higher 
engine loads correspond to higher temperatures, the CO formation in
creases as the side reaction producing CO is endothermic, meaning more 
CO is generated at elevated temperatures.

Although side reactions in the MSR process are generally undesir
able, the increase in temperature enhances methanol decomposition, 
leading to higher CO formation. This trend further suggests that the 
primary reaction (CH3OH + H2O→CO2 + 3H2) occurs less frequently at 
higher temperatures, explaining the decrease in CO2 levels while CO 
levels rise.

Fig. 7 shows the syngas composition as a function of methanol-to- 
water (MtW) molar ratio. As can be seen in the figure, gas composi
tion depends strongly on the MtW molar ratio and changes significantly 
as this ratio changes. Most importantly, the lowest hydrogen content is 
observed at MtW molar ratio of 0.5, averaging 59.8 %. At this ratio, the 
methanol concentration in the reactant mixture is too low, which slows 
down the steam-reforming reactions, reducing the overall reaction 
conversion efficiency. As a result, the H2 yield in the system decreases, 
limiting hydrogen production in the MSR process.

On the other hand, the methanol content should not be excessively 
high in the MtW mixture. Excess methanol leads to an increase in 
unreacted MeOH in the syngas and promotes side reactions, particularly: 
(CH3OH→CO + 2H2). This explains why, as the MtW ratio increases, CO 
concentrations in the syngas composition also increase (see Fig. 7). The 
highest H2 yield is achieved at an MtW molar ratio of 1, where H2 
constitutes 70.3 % of the total syngas composition, considering all test 
fuels collectively. Another key observation from Fig. 7 is the high H2O 
content in syngas at an MtW molar ratio of 0.5, which correlates with 
poor H2 formation across all test fuels. At this ratio, the water content in 
syngas exceeds 20 % for each test fuel. This occurs because the methanol 
and water proportions are far from the optimal ratio, leading to an 
excess of unreacted water in the system. However, as the MtW ratio 
increases, the water content in syngas significantly decreases: 4.64 % at 
an MtW ratio of 1, 1.96 % at an MtW ratio of 1.5, and 1.23 % at an MtW 
ratio of 2. This trend indicates that higher MtW ratios promote more 
efficient water utilization, leading to a greater conversion of water into 
hydrogen in the reforming process.

3.3. Optimization results

Table 4 shows the optimal design variable settings and the corre
sponding objective function results obtained using the DSC-MOPSO, 
MOSPO, and MOGWO algorithms. As per the results, the DSC-MOPSO 
algorithm achieved the highest hydrogen content, reaching 72.5 % 
(see Fig. 8). This optimal result was obtained at an EGT of 193.31 ◦C and 
an MtW molar ratio of 1.532. The MOSPO algorithm ranked second in 
hydrogen production performance, yielding 72.4 % hydrogen content. 
The Pareto-optimal solution for MOSPO was found at an EGT of 
195.73 ◦C and an MtW molar ratio of 1.568. Meanwhile, the MOGWO 
algorithm produced a slightly lower hydrogen content, which was 0.551 
% and 0.414 % lower than the DSC-MOPSO and MOSPO results, 
respectively.

As shown in Table 4, the Pareto-optimal front includes the percent
ages of hydrogen (fH2 ), carbon dioxide (fCO2 ), water (fH2O), carbon 
monoxide (fCO), and methanol (fMeOH) in the syngas composition. The 
Pareto front is visualized for hydrogen, carbon dioxide, and carbon 

Fig. 8. Pareto optimal frontier formed by multi-objective optimizers: a) DSC- 
MOPSO, b) MOSPO, and c) MOGWO.

Ü. Ağbulut et al.                                                                                                                                                                                                                                International Journal of Hydrogen Energy 130 (2025) 411–422 

419 



monoxide, as these components have the highest concentration in the 
syngas. Fig. 8 shows the Pareto optimal frontier produced by the DSC- 
MOPSO, MOSPO, and MOGWO algorithms. As observed in the figure, 
during the optimization process DSC-MOPSO achieves hydrogen content 
ranging from 70 % to 72.5 %, MOSPO results in hydrogen content be
tween 69 % and 72.4 %, and MOGWO produces hydrogen levels be
tween 70 % and 72.1 %. The numerical results confirm that DSC-MOPSO 
is a robust and highly efficient optimization method, outperforming the 
other algorithms in solving the given problem. Fig. 8 also demonstrates 
that all algorithms successfully generated a diverse and well-distributed 
Pareto front, indicating effective optimization performance across 
multiple objectives.

