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ABSTRACT
Analysis on the Robustness of Fuzzy Control of a Building Test-bed Under Internal and
External Disturbances
By

Anayely M. Saguilan

This study extends on prior work based on the development of a fuzzy logic controller
for the regulation of temperature within a sub-scaled building test-bed. The objective of
this analysis, however, was to investigate the robustness of this controller by conducting a
series of comprehensive tests. The testing conducted in this study was aimed to evaluate
controller response to both internal and external disturbances introduced to the system.
A total of five different types of tests were performed; three tests examined controller
response to internal disturbances while two examined the response produced due to
external disturbances. The internal disturbance tests comprised of including (1) multiple
changes in the temperature setpoints, (2) a sudden change and (3) two sudden changes
in setpoint temperatures while keeping different temperatures within any given pair of
rooms. To test controller adaptability to external disturbances, the cold air delivered by
the external air conditioning unit was changed three times during a 90-minute testing
period while (1) setting one setpoint temperature for all rooms, and (2) setting different
temperature setpoints for each pair of rooms.The test-bed building measures 1.2 m X
0.92 m x 1.1 m and it consists of eight rooms distributed among two floors. A cooling
unit supplies cool-air to each room, eight 40 W light bulbs serve as heat sources, and

type-T thermocouples gather the temperature data. The duct system incorporates eight

v



dampers, each of which is connected to a servo motor that adjusts the airflow rate supplied
to individual rooms based on controller output. The controller uses the difference between
a temperature setpoint and actual room temperature, the derivative of this error, and the
cumulative integral of the error to form a decision on the output angle of ecach damper.
The fuzzy sets of the controller and if-then rules were built based on experimental data,
the Mamdani inference method was used to provide the inputs to the actuators. Results
from experimental tests showed that the fuzzy logic based controller was able to maintain
the room temperature setpoints while managing the internal and external disturbances

introduced to the system.
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CHAPTER 1
INTRODUCTION
This chapter establishes the motivation and objective for this work. The first section
begins by describing what the repercussions of using fossil fuels as energy sources are
and then states the need for robust heating, ventilation, and air conditioning (HVAC)
control systems. The second section provides an outline of the governing equations related
to convection heat transfer in HVAC systems and introduces the existing control strategy
utilized in commercial-grade building HVAC controllers. The third section presents fuzzy
logic as a control methodology while giving examples of various practical applications for
fuzzy logic controllers. The fourth section states the objective of this work while the
concluding section of this chapter provides an overview of the following chapters of this

document.
1.1 Motivation

The Industrial Revolution, a period marked by significant technological advancement and
economic growth [2], led to the widespread adoption of fossil fuels as the primary source
for global energy [3]. Since then, our reliance on fossil fuels has increased significantly
and is forecasted to keep on increasing in proportion to economic growth, population
growth, and urbanization. The burning of fossil fuels has been linked to the release
of greenhouse gases, which contribute to the global warming phenomenon [4]. This
phenomenon is a result of air pollutants accumulating in the atmosphere and creating
a “shield”. This causes the absorption of sunlight and solar radiation, thus heating the

Earth [5]. Consequently, this collection of aerial contaminants has been associated with a



variety of health issues among humans, including respiratory and cardiovascular diseases,
mental health disorders, and cancer [6]-[9]. Furthermore, the gradual heating of Earth
due to the “shield” of pollutants around the atmosphere has been detrimental to the
environment. This has given rise to the recession of glaciers, melting ice caps, rising sea
levels, coral reef bleaching, and the slowing of agriculture productivity [10]-[14].

In their report, the U.S. Energy Information Administration (EIA), estimated a rapid
increase in energy consumption through 2050 in non-OECD (Organization for European
Co-operation and Development) Asian countries as a result of an increase in household
income [15]. This increase in income would allow more people to have access to electrical
power and comforts such as space heating and cooling. Buildings currently account for
40% of energy use worldwide with 38% of this consumption used for HVAC systems
[16]. As of 2016, EIA has estimated that the energy consumed by households worldwide
would increase by 48% throughout the years of 2012 to 2040 [17]. Therefore, to address
this issue and promote sustainability in both commercial and residential buildings, it is
imperative to develop robust HVAC control systems [4].

This, however poses a difficult challenge as there exists many uncertainties that have
to be taken into account when designing HVAC control systems for buildings. These
challenges include nonlinear dynamics, time-varying setpoints and disturbances, complex
interactions between temperature and humidity, building operating modes, and occupant
schedules. Aside from this, building HVAC systems are composed of multiple subsystems,
each of which need to be considered when creating HVAC control algorithms. As such,
it is difficult to find a “one-size-fits-all” controller as the dynamics of buildings become

complex in relation to building geometries and the multitude of components that make



up an HVAC system.
1.2 System Dynamics and Control

An efficient HVAC controller can help in reducing energy consumption and associated
costs by adjusting the amount of energy required to heat or cool a building based on build-
ing energy demands. HVAC systems, however, are difficult to model because they consist
of various mechanical components that have their own set of dynamics and therefore can
become potential points of failure [18]-[20]. Additionally, physical building parameters
must be considered when developing mathematical models for HVAC controllers. Things
such as windows, building geometry, building materials, doors, and light bulb types must
be taken into account to accurately represent the amount of energy needed to be removed
or added into a space on account of these items [21]-[23]. Therefore, the HVAC control
engineer must consider each of these components when designing an HVAC control sys-
tem. Understanding the complex thermal dynamics involved with the development of
realistic building HVAC models is crucial for creating energy-efficient buildings.

To ensure an effective HVAC mathematical model, it must accurately predict the
energy needed to adjust room conditions for human comfort. Achieving this relies on
leveraging thermodynamic, heat transfer, and fluid dynamic principles. Expressing the
energy transfer from the refrigerant fluid to its surroundings using the continuity equa-
tion, Eq. (1.1), Navier Stokes equation, Eq. (1.2), and energy equation, Eq. (1.3), is
important as these equations are essential for the analysis of convection heat transfer

[24]. Using the following equations along with the appropriate boundary conditions one



can develop a comprehensive model for energy transport within fluid flows,

Dp
Lp -0 1.1
o TPV (1.1)
Dv 9
_ F 1.2
P D \VA R TAVARASS (1.2)
Ty 2T 4+ ud (1.3)
Cp—— = .

where v is the velocity vector, p is the fluid viscosity, T' is the temperature, k is the
conductivity coefficient of the fluid, ® is the viscous dissipation function, v/ is the gradient
operator —z + 3 9 4 + 5, g 5.k, lD)f is the substantial derivative of denslty, =Y is the substantial
derivative of velocity, and is the substantial derivative of temperature.

Aside from heat transfer considerations, mathematical models for building HVACs
also need to take into account the various components that make up an HVAC system.
Buildings that require individual control conditions are generally equipped with all-air
heating and cooling systems [1]. All-air HVAC systems are capable of carrying energy
and ventilating air between the furnace and the conditioned space through ducts. The
configuration of these HVAC systems makes individual control of air flow conditions
possible. As illustrated on Figure 1.1, commercial building HVAC systems are made
up of boilers, pumps, temperature sensors, humidity sensors, air flow sensors, dampers,
chillers, cooling towers, return air fans, supply fans, filters, heat coils, cooling coils,
humidifiers, valves, and various ducts.

In the event of creating a controller to automate the process of cooling or heating

a space, commercial HVAC controllers utilize Direct Digital Control (DDC), Figure 1.2
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Figure 1.1: Schematic of all-air HVAC system, taken from [1].

shows a general DDC structure. DDC is the process in which control actions are en-
acted through the use of a digital device such as a microprocessor. Each subsystem
in an HVAC is fitted with a DDC system that is in charge of measuring the process
output using a set of algorithms to compare sensor input to a prescribed setpoint. All
DDC signals from each HVAC subsystem are gathered and transported to a centralized
controller. As it is the case with many industrial applications, centralized HVAC DDC
systems are mainly regulated using the Proportional-Integral-Derivative (PID) control
methodology [25]. The widely used PID control strategy offers a simplistic and easy to
understand solution for feedback control as the availability of PID tuning rules is vast,

their operation does not require much experience, and they are inexpensive to maintain.



However convenient, PID based controllers also have their draw-backs. For instance, PID
controllers can be sensitive to disturbances, unstable if poorly tuned, be slow to respond,

and are better suited for single input-single output (SISO) systems [26, 27].

input e(t) u(t)

tput
Controller > Plant oulpu

T(t)

Temperature Sensor

Figure 1.2: Direct Digital Control process.

Building HVAC systems, however, are governed by time-varying dynamics that in-
clude time varying set-points. An HVAC control system must take in real-time tem-
perature data to properly adjust its settings, this means that they are bound to time-
varying disturbances which results in system non-linearity. Therefore, applying PID
control strategics to HVAC control systems may result in an inefficient use of electricity
128]. Thus, using a PID control methodology may prove to be difficult when trying to
control complex and non-linear systems such as building HVAC units. As a result, this
warrants for alternative HVAC control strategies.

Aside from PID controllers, current literature shows that there is very prominent
research being done in the area of HVAC control methodologies. This includes the use
of Predictive Mean Vote [29, 30], genetic and artificial neural network algorithms [31]
-[33], Model Predictive Control [34] -[36], and fuzzy logic [37] -[40]. Predictive mean

vote learning was developed to determine the thermal comfort of occupants within a



building by using a prediction model. This method, however, lacks the ability to account
for non-linear dynamics such as occupant behavior and adaptive cooling and/or heating
[41]. This gives rise to the need of creating control strategies with the capacity to handle
complex and non-linear systems. In their work, Nassif [42] explored the idea of using
an artificial neural network (ANN) to model an HVAC system and a genetic algorithm
for optimization. The results presented in their paper show that when compared to pre-
existing data, their HVAC ANN model was able to give good accuracy and provide a
cooling energy savings of 11%. Although ANN networks have a great ability to predict
models, they require large amounts of data and therefore can be computationally taxing.

As such, Behrooz et al. [43] outlines the advantages of using MPCs for HVAC man-
agement. In their work, they explain that MPC models require a mathematical model of
the system in order to predict its future states. In their 2014 paper, Parisio et al. [44]
proposed a scenerio-based MPC (SMPC) for HVAC systems that would take into account
the uncertainty of the weather and the occupancy of model building. They found that
the response of their SMPC was a lot smoother than the response generated from the PI
controller that they tested their SMPC model against. They also found that the SMPC
was able to keep the indoor temperature closer to the lower bound of 20°C during low
occupancy simulations. Although MPCs are an excellent choice for HVAC control, they
require accurate models such as black box [28], grey box [45], and white box [46], there-
fore it could make them a bit difficult to implement as cooling and heating requirements

within buildings are difficult to model mathematically.



1.3 Fuzzy Control and its Applications

Lotfi A. Zadeh introduced fuzzy logic in 1965 with the aim to enable computers to ma-
nipulate vague and imprecise data. His publication “Fuzzy Sets” [47] was the framework
for fuzzy logic and fuzzy set theory, thus significantly impacting the field of artificial
intelligence (AI). Unlike binary logic, where something either belongs or does not, fuzzy
logic recognizes that truth values may lic somewhere in between belonging and not be-
longing. This characteristic has proven invaluable in control theory, as it enables the
representation of complex systems through the use of linguistic variables. Consequently,
the development of a fuzzy logic-based controller (FLC) necessitates a deep understand-
ing of the system in question and it dynamics. As such, fuzzy logic has been implemented
in many real-world applications where mathematical simulations would not be possible
due to the complexities of the control system.

Since its inception, fuzzy logic has had a role within many present control systems.
The Sendai Subway 1000 series in Japan has employed the use of fuzzy logic as a speed
controller since 1987. This drew the interest of researchers and thus the research on
fuzzy logic speed controllers has increased [48]-[51]. Although the practicality of fuzzy
logic as a means of speed control in trains has been proven, the use of fuzzy logic control
strategies has trickled on to house hold items. The usefulness of fuzzy controllers extends
to household products such as rice cookers [52], electric cookers [53], washing machines
[54], heat pumps [55], and HVAC units [56].

