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ABSTRACT 

Framework for Modeling Post-Fire Hydrology  

with Remote Sensing  

By 

Rafael Rodriguez 

As fire rages across a hillside, a hydrophobic layer is formed, which causes 

significant increases in the post-fire runoff by preventing water from infiltrating into the 

subsurface. Simultaneously, the loss of vegetation to fire can reduce water loss from 

groundwater because of reduced evapotranspiration. These effects can last for several years 

post-fire, depending on the fire intensity. This project aims to develop a fire-vegetation-

hydrology model framework that explicitly considers the formation of a hydrophobic layer. 

The research team produced an automated "off the shelf" code that combines remote 

sensing products, including hourly meteorological (NLDAS-2), land cover (NLCD), 

topography (NED), and burn maps (BAER). This code produces the files necessary to run 

ParFlow-CLM, a 3D, parallel-processing, coupled land surface-groundwater hydrologic 

model, to simulate plant fluxes, surface fluxes, radiative fluxes, and variable saturation in 

the subsurface. Based on model results, this framework can be used by state, fire, and forest 

agencies to plan for post-fire remediation and strategically remove vegetation (fuel) 

between fires. Researchers will be able to test hypotheses of hydrophobic layer degradation 

and vegetation regrowth as well as assess the long-term impacts of wildfire on subsurface 

water storage, recharge of aquifers, and evaporation fluxes.   
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CHAPTER 1 

INTRODUCTION 

The United States is experiencing an increase in wildfire frequency and size 

(Westerling & Bryant, 2006); researchers expect this trend to continue as atmospheric 

temperatures rise due to human-induced perturbations (Kauffmann, Kauppi, Mann, & 

Stock, 2011). Air and soil moisture, temperature, fuel, and wind speeds are the main 

drivers of natural wildfires. Low moisture (soil and humidity) and high temperatures lead 

to drier vegetation. High winds may cause the fire to spread rapidly as wildfire begins. 

These factors lead to the development of "Megafires" that are highly catastrophic within 

California (Khorshidi et al., 2020). High-intensity wildfires create a variably thick water-

repellent layer (or hydrophobic layer) within the first few centimeters of the soil 

(DeBano, 1968). This hydrophobic layer significantly contributes to infiltration-limited 

overland flow, and vegetation loss decreases evapotranspiration for several years during 

post-fire recovery (Kinoshita & Hogue, 2011). The fifth IPCC assessment report states 

that climate-related extremes, such as droughts and wildfires, will cause significant harm 

to sensitive ecosystems and damage human-made infrastructure (Team & Rajendra, 

2014). IPCC researchers considered various fire regimes based on future climate 

projections; however, they did not evaluate the fire-vegetation dynamics, vegetation 

recovery, and their relationship to hydrologic components.  

 In addition to impacting water and vegetation, burned watersheds or burn scars 

are highly susceptible to catastrophic mass wasting events, also known as debris flows. 

These debris flows occur when storms reach hillsides with unconsolidated soil and ash 

above a hydrophobic layer. When a high-intensity storm hits a recently burned area, this 
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ash layer can become mobile and form a debris flow (Cannon, Boldt, Kean, Laber, & 

Staley, 2010).  This occurred in Montecito, CA, during the winter of 2017-2018. (USFS, 

2018). The 280,000-acre burn scar from the Thomas Fire became saturated and unstable 

from the storms in Jan 2018. This mass wasting event caused twenty-three deaths and 

millions in damages.  

Modeling natural phenomena inherently includes a level of generalization that 

must balance the oversimplification of the physical processes with the capabilities of the 

available software. One-dimensional models simplify three-dimensional problems by 

analyzing a single slice of terrain and subsurface. While these models can analyze 

physical processes through the subsurface profile, they assume all soil properties are 

isotropic, meaning that the soil properties are the same in every direction. This 

simplification doesn’t account for preferential groundwater flux in any direction. Hydrus-

1D, a one-dimensional surface-subsurface numerical model, was used to simulate vadose 

zone hydrology following the 2010 Fourmouline Canyon Fire in Colorado by Ebel, B.A. 

in 2013. While the 1D model could match observed conditions in north-facing slopes, it 

could not match the observed conditions in south-facing slopes. A more robust model 

would have been able to compare all observed trends. Watershed management agencies 

often focus on changes to hillside peak flows and the probability of debris flows after a 

fire occurs in their management area.  

Watershed routing models such as Hydrologic Engineering Center Hydrologic 

Modeling System (HEC-HMS) use synthetic precipitation events and surface parameters 

(runoff coefficients and infiltration rates) to calculate hydrographs indicating the peak 
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flow rates for each storm event. Cydzik and Hogue (2009) modeled post-fire flooding 

with HEC-HMS. However, their model outputs were limited to points on open channels.  

ParFlow-CLM was used by Atchley et al. (2018) to simulate a pre- and post-fire 

distributed hydrological model at a hillslope scale (1000 m2) with varying degrees of 

evapotranspiration loss. They model a homogeneous burn severity in each post-fire 

scenario by reducing the leaf area index (LAI) and saturated hydraulic conductivity in the 

top two centimeters of soil. Escobar-Sanchez (2020) advanced the state of the science by 

conducting a sensitivity analysis of heterogeneous burn severity at a larger scale (500,000 

m2) by spatially varying changes to saturated hydraulic conductivity, LAI, and burn 

depth. Their work simplified the topography to model simplified hillsides with a constant 

slope throughout the model domain. Our work strives to extend the work pioneered by 

Escobar-Sanchez to the watershed scale with the natural topography and to create a 

framework for future researchers to create and run these complex models efficiently.  