The validation of the optimal operating parameters generated by the 
multi-objective optimization algorithms for maximizing hydrogen pro
duction was conducted in Aspen Plus. The maximum amount of 
hydrogen obtained under optimal operating conditions in Aspen Plus is 
given in Fig. 9. As shown in Fig. 9(b), the error between optimization 
and simulation results is smaller than 0.7 % for all algorithms (See Fig. 9
(b)), the error between the optimization results and simulation results is 
less than 0.7 % for all algorithms. These error values confirm that 
Pareto-based algorithms demonstrate robust and reliable optimization 
performance in enhancing hydrogen content in the syngas produced 
from the MSR unit.

Considering all optimization results, it is evident that DSC-MOPSO 
outperforms MOSPO and MOGWO. The superior performance of DSC- 
MOPSO can be attributed to the following key factors: 

1. Efficient archive management using the DSC method, which en
hances solution diversity and convergence.

2. Guide selection from both population and archive vectors, improving 
search direction and optimization accuracy.

3. Robust exploration and exploitation operators from PSO, enabling a 
more effective metaheuristic search process.

These features collectively contribute to the strong optimization 
performance of DSC-MOPSO, making it more effective than the other 
algorithms for maximizing hydrogen content in syngas.

4. Conclusions

This research aims to develop an onboard hydrogen-rich syngas 
production system using a methanol steam reforming (MSR) unit, which 
utilizes waste exhaust heat from a diesel engine operating under 
different loads. Furthermore, the study seeks to maximize hydrogen 
content in syngas by optimizing operational parameters using DSC- 
MOPSO, MOSPO, and MOGWO algorithms. In conclusion, the 
following key findings have been drawn from this research: 

• Exhaust gas heat in ICEs contains significant energy, but it is typi
cally not utilized in practical applications. This research proves that 
hydrogen-rich syngas can be effectively produced using EGT at all 
engine loads tested. Interestingly, H2 content in syngas is highest at 
medium engine loads, whereas at very low or very high engine loads, 
slight decreases in H2 content occur due to excessively high or low 
EGT values.

• Syngas composition does not vary significantly based on fuel type; 
however, engine operating parameters, such as engine speed and 

Fig. 9. (a) Optimized and actual results, (b) enhancement on H2, and the comparison of the errors.
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load, have a greater impact on syngas composition than specific test 
fuel used.

• The MtW molar ratio is the most influential parameter affecting 
syngas composition. The highest H2 content is observed when the 
MtW molar ratio is 1. Deviating from this ratio increases other gas 
components, leading to a gradual decrease in H2 content.

• Optimization results indicate that the maximum hydrogen content at 
the MSR reactor outlet was 72.5 % with DSC-MOPSO, 72.4 % with 
MOSPO, and 72.1 % with MOGWO.

• The DSC-MOPSO algorithm achieved the highest hydrogen yield at 
an EGT of 193.31 ◦C and an MtW molar ratio of 1.532.

• The percentage error between optimization results and Aspen Plus 
simulations was less than 0.7 %, confirming the accuracy and reli
ability of the optimization process.

• Hydrogen content increased from 70.3 % to 72.5 % through a multi- 
objective optimization, representing a 3.13 % improvement in 
hydrogen yield at the reactor outlet, achieved using DSC-MOPSO.

To summarize, approximately one-third of the fuel energy in ICEs is 
lost as waste heat through the exhaust manifold, which is directly dis
charged into the atmosphere without being utilized. This study dem
onstrates that it is possible to produce onboard hydrogen-rich syngas 
using an MSR unit powered solely by this waste heat. The findings 
indicate that H2 production can be increased by 3.13 % by optimizing 
key operating parameters.

As a practical application, future research can focus on the feasibility 
of mixing hydrogen-rich syngas with fresh intake air before introducing 
it into the combustion chamber. At this stage, the real-time utilization of 
syngas without storage should be explored, taking into account thermal 
management and safety precautions. Such an approach would enable 
the development of an H2-rich gas production system in the form of a 
retrofit kit that can be integrated into both gasoline and diesel engines.

This advancement could be highly beneficial in terms of fuel econ
omy, as it would increase the energy density of fuels in the combustion 
chamber while also reducing environmental impacts. Finally, con
ducting a comparative analysis of a methanol steam reforming system 
versus conventional ICEs in terms of thermodynamic efficiency, ther
moeconomics, and overall sustainability would provide valuable in
sights for future research. Further studies are necessary to fully evaluate 
the practicality and economic feasibility of this approach, contributing 
to the advancement of clean energy technologies.
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