Fuzzy logic, which is a form of multi-valued logic, is based on human reasoning and

experience, therefore it does not require the use of a mathematical model [57]. In their



paper, Rashidi et al. [58] developed a hybrid fuzzy-PID HVAC controller. Since their
model included the use of simulations for testing, they used the multi-input multi-ouput
(MIMO) model outlined by [59]. They found that their fuzzy-PID controller was able
to reach the set point temperature at a faster speed than their PID based controller.
In a separate study, Ahmed et al. [56] proposed a fuzzy logic based controls scheme to
maintain the temperature within 20 - 25°C and the humidity within 40 - 70% of two
lab rooms within the Universiti Teknologi Malaysia. In this work, the authors were
able to successfully implement their proposed controller to the thermostat that controls
the central air within the two lab rooms. This was done by representing both inputs
(i.e. temperature and humidity) as a set of linguistic variables, as such, their work did
not utilize a mathematical model. The application of fuzzy logic for HVAC control is
extremely beneficial in that fuzzy logic can be coupled with other control strategies. In
their work, Alcald et al. [60] combined the use of fuzzy logic and genetic algorithms
where they prove that coupling the fuzzy logic technique with genetic algorithms can
improve the robustness of these controllers. In a separate study Killian et al. [61] used
a cooperative fuzzy model predictive control controller (CEFMPC) for the heating and
cooling of a building. In their study, they use a mathematical model of a building to build
the CFMPC where they found that their proposed controller was able to accommodate
for both cooling and heating modes. While research in building HVAC control utilizing
fuzzy logic strategies primarily centers on developing mathematical models to simulate
buildings, the importance to validate these control strategies with physical systems is
crucial.

Thus, in preceding work, Joshua Baltazar developed three fuzzy logic controllers to



regulate the temperature within a sub-scaled building test-bed [62]. These controllers
were built using experimentation and leveraging user expertise regarding the dynamics of
the system. The initial controller was designed to use the difference between the actual
room temperatures and a sct point temperature. The second controller utilized both
the temperature error and its derivative, while the third controller expanded on this by
incorporating the temperature error, the derivative of the error, and the integral of the
error as inputs. The study found that the fuzzy logic controller equipped with the most

information about the building yiclded the highest performance.
1.4 Objective of Work

The objective if this work was to conduct robustness testing on a fuzzy logic controller
that was developed to control the temperature within a multi-room subscaled building
test-bed [63, 64]. This controller was built using the difference between the temperature
and its setpoint, the derivative of the error, and the integral of the error to keep room
temperatures close to their setpoints. A series of tests were conducted to assess controller
robustness by introducing internal and external disturbances. This was done to simulate
irregular cooling loads that might be experienced within a real building. The internal
disturbance tests were created to mimic residents of a building changing their thermostat
to different temperatures throughout a 90 minute period with 30 minute intervals. The
external disturbance tests where conducted to simulate a building with changing cooling

loads on account to exposure of different weather conditions.
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1.5 Thesis Overview

This section will give an overview of the chapters of this paper and their contents. Chapter
1 provides background information about the the need for better HVAC control strategies
and the usefulness of fuzzy logic based controllers. Chapter 2 presents a description of the
experimental test-bed. This chapter gives an overview of the various components that
make up the test-bed such as dampers, instrumentation, and system variables. Chapter 3
gives an overview of fuzzy logic. This chapter examines some of the important aspects of
fuzzy logic systems such as fuzzy sets, membership functions, defuzzification, and logic
operations. Chapter 4 explains the design of the fuzzy logic controller and the results
for the robustness testing. The final chapter, Chapter 5, give the conclusions gathered
based off of the test results as well as offering directions for future work. Appendix A
gives instructions on how to set-up and operate the LabVIEW and MATLAB codes for
testing. Appendix B gives an example on using fuzzy logic to estimate a sine wave, while

Appendix C gives a fuzzy logic example for modeling a heat exchanger.
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CHAPTER 2
DESCRIPTION OF EXPERIMENTAL TEST-BED
Chapter 1 entailed a brief description behind the incentive to improve upon current build-
ing HVAC automation controllers. From the methods covered, it was determined that
the fuzzy logic control methodology provided an excellent solution. Thus, the succeeding
chapter gives a detailed description of the experimental system. The first section of this
chapter discusses the test-building structure and the cooling load delivery system. After
which, the data gathering process and associated devices used will be explained. This
chapter will conclude with identifying the variables considered through out the experi-

mental process of this work.
2.1 Building Test-bed

Utilizing a sub-scaled building test-bed to test HVAC controller schemes holds many
benefits as it is (1) cost-effective, (2) allows for the testing of various “indoor” temperature
conditions without disruption of inhabitants, and (3) allows for the controlled simulation
of various climate conditions. The experimental test-bed used in this work was designed,
constructed, and tested by three mechanical engineering senior design groups at California
State University, Los Angeles. The first group designed the building, the second group
built the building, and the third group added the duct and damper systems [65]-[68].
The building test-bed (Figure 2.1) has dimensions of 1.2 m x 0.92 m x 1.1 m and it is
divided among two floors. Each of these floors contains four rooms, each with dimensions
of 0.45 m x 0.42 m x 0.52 m that are divided by 3.5 cm thick walls. The interior walls of

the upper floor are removable and allow for testing of various floor plan configurations.
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Each room in the building contains two glass windows measuring 0.20 m x 0.15 m, they
can be opened or closed by sliding them on rails as seen on Figure 2.2(a). The building
features staircase openings to thoroughly assess and study the flow interaction between
floors; all door, windows, and staircase openings were closed for the analysis presented
in this paper. In addition, each room contains a 13.7 cm x 29 cm door cut-out on the
interior walls with each door connecting to adjacent rooms (Figure 2.2(b)). Each room

is fitted with a cold air inlet and return air vents.

Figure 2.1: Building test-bed.

To ensure compliance with industry standards, this test-bed was constructed using
materials approved by both the California Building and the U.S. Department of Energy
Building Codes. Therefore, the building and rooms are insulated with R-19K insulation,
the inner walls of the building are drywall while the outer walls are composed of wood.

On the other hand, the ceiling and roof of the test-bed are built from underlayment wood

13



(a) Window placement. (b) Air temperature from HVAC system.

Figure 2.2: Door placement in each room.

planks. The roof system is fitted with latch locks to allow easy access to the second floor.

The initial cooling system design included four Peltier thermoelectric coolers attached
to fans as cooling sources, this cooling system was later proven to be inefficient and was
replaced by an external HVAC unit [63]. The cooling system for this building test-bed
configuration is composed of a network of PVC pipes that guide cold air into each room
from an external Air Conditioning unit. The external AC unit chosen is a Haier 115 V
ESA410K model with a cooling capacity of 1.06 x 107 J/hr [69]. The external AC unit is
fitted with a plenum box to ensure that all the rooms receive an uniform amount of cold
air and to reduce the air outflow velocity. The air outlet of the plenum box is divided
into eight openings, each of which is attached to a PVC pipe that delivers cold air into
its respective room. Every pipe contains a 3D printed ABS damper with a diameter of
2.97 cm. Each damper is attached to a TowerPro SG-5010 Servo motor, which controls

the opening and closing of the damper based on controller output. This manipulation of

14



the damper opening regulates the volumetric airflow rate entering each room.

Figure 2.3 shows the damper and servo motor subsystem. In this configuration, the
servo motor is attached to the damper shaft through four small screws placed through
the servo gear head attachment and through the damper shaft head. The air delivery
pipe system is completely surrounded with R-19K insulation, with the exception of the
2-inch opening shown in Figure 2.3(b). This opening is needed to allow for the servo to

fully rotate without interference.

Shaft P =4
\ & 3 o
Duct W= Damper

| Gear Head
Attachment

(a) Damper in pipe configuration. (b) Air temperature from HVAC system.

Figure 2.3: Damper and servo motor subsystem.

2.2 Instrumentation and Data Acquisition System

As previously discussed, the experimental system is composed of a physical building
test-bed and an arrangement of data acquisition devices. To collect temperature data,
every room in the building is fitted with a pair of type-T thermocouples. Thermocouples
are electrical devices that are made from two dissimilar metals. They are joined at a

junction (the measuring end) that is kept at a different temperature than the tail end of
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these devices. The difference in temperature is read as a voltage difference and turned
to temperature by data acquisition (DAQ) devices and computer software.

Various types of thermocouples are available in the market, such as J, K, R, S, T,
N, E, and B. What differentiates each of these devices is the type of metal chosen for
the wires, the temperature range, and their accuracy levels. In previous work, the teams
that built the test-bed used type-K thermocouples which offer a £2.2°C accuracy when
operated within within a range of 0°C to 1250°C and when calibrated using ASTM
E230-ANSI MC96.1 standards [70]. This work, however, utilizes type-T thermocouples
which offer an accuracy of £1.0°C within a temperature range of 0°C to 350°C. Since
the temperature within each room of the building was not expected to exceed 32.2°C, it

was decided that type-T thermocouples were best suited for the following experiments.

Thermocouples

Figure 2.4: Thermocouple arrangement in rooms.

16



There are a total of 16 thermocouples placed in the building (a pair for each room)
divided among two USB-TC DAQ devices. The building contains eight 40 Watt light
bulbs, each light bulb is connected to a Measurement Computing (MC) relay box with 24
electromechanical connections. One light bulb is placed in the middle of each room and
acts as a heating source, simulating heat generated from building occupants and electrical
equipment. The placement of the light bulb and thermocouples is show in Figure 2.4.
As seen from Figure 2.4, each thermocouple is fitted with a thermocouple shield to
minimize the heat transfer generated through radiation in account of the light bulb. Each
shield was blanketed with aluminum foil to help reflect the radiant heat emitted, thus
protecting te thermocouples and allowing for only air temperature readings. In addition,
the thermocouple shields were designed with a flat bottom to facilitate placement on
various surfaces within the room or suspension by the thermocouple wire as depicted on
Figure 2.4.

The DAQ devices and the light bulb relay box are connected to a personal com-
puter (PC). The PC is equipped with LabVIEW and MATLAB software that allow for
the complete control of this test-bed system. The LabVIEW software uses a graphical
programming environment that uses blocks of code (G-code) to allow users to create real-
time automated test systems. The LabVIEW algorithm created for testing the test-bed
system uses G-code to control the electromechanical pins in the relay to allow users to
turn the light bulbs in the building on and off. This LabVIEW algorithm also collects
the temperature data gathered from the thermocouples and the DAQ devices and sends
it to MATLAB every 1.5 seconds. Once the temperature data is sent to MATLAB,

MATLAB enacts the fuzzy controller and generates real-time plots of the air tempera-
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ture in each room and the AC air temperature. To enact the control actions of the fuzzy
logic controller, MATLAB sends a signal to an Arduino 2560 Mega microcontroller. This
microcontroller sends pulses of voltage to the servo motors, which either close or open
the damper in relation to the desired control actions (instrumentation illustrated on Fig-
ure 2.5). Appendix A contains a step-by-step guide of how to operate the controller that

corresponds to this system.

DAQ Thermocouples
LabVIEW

A

Computer Relay Box
MATLAB \ 4 % l { 61 l 1
DAQ
x Arduino
Light Bulb
Damper Servo Motor

Thermocouple

Cooling Unit

Figure 2.5: Diagram of system instrumentation.
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2.3 System Variables

The previous section detailed the type of instrumentation used to collect the temperature
data of each room in the test-bed building. However, in order to understand the dynamics
of this test-bed it is important to understand what its input and output variables are.
As Figure 2.6 shows, the cold air from the AC flows directly into the plenum box. From
here, the total air volume is divided into eight individual volumetric air flow rates (V/),
cach of which is fed into its respective room. Therefore, V is denoted as a system input
variable. To successfully lower and maintain the temperature in each room, V has to
successfully remove some of the heat generated by the light bulb. Consequently, the room
air temperature, T'(t), is referred to as the output variable. It is important to note that
since the building is well insulated, the heat loss to the surroundings is not taken into

account.
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Figure 2.6: Schematic of building.

2.4 System Dynamics

An important aspect within controller development is understanding the dynamics of the
system being controlled. Comprehending system behavior in the absence of a controller
ensures that the designers develop a controller that operates within the parameters of

the system. In the case of this study, it was imperative to document and analyze the
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relationship between the amount heating provided by the light bulbs and the rate of
cooling of the external AC. Thus, this section will explain the set of tests conducted to
study the relationship between the air temperature in the rooms, 7,, and airflow delivered
by the external AC unit, V.

The first test conducted was designed to study way in which the rooms cooled with no
controller applied, Figure 2.7. Before running this test, all rooms were heated to 26.7°C.
This experiment was then run for a period of 60 minutes, the dampers were fully opened,
the external AC unit was operational and set to an air temperature of 18.9°C. When
examining Figure 2.7, it is seen that the room temperatures experience an exponential
decay within the first 28 minutes. This aligns with Newton’s Law of Cooling which states
the following:

Tt)=T,+ (T, — T)e ™ (2.1)

where t is time, T'(t) is the temperature at time ¢, T is the surrounding temperature, 7;
is the initial temperature, and k is a constant.

An important detail to notice is that the temperatures in the rooms rise and fall
from ¢t > 28 minutes. This is due to the ambient temperature sensor that is placed
within the external AC unit. The ambient temperature sensor reads the laboratory
temperature and modifies the AC output air temperature to prevent damage to the
AC unit. The operating conditions for the Haier ESA 410K listed in the manual [69]
state that the nominal indoor state dry-bulb temperature is 26.7°C for an outdoor dry
bulb temperature of 35°C. However, at the time of testing, the lab temperature ranged

from 17.8°C to 18.6°C. This suggests that the AC was not performing within its cooling
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capacity. Forcing its operation within a cooler ambient temperature than what it was

rated for caused a decrease in efficiency and a lowered cooling performance.

28 ( T T T T T
Top-Room 1
26 Top-Room 2 |
Top-Room 3
24 | Top-Room4 | |
Bot-Room 1
X Bot-Room 2
c : 22 Bot-Room 3 b
) Bot-Room 4
N~ 20 [
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—
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14
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10 1 1 1 1

10 50 30 40 50 60
Time (min)

Figure 2.7: Open damper dynamics test result.

As like the first experiment, this test began after all rooms were heated to 26.7°C. This
test was conducted over a period of 60 minutes, the dampers where opened and closed
at intervals of 3 minutes, the external AC was operational and set to an air temperature
of 18.9°C. The results for this test are shown in Figure 2.8. The main objective for this
test was to study the rate of heating versus the rate of cooling with an operational AC
unit. From the results presented, it is seen that the rooms follow the general exponential
decay that was seen in the first dynamics test and that the rate of heating per room is
significantly slower than the rate of cooling.

It is important to note that when the dampers are closed, the air stagnates between

the AC outlet and the closed damper. When the damper is reopened the trapped cold
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air exits and causes the rooms to momentarily experience an excess influx of cold air.
As seen from Figure 2.8, the air temperatures in the rooms stop to decrease from t>40
minutes and instead begin to rise. Like in the previous test, this is due to the internal
sensor in the AC unit acting independently and adjusting the AC outflow air temperature

to avoid damage to the AC.
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Figure 2.8: Open-close damper dynamics test result.
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CHAPTER 3
FUZZY LOGIC

The previous chapters established that fuzzy logic can be used as a means of intelli-
gent control. As such, this chapter will introduce the theory behind fuzzy logic and its
convenience when it comes to modeling systems with complex dynamics. The first sec-
tion of this chapter will go over fuzzy sets and membership functions. The next section
will introduce the underlying fuzzy logic inference systems and the importance of the
rule-based processes. The third section will give an overview of different types of defuzzi-
fication methods and the final section will give a few examples of system modeling using
fuzzy logic.
3.1 Fuzzy Sets and Membership Functions

Fuzzy set theory is a branch of set theory that revolves around the study of elements
with varying degrees of membership. Before its inception, the study of set theory was
limited to what today we know as classical set theory. These sets are said to be “crisp”,
as there is no allowance for varying degrees of membership within these universes. As
follows, let us suppose that there is such a universe X that contains a set defined as A.
Each element within set A of universe X is therefore defined as z. In the case of binary
(crisp or also referenced as boolean) logic, the membership of each element z within a

set A either belongs (€) or does not belong (¢), such that [57]:

1, z€ A

0, z¢ A
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In contrary, fuzzy theory focuses on the representation of vagueness and ambiguity

of elements within any given set. This is mathematically represented as:

pa(e) € [0,1] (3.2)

where A is defined as any fuzzy set, p is the membership function used to describe fuzzy
set A, and ju4(w) is the degree of membership of crisp element z in fuzzy set A.
In the event that the universe of discourse X is discrete and finite, fuzzy set A can

be represented as:

A= {M‘fl) + M“A’QZCQ) + } = {Z M”Aiji)} (3.3)

where in Equation (3.3), summation signifies the collection of each element.

The first part of any fuzzy logic system is the fuzzification step. In this step, a crisp
number is made fuzzy by classifying its degree of membership through the use of member-
ship functions. Graphically speaking, a membership function is a curve that encompasses
all possible degrees of a crisp element within a set ranging from 0 (no membership) to
1 (complete membership). There are several types of membership functions, all with
their own set of mathematical representations and uses. Some examples include, but
are not limited to trapezoidal Figure 3.1(a), triangular Figure 3.1(b), generalized bell

Figure 3.1(c), and gaussian Figure 3.1(d).
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Trapezoidal membership functions are defined by parameters a, d, ¢, and d. With
the highest membership value being represented by the span of b and ¢. Any crisp input
that lies between a and b or ¢ and d can have a membership anywhere between 0 and 1.

The notation for these types of membership functions is as follows:

0, r<a
2 o a<x<b
Ptrapezoidal (T : @, b, ¢, d) = 1, b<z<c (3.4)
bz <z <d
0, d<zx

\

Triangular membership functions are widely accepted as the relationship between
their inputs and outputs are easier to understand and define. These types of membership
functions are described by the parameters a, b, and c¢. Parameter b represents the highest
point within these types of membership functions, which represent full membership for
an input z. In the case of triangular membership functions, inputs that lie within [a, 0]

and [b, ¢] have a membership of anywhere between 0 and 1.

b—a’? — —
,utriangula'r(x - a, ba C) - (35>
c—x
—, b<zr<c
0, c<zx

Generalized bell membership functions are represented by parameters a,b, and c¢. The

parameter a determines the width of the curve, b is any positive integer, and c is the
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Figure 3.1: Common membership functions.

center of the curve.

Mbell(x - a, b> C) =

where the slope at x is taken as:

and the slope at y is taken as:
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Gaussian membership functions utilize the parameters m and o. In this curve, m repre-

sents the mean of the gaussian curve and o is its spread.

()

(3.9)

_1
ﬂguassian(x - 0, m) =e 2

When examining membership functions, it is important to understand a few basic
concepts within classical logic operations:union, intersection, and complement. If there
is an universe X that contains two sets A and B the the union of these two sets is

described as follows:

Union : AUB={z|lr € Aor x € B} (3.10)
Intersection : ANB={z|r € Aand x € B} (3.11)
Complement : A={zlx ¢ Ax e X} (3.12)

These operations can be expanded to represent fuzzy sets and membership functions. As

an example, given that fuzzy sets A and B exist within the Cartesian space X x Y:

Intersection : pans(z,y) = min(pa(z,y), ps(z.y)) (3.14)
Complement : pile,y) =1—pi(z,y) (3.15)

Figure 3.2 is an illustration of the fuzzy logic operations described above.
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Input, x
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Figure 3.2: Graphical representation of fuzzy logic operations.

3.2 Inference Systems and Rule-based Process

The inference mechanism of fuzzy logic systems is the process in which fuzzy systems
formulate a mapping from an input to an output [57]. There are two main types of fuzzy
inference systems that are widely used today: Mamdani and Sugeno. This work, however,
uses the Mamdani inference system as it is commonly used and it allows for the output
to be represented through membership functions [64]. The Mamdani inference system is
an attractive method of procedure for fuzzy systems because of its use of linguistic IF-

THEN propositions. This inference system uses the user defined IF-THEN propositions
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to find a consequence (output) based on a given antecedent (input). These propositions

are of the form:

IF 2, is A¥ and Ay THEN " is B*, for k=1,2,....,r (3.16)

where AY and A% are fuzzy sets that represent the kth antecedent pairs and B* is the
fuzzy set representing the kth consequent.

As an example, let us use a single-input and single-output fuzzy system. Refer to
Figure 3.3 as a representation of ages for humans within the range of [0, 80]. As seen
from the figure, three membership functions map out different stages of the proposed
age range. In this case, the linguistic variables represented are Young, Middle-Aged, and
Old. with linguistic variable Young having a range of [0, 36], Middle-Aged € [36, 54],
and Old € [36, 80]. Let us say that we want to use Figure 3.3 to get a fuzzy output
for someone who is 30 years old. As seen, this person would fall within the Young and
Middle-Aged membership functions. From here, we can infer that someone who is 30
years of age falls between the Young and Middle-Aged categories, with more membership
within the Middle-Aged group.

Now, let us suppose that we want to map the risk of cardiovascular disease of an indi-
vidual based on age and activity level. Figure 3.4 demonstrates a set of three membership
functions that represent activity levels based on a scale ranging from 0 to 10.

The following figure, Figure 3.5, displays the corresponding output membership func-
tions for this example. In this case, the linguistic variable Minimal has a range of [0, 50],

Neutral € [30, 70], and High € [50,100].
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Figure 3.3: Example of linguistic variables for a range of ages.
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Figure 3.4: Example of linguistic variables for a range of activity levels.

With the inputs and outputs defined, one can proceed to set up the inference system
for this example. As previously mentioned, the fuzzy inference engine is an user defined
rule-based system that utilizes expert knowledge to make decisions. Using the Mamdani
inference method, Eq. (3.16), and intuition [71, 72], we can begin to construct an example

of a Mamdani IF-THEN rule.
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Figure 3.5: Example of linguistic variables for risk of cardiovascular disease.
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Figure 3.6: Diagram of the fuzzy inference system.

Let us say, that we want to map the risk of cardiovascular disease for a person who
is 30 years of age (Figure 3.3) and has an activity level of 6 (Figure 3.4). Based on
research, it is safe to assume that a 30-year old individual who maintains a moderate
level of physical activity faces minimal risk of heart disease, assuming the absence of

external factors such as family history. Therefore, we may have an IF-THEN rule such

as the one below:
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IF x is Young AND y is Neutral THEN =z is Minimal (3.17)

where the conjunction AND connects the antecedents and the consequent. By using
AND, the inference system is informed that both antecedents must be satisfied jointly.
In any case with an AND operator, the aggregate output, z, is found by the intersection

of all rule outcomes such that,

po(2) = min(mu,i(2), muyz(2), ..., ur(2),), for z € Z (3.18)

where 2% is the intersection of all individual rule consequences and 1=1, 2, ..., r.

Minimal

Neutral

h o % P o m w0 o h 1 > 3 4 5 6 7 8 9 10 0 10 20 30 40 S0 60 70 s 90 100

Age, x Activity Level, y Risk of Cardiovascular Discase (%), z

Figure 3.7: Diagram of the fuzzy inference system for “AND” operator.

From Figure 3.7 it is seen that the conjunction AND makes it so that we only take
the minimum value from both the Young and Neutral membership functions. This gives
a fuzzy input of about 0.38.

On the other hand, suppose that the desired rule aggregation scheme is to be repre-
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sented by the disjunction OR. The IF-THEN rule statement would be as follows Eq. (3.19):

IF xis Middle — Aged OR y is Intense THEN z is Neutral (3.19)

and the membership function for the consequent would be defined as:

po(2) = max(pa(z), pa2(2), ..., o (2),), for z€ Z (3.20)

In this event, the OR operator specifies that the aggregated output is found via the union
of the antecedents. Meaning that that specific IF-THEN rule requires that at least one
antecedent is satisfied, and therefore the maximum fuzzified input is used by the inference
system to map a fuzzy output.

These systems can become quite elaborate as the number of inputs and outputs
increases. To present the rules of these fuzzy systems, one often uses what is called
a truth table. Generally speaking, a truth table is a way to showcase various fuzzy
compound propositions. The truth table for a single-input single-output fuzzy inference

system would have the following structure:

Table 3.1: Truth table example for single-input single-output fuzzy system

z 1 | To
Y1 || 21 | 22
Yo || 23 | 24

where z; refers to the output based on inputs x; and y;.
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3.3 Defuzzification Methods

One of the most important steps within any fuzzy system is that of defuzzification.
Defuzzification is the process in which fuzzy sets are converted to precise quantities, or
scalars. This step is of importance within fuzzy control systems because this operation is
responsible for turning fuzzy approximations to tangible/crisp numbers that can be used
to manipulate mechanical objects. As described by Timothy J. Ross [57], there are four
main defuzzification methods used in practice: (1) Max membership principle, (2) Mean
max membership method, (3) Weighted average method, and (4) Centroid.

The Max membership principle defuzzification method Eq. (3.21) is only applicable

when the height of membership functions is unique.

Maz membership principle : pa(z*) > pa(z) (3.21)

The Mean max method of defuzzification Eq. (3.22) is similar to the Max membership

principle, however it differs in that the maximum is not limited to a single point.

b
Mean max method : 2" = a;— (3.22)

The Weighted average method of defuzzification Eq. (3.23) is regarded as the more com-
putationally efficient method. This method, however, is usually restricted to symmetrical

output membership functions.

. 2 pa(?)-zdz

Weighted average method : 2= ——————(2)dz (3.23)
J s
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used in this study.

The Centroid method of defuzzification Equation (3.24) is the mostly used defuzzification
method. The Centroid method is used as the defuzzification method for the controller

pa(z) - zdz

Centroid method : Zr = f~—(z)dz (3.24)
J 1a

If graphically mapping IF-THEN rules Equation (3.17) and Equation (3.19), the aggre-

gate output will be as shown in Figure 3.8. Where the centroid method to defuzzify

the output for inputs of Age = 30 years and Activity Level = 6 is used and the risk of
cardiovascular disease is computed to be 37%.

IF

1)

ufy)

U

AND

uy)

OR

Activity Level, y

20 3 70
Risk of Cardiovascular Disease

|

Aggregate Output

Figure 3.8: Aggregate output for risk of cardiovascular disease example.
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Therefore, the following steps must be taken to establish a Mamdani-based fuzzy
controller: (1) have a clear understanding of the system and its dynamics, (2) determine
input and output variables, (3) create membership functions to represent the inputs and
outputs of the system, (4) set up the user defined IF-THEN rules, and (5) decide the

method of defuzzification that best suits the needs of the system in question.
3.4 Examples of Modeling With Fuzzy Logic

As mentioned in Chapter 1, fuzzy logic controllers can be found in many household items.
These include, but are not limited to, washing machines, toaster ovens, rice cookers,
Sony pocket computers, vacuum cleaners, etc. Appendices B and C go over examples
to give a better understanding on how fuzzy logic controllers are designed. In addition,
Appendix C gives a well-rounded overview on how different defuzzification methods are
used. This Appendix gives analytical solutions for the centroid, weighted average, and
the mean max methods of defuzzification while comparing them to MATLAB simulated

results.

37



CHAPTER 4

FUZZY CONTROL RESPONSE TO DISTURBANCES: TESTS AND RESULTS

The previous chapter introduced the theory behind fuzzy logic. This chapter will go over
the results gathered from the robustness testing of the fuzzy logic controller. The first
section of this chapter will give a description of the fuzzy logic controller. The second
section will explain the results of the internal disturbance testing. The third and final
section of this chapter will discuss the controller response to the external disturbance
testing.

As noted on Chapter 1, preceding work on the building by Joshua Baltazar showed
that the fuzzy logic controller that included the most information about the building
testbed system resulted in a controller that performed the best at keeping room temper-
atures close to their setpoints [62]-[64]. This work, however, will focus on examining the
robustness of the controller by conducting a series of experiments to assess its ability to
respond when internal and external disturbances are introduced to the control system.
For the purposes of this work, internal disturbances are defined as a perturbation that
is introduced into the system (i.e. the test building) whereas an external disturbance is
defined as a perturbation that is introduced to the system from outside its boundaries
(i.e. the external AC).

Three tests were done to examine the controller response to internal disturbances by
(1) two sudden changes in setpoint temperature, (2) a sudden change and (3) two sudden
changes in setpoint temperature while keeping different temperatures within each pair

of rooms. Similarly, two tests were conducted to test controller response to external
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disturbances. This was done by changing the temperature of the cold air delivered by
the external AC unit twice during a 90 minute testing period while (1) setting one
setpoint temperature for all rooms, and (2) setting individual setpoints for each pair of
rooms. The results presented in this chapter have been presented and published in the
9th Thermal and Fluids Engineers Conference (TFEC) [73] and in the 9th European

Thermal Sciences Conference [74].
4.1 Fuzzy Controller Description

For the thermal control of the building testbed, the key variables are the air flow rates,
V(t), and room temperatures, T(t). Therefore these variables will be used to build
membership functions to describe the dynamic state of the building testbed. Following
Baltazar et al. [63, 64], the overall control system has eight single-input single-output
(SISO) control loops, each illustrated in Figure 4.1. The control input from each fuzzy

controller is the air flow rate V(t), while the room air temperature T'(t), is the output.

Ear(t)

T, dE, Jdt y ildi
set AT [ Fuzzy Controller —»@& Actuator YW, Building ] TO)
IEATdt Testbed
T(t
® Sensor

Figure 4.1: Closed-loop fuzzy control.

Following the work of Pacheco-Vega and Ruiz-Mercado ct al. [75], all controllers are
built with a linear combination of information about the error between an user defined
setpoint, Ty, and the actual room temperatures, T,(1); i.e., Ear = Tyt — Tu(t), its
difference over time dEar/dt, and the integral of such error over a specified period of
time, [ Eardt.
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The corresponding membership function and fuzzy sets for Eap are shown in Fig-

ure 4.2. For Far the fuzzy sets has two trapezoidal and three triangular membership

functions in the range [-10, 10]°C. Noting that, to help the reader view the dominant

part of Ear, Figure 4.2 shows a truncated figure of the membership function range. The

corresponding linguistic variables are represented as NL (Negative Large), NS (Negative

Small), Z (Zero), PS (Positive Small), and PL (Positive Large).

NL

0.8

021

NS 7

PS

The membership function for dEar/dt is shown on Figure 4.3. In this case,

-0.5

0 ° 0.
B (CO)

Figure 4.2: Ear

1.5

the

membership functions for dEar/dt are composed of 2 trapezoidal and one triangular

membership functions in the range [-1.5, 1.5]°C/s. The corresponding linguistic variables

are represented as N (Negative), Z (Zero), and P (Positive).
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Figure 4.3: dEar/dt

Finally, the fuzzy sets for [ Eapdt are shown on Figure 4.4. The range for these
functions was set to [-10,10/°C-s, and the linguistic variables arc AN (Always Negative)
and AP (Always Positive). The fuzzy sets for the output angle O, has 5 triangular
membership functions in the range [0, 1.57] rad (where a7 = 0 rad defines a fully-closed
damper and O,y = 1.57 rad defines a fully open damper).

The set of inference rules are shown in Tables 4.1 and 4.2 where, in accordance with
Figure 4.2 - Figure 4.5, the values for the linguistic variable Ear, dEa7/dt, and f EArdt
are also written as ‘NL’, ‘NS’ ‘Z’, ‘PS’, ‘PL’, ‘N’, and ‘P’, with ‘NR’ representing a case
where a rule was not applied. To defuzzify the outputs and generate a crisp value to the
air flow actuators (dampers), the well-known Mamdani inference method [76] was used.
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Table 4.1: Decision matrix 1 for Oar. Table 4.2: Decision matrix 2 for

Oar.
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Figure 4.5: Oar

4.2 Results to Internal Disturbance

As previously mentioned, three comprehensive experiments where performed to assess
controller robustness and response to internal disturbances. This included (1) three
sudden changes in setpoint temperature, (2) one sudden change in temperature setpoint
while keeping different temperature setpoints in any given pair of rooms, and (3) two
sudden changes in setpoint temperature while keeping different temperatures within any
given pair of rooms. The following tests were repeated five times, all with similar results.
The HVAC air temperature shifts were observed throughout all tests and it was seen,
through the damper position, that the controller responded appropriately by adjusting

the damper angle accordingly.

43



The first experiment was conducted over a 110 minute time span, in which the con-
troller was subjected to three consecutive sets of temperature setpoints for all rooms in
the test-bed. The first set was fixed at Ty, 1 = 23.3°C for the first 30 minutes, then
changed to Ty 2 = 21.1°C from 30 to 60 minutes, and then changed to T, 3 = 22.2°C
from 60 to 110 minutes. The corresponding results from the experiment are shown in
Figure 4.6. Figure 4.6(a) shows the history of room temperatures in response to the
fuzzy controller, Figure 4.6(b) is the position of the damper, and Figure 4.6(c) is the
temperature of the air supplied by the HVAC.

It is observed from Figure 4.6(a), that the controller was able to bring the temperature
of all rooms to 23.3°C within a 6 minute time frame (from an initial value of 26.7°C),
and then maintain them within 1°C of the setpoint for about 10 minutes. It is also noted
that the temperatures of all the rooms were kept to within +0.2°C of each other. At
t = 30 minutes, the setpoint was decreased to Ty, o = 21.1°C, the controller was then
able to successfully help the rooms reach temperatures within +0.2°C of the setpoint
and 4+0.3°C of each other; this happened for most of the 30 minute period. Finally, at
t = 60 min, the temperature setpoint was increased to Ty 3 = 22.2°C. The response
from the controller was to close all dampers an allow the light bulbs to increase the
room temperatures, as seen on Figure 4.6(b). This process took 10 minutes due to the
relatively-low power of the light bulbs used. It is seen that for the remainder of the test,
the fuzzy controller was able to maintain the room temperatures within 0.3°C of the
setpoint and roughly within +0.3°C of each other.

It is to note that, though the fuzzy controller was able to reach and maintain the
rooms at different setpoints, there was some variability in the values and trends of room
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temperatures. For instance, from Figure 4.6(a), one can see that:

(1) around the 16-minute mark, a small but gradual decline in air temperature below
the setpoint, by about 0.3°C for seven rooms, and 0.5°C for Bottom Room 1,

occurred;

(2) at t = 36 min, a slight temperature increase which was followed by a larger one at

t = 54 min arose before the controller attempted to reach the new setpoint;

(3) a small decrease in temperature, with maximum temperature change of 0.5°C at
t = 90 min, followed by a small increase of 0.2°C at ¢ = 103 min, were present

before the experiment was concluded.

These trends seem to be in line with the changes in the temperature of the cold air
supplied by the HVAC, which is shown on Figure 4.6(c). For instance, in agreement with
the results above, (1) the downward slope of the cold air in Figure 4.6(c) is proportional
to the gradual decline in room temperature during the first 30 minutes of the experiment.
This change in cold-air includes a 17°C drop in air temperature, which the fuzzy controller
attempted to manage by adjusting the angle of the dampers as seen on Figure 4.6(b).
The increases in room temperature at t = 35 minutes and ¢ = 53 minutes are reflected in
the corresponding increase in cold air temperature supplied by the HVAC, which again
are much larger (close to 15°C) than those of the room temperatures in the building
testbed. From Figure 4.6(b), it is seen that the controller promptly responded to the
disturbance by opening the damper for Bottom Room 3; the room most effected by this

temperature change.
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Figure 4.6: Results for Internal Disturbance Test 1.
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The second internal disturbance experiment was conducted over a period of 60 min-
utes, where setpoint temperatures within the range of 22.2°C to 23.9°C were employed.
For ¢ € [0, 30] minutes, Top Room 1 and 2 were set to 23.9°C, Top Room 3 and 4 were
set to 23.3°C, Bottom Room 1 and 2 were set to 22.8°C, and both Bottom Room 3 and
4 were set to 22.2°C. The controller was programmed to change the setpoints at ¢t = 30
minutes, with Top Room 3 and Bottom Room 1 changed to 23.9°C, Top Room 2 and
Bottom Room 3 changed to 23.3°C, Top Room 1 and Bottom Room 4 changed to 22.8°C,
and both Top Room 4 and Bottom Room 2 changed to 22.2°C. The corresponding results
are presented on Figure 4.7. Figure 4.7(a) illustrates the history of room temperatures
in response to the controller, Figure 4.7(b) shows the damper position, and Figure 4.7(c)
shows the temperature trend of the cold air supplied by the HVAC. Figure 4.7(a) shows
that the controller successfully achieved the desired room temperatures, reaching their
respective setpoints within 5 min (from an initial value of 26.7°C) and was able to main-
tain them within +0.3°C from their respective setpoints. This figure also shows that
each pair of rooms was kept within 0 to 0.2°C of each other.

Once the setpoints changed at ¢ = 30 minutes, it took about 2 minutes for the rooms
to reach their new temperatures (Bottom Room 1 being the exception as it took 10 min
for an increase of 1.1°C). Figure 4.7 shows spikes in temperature for Top Room 4, and
Bottom Room 2 of +0.2°C at ¢ = 40 min and of +0.3°C at ¢ = 54 minutes. These
spikes correlate with the changes in temperature from the cold air supply delivered from
the HVAC (Figure 4.7(c)). The controller opens the damper in an attempt to bring
the temperatures in the rooms back down to their setpoint of 22.2°C, Figure 4.7(b).
The air temperature from the AC, however, is not cold enough and it is seen that the
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temperatures do not go back down to their setpoints until the air delivered from the AC
decreases again.

The similarities between the room and HVAC air temperatures become quite evident
when comparing Figures 4.7(a) and 4.7(c). For instance, the temperature decreases in
room temperatures at ¢ = 14, 33, 45, and 58 min all agree with the dips in temperature
presented in Figure 4.7(c). For these cases, the controller took immediate action and
either opened or closed the dampers, leading to either an increase or decrease in the

air-flow until the setpoint temperatures were met, as seen from Figure 4.7(b).
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The third test was conducted over a period of 90 minutes, this time the number of
setpoint changes was increased to three. The temperatures utilized in the second test
(Figure 4.7(a)) experiment were used for the period of ¢ €[0, 60] minutes. The setpoints
for ¢ €[60, 90] minutes were set as follows: Top Room 4 and Bottom Room 2 were set to
23.9°C, Top Room 3 and Bottom Room 4 were set to 23.3°C, Top Room 2 and Bottom
Room 1 were set to 22.8°C, and both Top Room 1 and Bottom Room 3 were set to
22.2°C. The corresponding results are shown in Figure 4.8, with the time evolution of
room temperatures illustrated in Figure 4.8(a), Figure 4.8(b) shows the damper position,
and the temperature of the cold air supply from the HVAC is shown in Figure 4.8(c).

It is seen that it took about 4 minutes for all rooms to reach their setpoints, with
the temperatures for each pair of rooms being kept within £0.2°C of each other. From
here it is apparent that the controller was capable of keeping the room temperatures
close to the setpoints, the exception being the two major drops of -0.4°C for Top Room 2
at ¢ = 47.7 min and of -0.5°C for Bottom Room 1 at Ty; = 22.9°C. During that time
period, the controller had no trouble in keeping the temperatures of Bottom Room 1
and Top Room 4 close to their Ty, = 22.2°C, indicating that the light bulbs struggled
to provide enough heat to keep the corresponding rooms at Ty, = 23.9°C. As shown in
Figure 4.8(b), the controller corrected for this by shutting the dampers in those rooms,
which allowed the rooms to increase in temperature and reach 23.9°C.

During the time interval of ¢ €[60, 90] minutes, it is observed that the controller
managed to keep the temperatures close to their respective setpoints. As expected, it took
longer for Top Room 4 and Bottom Room 2 to reach Ty, = 23.9°C from a temperature

of 22.2°C. Likewise, a temperature undershoot is seen for both Top Room 2 and Bottom
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Room 1 at t = 70 minutes (which parallels the drop in temperature of the HVAC air
supply Figure 4.8(c)). The controller acted accordingly by slightly closing the dampers
to these rooms, thus allowing their temperatures to increase and reach T, = 22.8°C. As
previously discussed, from Figures 4.8(a) and 4.8(c) it is easy to see that there is a link
between the temperatures in the rooms and the cold air delivered by the HVAC. The
temperature decreases in the room temperatures on Figure 4.8(a) agree with the sudden
drops seen on Figure 4.8(c) at t = 17, 47, 70, and at 90 minutes. When comparing
Figure 4.8(a), Figure 4.8(b), and Figure 4.8(c), it is clear that the controller opens and
closes the dampers in respect to the HVAC air temperature and the temperature setpoint.
The damper angle mirrors the HVAC air temperature trend. The controller opens the
dampers when the HVAC air temperature rises, and begins to close them as the air

temperature decreases.
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4.3 Response to External Disturbance

Aside from assessing the ability of the controller to reject internal disturbances, it is
just as important to determine its handle of external disturbances. In such case, when
examining full-scaled buildings, this may take the form of climate changes, unforeseen
thermal loading changes due to an influx or outflow of visitors, and changes in inhabitant
area temperatures due to an increase in use of electrical appliances. Therefore, two tests
where done to simulate the increase and decrease of temperature variances due to external
disturbances. The first of these tests involved multiple changes in HVAC temperature
setpoints while keeping (1) an uniform setpoint temperature across all rooms,; and (2)
differentiating temperatures across any pair of rooms in the building. As it was the case
with the internal disturbance tests, the following tests were conducted numerous times.
All of the tests gave similar results and the HVAC air temperature fluctuations where
observed throughout all tests.

The first of the external disturbance tests was conducted over a period of 90 minutes.
Figure 4.9 shows the results for the first external test, with Figure 4.9(a) presenting
the room temperatures, Figure 4.9(b) shows the damper position, and Figure 4.9(c)
shows the temperature of the air delivered by the HVAC. During this time frame, the
setpoint temperatures in all eight rooms were kept at T, = 23.3°C. The outflow HVAC
temperature was set to 18.9°C for the first 30 minutes of testing, it was then changed to
18.3°C within the period of t €[30, 60] minutes, and finally it was changed to 19.4°C for
the remainder of the test. It took about 3 minutes for all the rooms to reach the setpoint

temperature. The rooms experienced a slight under-damping at t= 3.5 minutes, which
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was followed by a small increase in temperature until the rooms reached the setpoint. As
seen from Figure 4.9(b), the controller immediately corrected for this by briefly closing
the dampers. At t = 15.8 minutes, the temperatures in the rooms dropped by 0.3 degrees
uniformly before rising again from ¢ €[15.8, 30] minutes.

From times ¢ €[30, 60] minutes, it is seen that the temperatures across all rooms
experienced significant decreases in response to the manual decrease in AC temperature.
It is seen that the controller attempted to correct for this by closing the dampers. The
exception being that of Bottom Room 2, where it is seen that the damper for this room
opens and closes. This may be an indication that both Bottom Room 2 receives a lower
amount of airflow than what Top Room 2 and Bottom Room 1 receive. As expected,
it took Top Room 2 and Top Room 3 considerably longer to increase in temperature
and reach T, = 23.3°C. From here, we see that the controller was able to keep the
temperatures within the rooms about £0.1°C from the set point.

It is seen that from 60 to 90 minutes, the rooms in the building heat in accordance
with the deliberate AC temperature change. Figure 4.9(b) shows that the dampers
open accordingly. The air temperature delivered by the HVAC is heating, therefore the
controller opened the dampers to allow more air into the rooms to bring their temperature
to the setpoint. However, since the being delivered by the HVAC was warm, the controller
continued to open the dampers wider. The test only lasted for 90 minutes, therefore it
is speculated that the controller would have of continued to open the dampers in an

attempt to decrease the temperature in the rooms.
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The second external disturbance test was run for a period of 90 minutes. The setpoint
temperatures were set within the range of 22.2°C to 23.9°C. With Top Room 1 and 2 set
to 23.9°C, Top Room 3 and 4 were set to 23.3°C, Bottom Room 1 and 2 set to 22.8°C, and
both Bottom Room 3 and 4 set to 22.2°C. As with external disturbance Test 1, the HVAC
air temperature was set to 18.9°C for the first 30 minutes, it was then changed to 18.3°C
for ¢ €[30, 60] minutes, and then set to 19.4°C for the remainder of the test. Figure 4.10
shows the results for this test, with Figure 4.10(a) displaying the temperatures in the
rooms, Figure 4.10(b) presents the damper position, and Figure 4.10(c) shows the air
temperature delivered by the external HVAC.

From Figure 4.10(a) it is seen that the rooms in the building were able to reach their
setpoint temperatures within 5 minutes of the test start time. The room temperatures
begin to drop when the HVAC air temperature is set to 18.3°C, this is especially evident
for Top Rooms 1 - 4 and for Bottom Rooms 1 and 3. As with the first external disturbance
test, the temperature drop in Bottom Room 2 was not as severe. This, again, may be due
to an uneven air distribution across the rooms. Figure 4.10(b) shows that the damper
corresponding to Bottom Room 2 was was being opened and closed by the controller.
This means that the air temperature within that room was close enough to its setpoint
that the controller was trying to maintain that temperature. Bottom Rooms 3 and 4 did
not experience an extreme drop in temperature like the rest of the rooms. This suggests
that T,; = 22.2°C is within the control limits of FLC3 at an HVAC air temperature of
18.83°C.

From Figure 4.10 we see the temperatures in the rooms increased once the HVAC

air outflow temperature was increased to 19.4°C. It is apparent that it took Top Room
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2 twice as long than Top Room 1 to heat up enough to reach its setpoint and when
examined closely it is noted that at t = 60 minutes, Top Room 2 was -1.7 degrees away
from T, = 23.9°C whereas Top Room 1 was -1.0°C away. In addition, it is observed
that from ¢ €[60, 90] minutes the temperatures across all rooms rose linearly, and thus
it is hypothesized that the temperatures would have kept increasing if the test would
have been allowed to run longer. As with the previous tests, the HVAC air temperature
shown in Figure 4.10(c) agrees with that of the room temperature plot illustrated on
Figure 4.10(a). The external disturbance of the HVAC unit, however, does not impede
this controller from correcting for the temperature variances experienced in each room.

As with the previous tests, the damper angle follows the same trend as the air tem-
perature delivered by the HVAC. At the start of the test, the dampers are opened mo-
mentarily before the controller partially closes the dampers for the rooms with the higher
setpoint temperatures. Looking at Figure 4.10(b), it is important to note that for the
paired rooms Bottom Room 3 and Bottom Room 4, the controller opens the damper
wider for Bottom Room 3 than it does for Bottom Room 4. This may indicate that
Bottom Room 3 and Bottom Room 4 do not receive the same amount of airflow. This
behavior is also reflected on both the damper positions for Top Room 1 and Top Room 2.
It is seen that for these pair of rooms, the controller opens the damper wider for Bottom

Room 2 than for Top Room 3.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

5.1 Conclusion

Temperature control of multi-room commercial and residential buildings is essential to
ensure thermal comfort of occupants and to reduce energy usage. However, control laws
commonly used lack robustness and therefore may not be suitable strategies for thermal
control in buildings. In previous work [63, 64], it has been demonstrated that controllers
based on fuzzy logic are a viable alternative because of their reliance on information from
human experience and knowledge of system operation. In this work, the idea has been
expanded to test the robustness of a fuzzy controller that is built with information about
room temperature error, its derivative and its integral, and assessed its ability to deal
with internal and external disturbances.

The results from these tests showed that the fuzzy controller is very robust as it
was able to maintain the temperatures in the rooms very close to the corresponding
setpoints, despite changes in the setpoints and changes in the temperature of the air
supply. However, details in the trends in room temperature clearly show that the external
HVAC unit places a crucial role in the control process of the building testbed. These
tests show that the HVAC supply air temperature to be oscillatory in nature and provides
additional external disturbances to both test types listed on this document. The HVAC
air temperature behavior was unaccounted for during the development of this controller.
However, even under these extreme conditions, the results demonstrate that the fuzzy

controller is able to regulate the temperature of all rooms.
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5.2

Future Work

Although these results have proven that the fuzzy logic controller is able to respond

accordingly to internal and external disturbances, there are a few important aspects of

this system that have yet to be explored.

(1)

(3)

It has been proven in this work and in [63, 64] that this fuzzy logic controller is
robust and able to maintain temperature setpoints within the multi-room building
test-bed while being subjected to internal and external disturbances. Now that
this has been established, it is important to compare electrical energy consumption
of this fuzzy controller with that of a controller that uses an industry “approved”
control methodology, such as PID. By performing an energy consumption analysis
we can get a better idea of the potential energy savings that fuzzy controllers have

when utilized in building HVAC systems.

As is, the building is subjected to additional external instabilities, such as the
temperature within the laboratory. The temperature within the laboratory changes
with the season and therefore adds an additional challenge when running tests.
This makes it so that the external HVAC unit acts on its own, as it has its own
internal thermocouple, and either increases or decreases the output air temperature
without prompt. In this case, the building and external HVAC system would need
to be enclosed to isolate them from the surrounding environment. By doing this,
the building surroundings can be controlled and therefore can be made to depict

different climates; such as sunny and windy.

As mentioned in the results section, the air delivered to these rooms is not evenly
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distributed among the whole building. To begin, it has to be confirmed whether the
pressure sensors are calibrated correctly. The pressure sensors used in this system
were purchased through the Sensirion website and are named Sensirion SDP816-
500Pa Analog. They have a linear configuration with a voltage to differential

pressure relationship of [77]:

750 X Ay

DP
%

— 150

where D P refers to the differential pressure, A,,; is the AC Arduino voltage, and

V' is the Arduino pin voltage.

Implement an on-off controller to release some of the stagnated air out. The current
duct design allows for air to stagnate between the AC outlet and the closed dampers,
it would be beneficial to implement valves that would open when the dampers are

closed, thus allowing some of that trapped cold air to escape.
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Appendix A
Using MATLAB and LabVIEW to Operate the Sub-scaled Building Test-bed Fuzzy
Controller

(1) First open the InstaCal software (a) Figure A.1.

Figure A.1: Step 1.

(2) Upon opening the InstaCal software, a pop-up box titled “System Modifications
Required” will prompt you to update utility for USB devices. Select “No”, Fig-

urc A.2.

(3) Select the “Calibrate” button and calibrate boards 1 - 5, Figure A.3.

(4) Open the VPSEmulator software (b), Figure A 4.

(5) Open the VPSEmulator software window. Select “Device” and “Create”, Fig-

ure A.5.
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System Modifications Required

The USB devices listed below are or have been connected to this
computerWe strongly recommend running the HID registry update utility
forthese USB devices to operate properly with regard to power
management on windows 8.1 or later .

USB-ERB24
USB-TC

‘Would like to run the HID Registry Update

=

Figure A.2: Step 2.

B instaCal

File Install Calibrate Test Help

0K K T

ot ok F ] )
O R G AD D/ =
B PCBoard List
BE- AL} Universal Serial Bus

@8 Board# 0- USB-ERB (56)

& Board# 1-UsB-TC (16)

B Board# 2- USE-TC (10) Board Calibration: USE-TC (seriak 1DE4413)

B Board#3-USB-TC (39

[ Board#4- USB-TC (206)
[ Board# 5- USB-TC (108)

Figure A.3: Step 3.

(6) The “Specify device type” window will prompt you to select a device. Select “Con-

nector”, Figure A.6.

(7) Open the MATLAB file that contains the controller. At the time of writing this
document, the name of this file is “FLC3_Controller_velocity.m” and can be found

in Anayely Saguilan-Files — FLC3, Figure A.7.

(8) Once the .m file is open, find the name of the serial port listed. In VPSEmulator,

73



Figure A.4: Step 4.

. Virtual Serial Ports Emulator (Emulation started)
Fle View language Emulation | Device | Help

- E " \ﬁ Cedte. |

Title ‘ Status

)
¥

http:/fwww.eterlogic.com Vi

Figure A.5: Step 5.

select the virtual serial port that matches the MATLAB serial port. In this case,

the serial port listed in the file is “COM5”, Figure A.8.

(9) VPSEmulator can now be minimized Figure A.9.
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. Virtual Serial Ports Emulator (Emulation started) Specify device type

Fle View Llanguage Emulaion Device Help

@ [r]n e €
Title I E Unllike reqular serial port, cannector is a virtual

device that can be opened twice, When opened, it
creates data pipe between its clients, That allows
separate applications use the same serial port to
exchange data.

2 2

‘ g Mew serial port g Existing serial port 2 Client application

ek [ MNets | Caed | Hep

Figure A.6: Step 6.

Hmmm—— ] FLLS_Lontroller.m & 124/ 2048 323 FM MAILAE Lode £ Kb

| Pictures + B FLC3 Controller_rg.m 2/12/2024 5:25 PM MATLAB Code 35K
11324 » ﬂ FLC3_Controller_velocity.m 2/14/2024 2:28 PM MATLAB Code 35KB
22024 + D FLC3bfis 2/12/2024 5:25 PM FIS File 2 KB
L. 1 Plotem 21272074 535 PM MATI AR Code KR

Figure A.7: Step 7.

131 =
132 pause(1); =
133 end =
134 H
Ez Kcadests. connect tos el pf I Virtual Serial Ports Emulator (Emulation started)
137 Specify device characteristics
138
139 set(se, " InputBuffersiz|  yinal serialport
140 on
141 set(se,'FlowControl®, '] 1M [ Status
142 set(se, 'BaudRate ", 9600) ém; A
— | set(se, 'Parity’, "none'| |coms
vl set(se, ‘Dataits',8); | [ENEEG—
145 set(se, 'StopBit',1); Emg
146 set(se, 'Tineout',1.5);| |coms
147 icom10
148 disp(get(se, 'Name')); Em};
—— 149 prop(1) = (get(se,'8au{ |comi3
150 prop(2) = (get(se, 'Dat{ |COM14
151 prop(3) = (get(se,'stoj (COMIS hd
152 prop(4) = (get(se, ' Inp
153
154 disp([num2str(prop)]);
155
Clf s tic
alue 157 i=1;
158 <Back Finish Cancel
159 templist = []; RXopens =
160 Position = [];
161 voltage = [];
162 pressure = [];

Figure A.8: Step 8.

(10) The following message will appear once VPSEmulator has been minimized, Fig-

urc A.10.

(11) Open “Labview2matlab_multi-room_ANA.vi”. This vi is responsible for turning
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(12)
(13)

(14)

(15)

Virtual Serial Ports Emulator (Emulation started) ] X

File  View Language Emulaton Device Help

s |leln ® & h o .
Figure A.9: Step 9.

3 Virtual Serial Port Emulator GUI application

Virtual Serial Ports Emulator

Figure A.10: Step 10.

the light bulbs in the building on and off and for gathering the temperature data

from each room, Figure A.11.

=/ Pictures \gﬁ. Labview2matlab_linearregression_multi-r...  2/12 LabVIEW Instrume. 115KB
B Videos =), Labview2matlab_multi-room_ANA.vi LabVIEW Instrume... 17KB
05 (C) t motortesting.m MATLAB Code 2KB

Fs

Svstem Dvnamics Open Close mod.m MATLAB Code 58KB

Figure A.11: Step 11.

Open the virtual serial port that was created in step (6), Figure A.12.

Click the white arrow on the top left corner to run the vi, Figure A.13.

Click on the buttons to turn the light bulbs on (or off). Notice that the button will

turn green if that light bulb is in operation, Figure A.14.

I use the “Heating_Dynamics.m” (found under Anayely Saguilan-Files — Tests for
Dynamics_ana — Heating) to keep track of how much each room is heated. The
MATLAB program containing the fuzzy controller (“FLC3_Controller_velocity.m”)
can be run once all rooms are heated to the temperature needed. Once the rooms
have been heated, the controller “FLC3_Controller_velocity.m” can be run. The
external AC will have to be manually turned on, Figure A.15.
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Figure A.13: Step 13.

(16) Once testing is complete for the day: Make sure to ALWAYS turn off the power

supply to the computer, AC, DAQ boards, and Arduinos. Do this by switching the
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VISA resource name 634009 o272,
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oy TRD3 BRD3
m 61.9340 622222
TRD4 BRD4
62.0261 623964
AC Duct ‘Ambient
1646290 l63.2829
TOP FLOOR - DEV 2 |
Top-Room1  Top-Room2  Top-Room 3 Top-Room 4
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Figure A.14: Step 14.
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Figure A.15: Step 15.

extension cords to “OFF”.
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Appendix B

FUZZY LOGIC INFERENCE SYSTEM FOR SINE FUNCTION

B.1 Abstract

The objective of this example was to develop a fuzzy rule-based system by using four
simple fuzzy rules to approximate the output y of the function y = 10sinz;. The
model for this function was built using the Fuzzy Logic Toolbox (found in the MATLAB
software) with the Mamdani inference method and the centroid method of defuzzification.
A set of five membership functions where used to describe the input variables whereas
one triangular and two trapezoidal membership functions were used for the outputs for

y. The model created produced a set of outputs, y , that resembled a sine wave.
B.2 Problem Introduction

Unlike classical logic, Fuzzy Logic was created as a way to model vagueness through
the graded approach, or in other words, the use of membership between an object and
its property. This approach in solving for ambiguity lends itself to be useful in that it
mimics human rational through the use of linguistic variables to approximate solutions
for models without the use of mathematical modeling.

As such, for this example we used the fuzzy logic approach to create a model that
approximates the y = 10sinx; plot. The variable z; will be set within the interval of
-190°, 190°] while the output variable y is set within the range [-15, 15]. The input
variable is to be divided into five membership functions that indicate the scale in which

input x; belongs to that respective linguistic variable (Table B.1).
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B.3 Solution Plan

There are three imperative steps that need to be taken to solve any fuzzy logic system:

(1) Fuzzify crisp inputs through the use of membership functions and rule based sets

(2) Identify the max or min inference of each membership function

(3) Deffuzify the membership functions’ inference through the use of the max member-
ship principle, centroid method, or the weighted average method to produce crisp

outputs

B.4 Fuzzification

This model uses triangular membership functions to fuzzify the crisp inputs for x;. For
this, the input variable x; was set within the interval of [—190°,190°]. For the output
variable y, it was decided that one triangular membership function and two trapezoidal
membership functions were to be used. The output variable y was set within the range
of [-15, 15]. Following the solution given in the text book Fuzzy Logic with Engineering
Applications [57] , the range x; was divided into 5 membership functions whereas y was
divided into 3.

Table B.1 shows the names given to the membership functions for z;. NB (Negative
Big) was created so that all the crisp angles -223.4 to -90 have some membership within
the Negative Big set. It follows that NS (Negative Small) encompasses all angles from -180
to 0, Z (zero) encompasses angles from -90 to 90, PS (Positive Big) encompasses angles

from 0 to 180, and PC (Positive Big) encompasses angles from 90 to 236 (Table B.2).
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Table B.1: Membership function name designation for inputs.

Abbreviation | Linguistic Variable
NB Negative Big
NS Negative Small
Z Zero
PS Positive Small
PB Positive Big

Table B.2: Membership function name designation for outputs.

Abbreviation | Linguistic Variable
Neg Negative
Zero Zero
Pos Positive

Table B.3: Membership of x; in sets NB, NS, Z, PS, and PB.

Membership Function | Degree of Membership
NB P gk (1) €[-223.4 -90]
NS pnsk (1) €[-180 0]
Z pizs (1) €-90 90]
PS ppsk(x1) €[0 180]
PB ppp (1) €[90 236]

These rules where input into Matlab’s Fuzzy Logic Designer (Figures B.1 - B.5):
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-
[#] Membership Function Editor: mambaniexample — a >
File Edit View
Membership function plots petpon 181
FIS Variables 3 T T E T E T T T
NB NS Zz PS PB
1
05 3
0 1 1 1 1 1 1 1
-150 -100 -50 0 50 100 150
input variable “input_x_1"

[-190 190]
[-190 190]

Figure B.1: Parameters for membership function NB.
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Membership Function Editor: mambaniexample — O b
File Edit View
Memb function plots peten 8
FIS Variables . . i Spitnctionplon . .
NB NS z PS PB
& '
input_x_1
o 0.5 i
input_2
o 1 1 1 1 1 1
-150 -100 -50 o 50 100 150
input variable "input_x_1"

[-180 -90 0]
[-190 190]

o e

Figure B.2: Parameters for membership function NS.
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Membership Function Editor: mambaniexample — O b
File Edit View
Memb function plots peten 8
FIS Variables . . i Spitnctionplon . .
NB NS z Ps PB
& '
input_x_1
o 0.5 i
input_2
o 1 1 1 1 1 1 1
-150 -100 -50 o 50 100 150
input variable "input_x_1"

[-190 190]

[-190 190]

Figure B.3: Parameters for membership function Z.

84



Membership Function Editor: mambaniexample — O b
File Edit View
Memb function plots peten 8
FIS Variables . . i Spitnctionplon . .
NB NS z PS PB
& '
input_x_1
o 0.5 i
input_2
o 1 1 1 1 1 1
-150 -100 -50 o 50 100 150
input variable "input_x_1"

[0 90 180]
[-190 190]

o e

Figure B.4: Parameters for membership function PS.
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4. Membership Function Editor: mambaniexample — O >

File Edit View

Memb inetioninl plot poinis: 181
FIS Variables ! ship ILIHC'! ion pl oi;s |

NBE NS z ps cE

input_x_1 output_y
0.5 - ,
input_2
o]
-150 -100 -50 o 50 100 150

input variable "input_x_1"

[90 180 190 236]
[-190 190]

[-190 190] I

Figure B.5: Parameters for membership function PB.

The degree of membership for the outputs y within the membership functions listed

on Table B.2 are listed on Table B.4.

Table B.4: Membership of y in sets Neg, Zero, and Pos.

Nez | gy (7 €FT0 0
Zero | (i, (x1) €-10 10]
Pos |k, (x1) €[0 19]

These membership functions for y where input into Matlab’s Fuzzy Logic Designer

(Figures B.6 - B.8):
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@ Membership Function Editor: mambaniexample _ o =
File Edit View
M P — b 181
FIS Variables . : ship function p ots '
Meg Zero Pos
XX '
input_x_1
i 0.5 - |
input_2
0 T - ;
-15 -10 o7 o 15 o
output variable “output_y*

[-19 -18.9 -10 0]

E—

e

Figure B.6: Parameters for membership function Neg for the outputs of y.
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Membership Function Editor: mambaniexample — O b

File Edit View

Memb function plots petrem 181
FIS Variables . : ship Il.-l ion pl i .
; ; ; ; = Zero Pos
input_x_1
input_2

L |
-15 -10 -5 o 5 10 15
output variable “output_y"

Figure B.7: Parameters for membership function Z for the outputs of y.
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4. Membership Function Editor: mambaniexample — O >

File Edit View

FIS Variables : M ship il'l-lm:'tlon plots .

input_x_1 output_y

XX

input_2

I n | !
-15 -10 -5 o 5 10 15
output variable "output_y"

[0 10 17.4 19]
[-15 15]

Er—

Figure B.8: Parameters for membership function Pos for the outputs of y.

Since this problem requires two sets of inputs, the second set of membership functions,
input, will be defined in the same manner as the membership functions of input,;.

Next, the Rule table was defined for the inputs x; and the outputs y.

Table B.5: Rule Table

IF x1 is Z or PB, THEN y is Z
IF 2, is PS, THEN vy is PB
IF 24 is Z or NB, THEN y is Z
IF z, is NS, THEN y is NB

= W DN =

Which looks like Figure B.9 when represented in Matlab’s Fuzzy Designer.
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{4\ Rule Editor: mambaniexample — O X

File Edit View Options

—

1. f {input x 1is Z) or (input 2 is PB) then {output v is Zero) (1)
2. If (input_x_1 is PS) or (input_2 is PS) then (output_y is Pos) (1)
3. If (input_x_1 is Z) or (input_2 is NB) then (output_y is Zera) (1)
A If (input_x_1 is MS) or (input_2 is NS) then (output_y is Meg) (1)

Figure B.9: Fuzzy Rules for Defuzzification

B.4.1 Membership Function Inference

In order to identify the inference of each membership function, one has to first determine
whether the rules that govern the fuzzy system define a conjunction or a disjunction
of inputs and outputs. To further analyze this system, the graphical rule base section
within the Fuzzy Logic Designer will be explained.

Figure B.10 shows a graphical representation of the rule sets and defuzzification,
where the first two columns represent the graphical inference for the rule base used for
this solution. The last column shows the maximum fuzzy consequents of the rules.

The filled-in yellow triangles for the shown inputs [45 , 180] in the Input window
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show that the rules 1 - 3 were activated. Meaning that since the input 45 falls under
the membership functions that encompass Zero and Positive Small, then rules 1 and 3
satisfy this input. For the second input, 180, falls under membership function Positive
Big, therefore rule 1 applies to this input ( notice that rule 1 was the only rule activated

in Figure 4 for an input of 180).

rT Rule Viewer: mambaniexample - a x

File Edit View Options

input_x_1=45 input_2 =180

N
AN

-190 190 -190 190

Input: Plot points: Move:
Py [45:180] o poiis 101 ove left | right

Opened system mambaniexample, 4 rules ‘

Help Close ‘

Figure B.10: Membership Propagation and Defuzzification.

As an example lets take Rule 1, which is defined in Figure B.11. Lets assume that
inputzy is equal to 80 and input, is equal to 135. Referring back to Table B.5, where it

states that for Rule 1:

IF 2y is Z or PB, THEN y is Z
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paying extra attention to the disjunction “OR”. In this case, we use the max-min
Mamdani implication method of inference which in this case is defined as,
pr (y) = max(min |y (inputal), p (input2)))

input_x_1= 80 input_2 =135
output_y = 5.36

Figure B.11: Rule 1

Since Rule 1 is governed by “OR”, the maximum of each triangular inference with
crisp inputs are taken to be inputxr; = 80 and inputy = 135. The maximums of pp are
shown by the red lines. The triangle in the last column is the consequent of the inputs

according to Rule 1.
B.4.2 Defuzzification

For this solution, the method of defuzzification chosen was the centroid method. The

centroid method for defuzzification is defined as follows:

cy) - yd
Y= ”Nf(y—:gyy(y)dy

Where:
S pc(y) - ydy — The aggregated consequents of rules 1 - 4
[ e — The maximum each triangular membership function

y* — The crisp output y
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The following figure shows the deffuzified results. Noticing that the red line in the
figure shows the centroid of the aggregated outputs for the four rules. The centroid
demonstrated in Figure B.12 corresponds to the crisp output shown in Figure B.11;

output, = 5.36

-15 15

Figure B.12: Defuzzified results for inputs (80 , 135).

The total fuzzy system is shown in Figure 7.

OO

input_x_1 (5) mambaniexample

3 4 rules
M | o

input_2 (5)

System mambaniexample: 2 inputs, 1 outputs, 4 rules

Figure B.13: Mamdani system for problem statement.
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B.5 Results

The 3D surface results for this simulation are accessed through the Surface tab under

View. The following Figure shows the 3D surface view for this simulation.

@ Surface Viewer: mambaniexample — ] X

File Edit View Options

Figure B.14: 3D surface view.

To get a better idea of how the function y = 10sinx; is represented through this
fuzzy logic simulation, we will take the inputs [-180 -135 -45 45 135 180] and examine
the solution plot (Figure B.15). Note that there were two sets of inputs used to generate
the fuzzy logic simulation through the Matlab Fuzzy Logic Designer, to generate the
following plot through the Matlab Workspace the following matrix of inputs was used:
inputs = [-180, -180;-135, -135; -45, -45; 45, 45;135, 135; 180, 180].

The fuzzy logic solution resembles a sine function, which comes to a surprise since
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there where only five membership functions used to generate the solution curve. It is also
fascinating that even though the sine function was not used in the making of the input
membership functions or the output membership functions, the fuzzy logic toolbox was
still able to generate a plot similar to what we would expect when plotting the answer

for the sine trig function.

Simulation Solution for inputs X1
10 T T T T T T T

Outputs y
=

10 | | I | I I I
-150 -100 -50 0 50 100 150

Inputs )(1

Figure B.15: Output for input values x1.

The next question question to be examined is, what happens when the rules for this
system are increased? It would be logical to conclude that since the fuzzy logic controller
is being fed more information in the form of membership functions and rules, that the
outcome would be more refined. As an example, take the following plot (Figure B.16),
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notice how the plot in green resembles a sine wave closer than to that of the red plot.

Therefore it is concluded that increasing the amount of information that is fed into fuzzy

systems translates to more accurate results.

Simulation Solution for inputs x1
T T T T
— =1 OsiNX

T
Textbook solution

16 [~

Outputs y

I I
100 150

-20 .
-150 -100 ]
Inputs X1

Figure B.16: Comparison of plots.
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B.6 Appendix

Figure B.17 shows the rules that where added to the original fuzzy system to plot a graph

that more closely resembles y = 10sin x;.

Rule Editor: mamdaniexample2 — [m) >

File Edit View Options

If (input 3 1is NB) { S X )
- W (input_x_1 is NB) or {input_2 is M) then {output_y is Megs) (1)

1
2
3. If (input_x_1 is NS) or (input_2 is MNS) then {output_v is Neg) (1)
4_If (input_x_1 is NS) or (input_2 is MZ) then (output_y is Meg) (1)

5. If (input_x_1 is NZ) or {input_2 is NZ) then {output_y is MNegs) (1)
6. If (input_x_1 is Z) or (input_2 is Z) then (output_y is Zero) (1)

7. If (input_x_1 is PZ) or (input_2 is PZ) then (output_y is Poss) (1)
B. If {input_x_1 is PZ) or (input_2 is PS) then (output_y is Pos) (1)

9. I (input_x_1 is PS) or (input_2 is P) then (output_y is Pos) (1)

10, i {input_x_1 is PB) or (input_2 is PB) then {output_y is Poss) (1)

Figure B.17: Added rules.
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Appendix C
FUZZY LOGIC EXAMPLE OF HEAT EXCHANGER MODELING
This appendix provides details of the fuzzy logic modeling process of a heat exchanger.
This example has been taken from the Fuzzy Logic with Engineering Applications by

Timothy J. Ross [57].
C.1 Abstract

The objective of this example was to use a fuzzy logic model to determine the size of a
heat exchanger in which benzine is to be heated. Solving this problem required the use of
three fuzzy logic inference methods: Mamdani, Sugeno, and Tsukamoto. The same three
rules were used for each of these models and the final computed sizes where compared. It
was found that using Mamdani graphical method resulted in the largest heat exchanger
size, AU = 7500 kW /K, where as the Suegeno method of inference gave the lowest result

AU = 5282.58 kW/K.
C.2 Problem Introduction

This example problem introduces fuzzy logic as a means to design a heat exchanger. The
heat exchanger design equation ) = AUAT},, where the subscript “In” stands for the
log mean value of the temperature difference, which is used to solve for A (area) and U
(heat transfer coefficient). The heat exchanger presented in this problem statement is
to heat Benzine using saturated pressure at 68.96 kPa and at a temperature of 362.7K.
The initial temperature of the Benzine is set to 17°C and the following model is used to

determine its size:

Ts_ﬂ
AU:wcpln( AT )7
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where the heat capacity of Benzine is given as ¢, = 1.7543 kJ /kg K and T, — T = 72.55 K.

Condensate
T

5

Benzene stream
T, initial benzene temperature
w, benzene flow rate

Benzene stream “

T,

L

I,

Figure C.1: Heat exchanger design [57].

C.3 Analytical Solution

The following rules where used to describe the relationship between the size of the heat

exchanger, AU, to the flow rate, w, and the temperature, AT, of the Benzine:

(1) If wis A7 (large flow rate) AND AT, is A?(small approach)

THEN AU is A (large heat exchanger)

(2) If wis A} (small flow rate) OR AT,,, is A3(large approach)

THEN AU is B? (small heat exchanger)

(3) If wis Al (small flow rate) AND AT, is A}(small approach)

THEN AU is B! (large heat exchanger)

where w = 1300 kg/s and AT,,, = 6.5 K.
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C.3.1 Mamdani Method

The Mamdani method of inference states that:

N’Ek (AU) = m]?‘X(mln[lu’Alf (’LU), :U’Al_f (ATCLPP)])7 k= 17 27 3

Or when expressed in the rule based form:
(1) pw NaT,, (AU) = min|p, (1300 kg/s), par,,, (6.5 K)|
(2) pw NATL,, (AU) = max|[,(1300 kg/s), par,,, (6.5 K)]

(3) tw NATL,, (AU) = min|u, (1300 kg/s), ar,,, (6.5 K)]

where A¥ and A% correspond to the first and second antecedents of the rules 1-3 and B*

refers to the consequent of AY and A5.

The disjunction “OR”, which is defined by the maximum of a membership func-
tion, states that only one of the antecedents has to satisfy the rule base. The conjunc-
tion “AND”, defined by the minimum of a membership function, requires that both

antecedents have to satisfy the rule in question.

It is seen from Figure C.2 that the consequent of Rule 1 is 0.25. When looking closer at
Figure C.2, it is apparent that the membership of AT = 6.5 K within p(AT,,,) is greater
than that of w=1300 kg/s within u(w), but since we are taking the minimum consequent
of Rule 1, we pay no attention to the larger degree of membership of AT because of the
conjunction “AND” that defines Rule 1. The same goes for the consequent of Rule 3,

this time the membership of AT is used because it has less of a degree of membership
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Rule 1

(W) I («ﬂ.Tum,} AL
T T T T wikegs) T T T Al (K ot AV imkWimTK)
1000 15040 2000 0 5 10 0 10000 20000
Rule 2
piw) (AT 500 WAL
e N 0.5 | .
= (kgfs)—f AK) AU (m?kW/m’K)
1000 15040 2000 0 1000 20000
Rule 3
W) (AT ) Al
__________________ 025 |
Y rrew kg/s) T T T T T T T T Al (K) = AU (m’kW/im®K)
1000 1 5010 2000 0 5 10 0 10000 20000

Figure C.2: Mamdani graphical inference [57].

within its antecedent than that of the flow rate w. Rule 3, however, is defined by the
disjunction "OR” and therefore the maximum degree of membership is used to find the
corresponding consequent.

The process of defuzzification yields crisp outputs from fuzzy sets and rule-based
membership functions. It can be seen from Figure C.3 that all the inferences of the
rules (the last column of Figure C.2) are plotted together. There are numerous ways to
defuzzify fuzzy sets, such as: the max membership principle, centroid method, weighted
average method, and the mean max membership [57].

For this example we will be demonstrating the centroid, the weighted average, and
the mean max methods of defuzzification. We can dive deeper into what each of these

defuzzification methods entail through a thorough analysis of Figure C.3.
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ALY =1 — Small

exchangers

0.8 /

AU*

Large
exchangers

I
[
1
I
I
I
I
I
|
T

1 T T |
0 4000 2000 12000 AU (m*kW/m’K)

Figure C.3: Defuzzification of Mamdani inference method [57].

Centroid Method

The centroid method of defuzzification is defined as:

. S e (z)zdz

= W(z)dz (C.1)

z

where z* refers to the crisp output of AU and pg(2) is the membership of z within the
union of inferences of the membership functions such that C' = C'; U Cs. Defining C'; as
the trapezoid representing the small heat exchangers and C's as the trapezoid representing

the large heat exchangers within Figure C.3.

To employ the centroid method of defuzzification we will need to find the area of the
trapezoids that make up the inferences of the membership functions for this system.

Using Figure C.4 as a reference, the areas of each respective shape are:
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A
(AU =1 — Small
exchangers
0.8 —
0.6 —
0.4 —
1 2 ‘
0.2 —
= 2
I !
0 4000

Figure C.4: Shape break down for centroid method of defuzzification.

1 1
Area of First Red Triangle = §bh = 5(4000 —2000)(0.5) = 500

Area of Blue Rectangle = bh = (2000)(0.5) = 1000

1 1
Area of Second Red Triangle = §bh = 5(8000 —6000)(0.5) = 500
i : 1 1
Area of First Green Triangle = §bh = 5(7000 —6000)(0.25) = 125

Area of Purple Rectangle = bh = (12500 — 7000)(0.25) = 1375

1 1
Area of Second Green Triangle = §bh = 5(14000 —12500)(0.25) = 187.5
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and the centroid of each area is:

Centroid of Red Triangle = 2000 + 40300 + 4000 = 3333.33
Centroid of Blue Rectangle = w = 5000
Centroid of Second Red Triangle — 2000+ 60300 8000 _ 666,67
Centroid of First Green Triangle = 6000 + 70300 + 7000 = 6666.67
Centroid of Purple Rectangle = m0+—212500 = 9750

12500 + 12500 + 14000

Centroid of Second Green Triangle = = 13000

3

Table C.1: Table for centroid method of defuzzification.

Shape | no(z)dz z | no(z)zdz
Red Triangle 1 500 3333.33 1666665
Small Exchanger | Blue Rectangle 1000 5000 3333335
Red Triangle 2 5000 6666.67 5000000
Green Triangle 1 125 6666.67 | 833333.75
Large Exchanger | Purple Rectangle 1375 9750 2437500
Green Triangle 2 187.5 13000 13406250
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|
wAU) =1 — Small
exchangers
0.8 AU*
06 - /
; Large
| exchangers
04 - . /
I
I
0.2 - :
I
I
I
I l ] ] - 2 2
0 4000 12000 AU (mkW/m°K)

Figure C.5: Weighted average defuzzification procedure.

Following C.1,

1666665 + 3333335 + 5000000 + 833333.75 + 2437500 + 13406250

AU~
500 + 500 + 1000 + 125 + 187.5 + 1375

= 7234.46

Therefore using the centroid method of defuzzification, AU = 7234.46 kW /K
Weighted Average Method

The weighted average method of defuzzification is defined as:

. > hc(@)z
= f—HQ(Z) (C.2)

z

where Z is the mean of each symmetric membership function [57].
In Figure C.5, the orange line represents the mean for the small heat exchangers and
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Table C.2: Table for weighted average method of defuzzification.

Rule | [pc(z) | z | [pc(2)z
1 0.25 10000 2500
2 0.50 5000 2500
3 0.25 10000 2500

the green line represents the mean for the large heat exchangers.

Following equation 2,

2500 + 2500 + 2500

= 7500
0.25+0.50 + 0.25

Therefore by using the weighted average method of defuzzification, AU = 7500 kW /K
Mean Max Method

The mean max method of defuzzification is defined as:

b
= “; (C.3)

From Figure C.3 and from Table C.2, we can say that a= 4000 and b = 6000. so,

4000 + 6000

5 = 5000

Therefore by the mean max method of defuzzification, AU = 5000 kW /K.
C.3.2 Sugeno

The Sugeno inference method is similar to the Mamdani inference method except that
the for the Sugeno type output membership functions are either constant or linear. A

typical IF-THEN Sugeno rule is such that:
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IF zis A and y is B, THEN z is z = f(x,y)

where z and y are inputs, z is an output, and z = f(z,y) is a crisp function of the
consequent [57].
In this heat exchanger model, we will use the polynomial expressions given on page

150 of [57] to solve for AU through the Sugeno inference method.

Given polynomial equations:

AUqman = 3.4765w — 210.5AT,,,, + 2103 (C.4)

AUlarge = 4.6925w — 526.2AT,,, 4 2631 (C.5)

and taking the memberships of rules 1-3 from the Mamdani inference method:

(1) p(AU) = 0.25

(2) p(AU) = 0.50

(3) u(AU) = 0.25

We then proceed to substitute w = 1300 kg/s and AT,,, = 6.5 K into equations C.4

and C.5 to get the following results.

AUgman = 5254.2

AUjapge = 5310.95
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Next, we will use the weighted average method to find the crisp value for heat ex-

changer size. plugging in the values computed above into C.2:

5310.95)(0.25) + (5256)(0.50) + (5310.95)(0.25)

025+ 0.50 + 0.25

= 5282.58

where in this case, we use the values given by the polynomial equations C.4 and C.5
as the z value.
Therefore the crisp value for heat exchanger size AU is 5282.58 kW /K through the

use of the Sugeno method of inference.
C.3.3 Tsukamoto

The Tsukamoto method of inference is similar to that of the Mamdani method in that
they require the use of the same membership functions for their inputs. However, the
Tsukamoto output membership functions requires what is refered to as “shoulders”,

therefore yield the Tsukamoto method flexible to systems with limited data.

Rule 1
wiw) T ;H'ATAW) T mlALY T
. e N . N B T000
T ‘| T T T T T w(kg/s) 11717 I| T T 7T 5TJ,\|\(KJ O f\f.("fm:k'\\-'f’le)
1000 1500 2000 0 5 10 0 10000 20000
Rule 2
i) T J(AT ) T IEY
———————————————————————————————————————————————————— h 5000
T e kel e AT o (KV T AU (m2EW/m?K)
1000 1500 2000 5 10 15 0 10000 20000
Rule 3
pelw) J(AT 50 T plALD T
I R 7000
= | - L
e wkegds) S ATy (K e AU (mTkWmTK)
1000 1500 2000 0 5 10 0 10000 20000

Figure C.6: Tsukamoto inference method [57].
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Using Figure C.6 and C.2:

(7000)(0.25) + (5000)(0.50) + (7000)(0.25)

AU =
0.25 4+ 0.50 + 0.25

= 6000

Therefore by the Tsukamoto inference method of defuzzification, AU = 6000 kW /K.
C.4 Simulated Results

The simulated results for this example were generated through Matlab’s Fuzzy Logic
Toolbox. To start, we selected the Mamdani method of inference and added two inputs
and one output: flow rate, temperature change, and AU.

'@ Fuzzy Logic Designer: HE — (] >

File Edit View

1
&N.‘
~'H‘

Flow_Rate

HE

(mamdani)

XX
-
|
Al

Temperature_Change

FIS MName: HE FIS Type: mamdani
And method min e Current Variable
Or method - . Name
T
Implication min ~ o
Range
Aggregation max ~
Defuzzification centroid ~ Help Close
Opening Membership Function Editor

Figure C.7: Heat exchanger fuzzy system.

Setting up the flow rate membership functions first:
where

Similarly, the membership functions for temperature change are defined as:
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er Membership Function Editor: HE - [u] X l

File Edit View |

plot points: 181

FIS Variables lfembershlp 1‘um:tlon plots

T
@ @ small Large
B

Temperature_Change

1 { 12 13 14 p .

input variable *input1”
Curtent Variable Curent Membership Function (click on MF to select)
Name input1 ane Large
7 - |
. - ype timf
Params "
Range 1200 1500 1800]
1000 2000]
Disj e
ey Reng 1000 2000] Help Close
Ready

Figure C.8: Flow rate membership functions.

Table C.3: Membership of w in sets Small and Large.

MF Name | Membership within MF
Small Lesman (w) €[1000 14000]
Large [ Larger (W) €[12000 18000]

where

Table C.4: Membership of AT, in sets Small;cmpdir; and Largeiempairs-

MF Name Membership within MF
Smalltempdiff MS"L(L/”;W'Lffk (ATapp) S [25 75]

Largetempdiff ,uLarg/elgim/pdiffk (ATapp) S [6 14]

The membership functions for the output AU are defined a follows:

where Figure C.11 shows the rules stated in Section B.3.

The resulting answer for w = 1300 kW /K and AT, = 6.5 K is AU = 7810 kW /K.
When looking at Figure C.12, notice how the aggregated consequent of the rules matches
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Membership Function Editor: HE - o x

File Edit View

T T
Small_temp_diff ;_temp_diff

05 b
Temperature_Change

input variable "input2*

|

W s ] e

Figure C.9: Membership functions for temperatre change.

Membership Function Editor: HE ~ o X
File Edit View
e
FIS Variables T T T T Pmﬂ?h T T T
F— Small_HE Large_HE

o 02 04 06 08 1 12 14 16 18 2
output variable "output1” %104

Large_HE
-
[02e+04]

T

Figure C.10: Membership funcions for AU.

that of the consequent gathered from the Mamdani Inference method.
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Table C.5: Membership of AU in sets Smallygr and Largegg.

MF Name | Membership within MF

Smallus | My, (SAU) €[2000 10000]
Largeng uﬁw(AAU) €[6000 14000]

FIE  EUIL  viEW  Jpuons

- (Flow_Rate is Small} or (Temperature_Change is Large_temp dlﬁ] then (AU is Small | _HE} (1)
(Flow_Rate is Small) and (Temperature_Change is Small_temp_diff) then (AU is Large HE) (1}

Figure C.11: Rules for heat exchanger system.

-
4\ Rule Viewer: HE = u} X
File Edit View Options
Flow_Rate = 1.3e+03 Temperature_Change = 6.5
AU = 7.81e+03
1000 2000 0 15
0
x10%

INPU 11300,6.5) ”P'“ [ZIi 101 R et | right | down | wp |

Opened system HE, 3 rules Help | Cioee |

Figure C.12: Results for heat exchanger size simulation.

C.5 Conclusion

In conclusion, all three fuzzy logic inference methods gave extremely different results.
When comparing the results for the Mamdani inference method, it can be seen that the

mean max method of defuzzification yielded a number that is not as close as the numbers

112



Table C.6: Results for AU (kW/K).

Inference Method / Mamdani | Sugeno | Tsukamoto | Simulation
Defuzzification Method

Weighted Average 7500 5282.58 6000

Centroid 7234.46 7810
Min-Max 5000

yielded by the weighted average and centroid methods. This is due to the fact that only

two data points are used for this method, and therefore it is safe to say that the mean

max method is not an accurate mode of solving fuzzy systems.

On the other hand, both the weighted average and the centroid methods gave answers
that did not differ by very much. Unlike the mean max method of inference, the weighted

average and centroid methods made use of the implications defined by the conjunctions

and disjunction of Rules 1-3.
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