The four goals of this research are 1) to develop an off-the-shelf modeling 

framework accessible to researchers with little to no modeling expertise, 2) explicitly 

consider the hydrophobic layer formation; 3) to use open-access satellite observations to 

inform the model, and 4) provide a time-saving and efficient model set-up. The team built 

a series of processing scripts to extract and format the raw data into the appropriate files 

used to run ParFlow-CLM models representing hydrologic conditions before and after the 

wildfire event. Hydraulic properties can each be individually controlled and spatially 

varied within our package in the setup of a ParFlow-CLM model, making it an 

appropriate pairing to study the hydrology of burn scars after wildfires ravage a hillside. 

The team built the processing scripts to target the specific formats of NLDAS, BAER, 
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NED, and NLCD data. These open-source databases can be used freely and easily 

accessed by future researchers to model scenarios past the publication of this report. 

Within minutes, the code developed by this team can process and synthesize the files 

required to model a year-long scenario that spans over 1,000 km2. The final product is a 

package that contains the raw data files and the MATLAB scripts required to extract and 

format the scripts. This package will be available to any researcher interested in 

hydrologic modeling.  
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CHAPTER 2 

Materials and Methods 

ParFlow-CLM 

The research team used ParFlow-Common Land Model (PF-CLM) to run 

hydrologic simulations of pre- and post-fire scenarios. This coupled model framework 

simulates surface water-groundwater hydrologic interactions (Maxwell, 2013; Kollet & 

Maxwell, 2008; Maxwell & Kollet, 2006; Maxwell & Miller, 2005; Woodward & Jones, 

2001; Ashby & Falgout, 1996). ParFlow (PF) calculates subsurface variable saturation 

using the three-dimensional Richards equation (Equation 2.1) and surface water 

(overland) flow using the two-dimensional Manning’s equation with kinematic wave 

approximation (Equation 2.2).  The Common Land Model (CLM) is a land surface model 

that simulates land-atmosphere fluxes such as evapotranspiration (ET) using ground-

atmosphere observations. CLM calculates transpiration fluxes from plants and 

evaporation fluxes from the ground and root zone (Dai, et al., 2003). Figure 1 visualizes 

the coupling of the ParFlow and CLM models. 

               (2.1) 

 

𝑣𝑥 = −
√𝑆𝑓,𝑥

𝑛
𝛹𝑠

2

3   ,   𝑣𝑦 = −
√𝑆𝑓,𝑦

𝑛
𝛹𝑠

2/3                                                             (2.2) 

 In equation 1, per the ParFlow manual, Ω is the flow domain, p is the pressure 

head of water [L], S is the water saturation, Ss is the specific storage coefficient [L-1], Φ is the 

porosity of the porous medium, K(p) is the hydraulic conductivity tensor [LT-1], and Q is the 

water source/sink term [L3T-1]. The variables in equation 2.2 are as follows: vi is the depth-
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averaged velocity vector [LT-1], Sf,i is the friction slope, i stands for the x- y- direction, n is 

the Manning’s coefficient  [TL-1/3], and Ψs is the vertically averaged surface pressure 

(Maxwell R. , et al., 2019). 

 

Figure 1. Coupling of ParFlow and CLM models from Maxwell and Miller 2004. 

ParFlow-CLM uses a defined cell width, depth, height (DX, DY, and DZ), and the 

number of cells in each dimension (NX, NY, and NZ) to simulate a three-dimensional 

computational domain. Each cell in the domain is assigned physical properties, including 

saturated hydraulic conductivity (Ksat) and porosity (Φ). These parameters are used to 

calculate changes in hydrologic conditions over time. The matrix can be configured to 

represent a hillside, watershed, state, and even the contiguous United States (Condon & 

Maxwell, 2015). The number of processors and computing time available limits the 

domain's extent and resolution. The finer the resolution and broader the spatial domain, 
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the more computational cells are necessary; thus, more computations are required per 

time step. The parallel processing capabilities of the model allow for the distribution of 

the computing load across multiple processors in a computing cluster, as demonstrated in 

this project.  

CLM uses the International Geosphere Biosphere Programme (IGBP) 

classifications to describe eighteen biome types. Each biome type has nineteen physical 

parameters (i.e., minimum and maximum leaf area index, aerodynamic resistance, etc.) 

that are used to calculate evaporation from the surface, evapotranspiration from the root 

zone, open canopy, and total evapotranspiration from a domain.  See Table 1 for the 

complete list of CLM variables.  
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Table 1. Common Land Model Parameter Description 

CLM Variable Description 

itypwat 

1-soil, 2-land ice, 3-deep lake, 4-shallow lake, 5-wetland: swamp, 

marsh 

lai Maximum leaf area index [-] 

lai0 Minimum leaf area index [-] 

sai Stem area index [-] 

z0m Aerodynamic roughness length [m] 

displa Displacement height [m] 

dleaf Leaf dimension [m] 

roota Fitted numerical index of rooting distribution 

rootb Fitted numerical index of rooting distribution 

rhol_vis Leaf reflectance visible 

rhol_nir Leaf reflectance near-infrared 

rhos_vis stem reflectance vis 

rhos_nir stem reflectance nir 

taul_vis leaf transmittance vis 

taul_nir leaf transmittance nir 

taus_vis stem transmittance vis 

taus_nir stem transmittance nir 

xl leaf/stem orientation index 

vw btran exponent 

 

Satellite Datasets 

 The hourly meteorological data required to run ParFlow-CLM was air 

temperature [K], specific humidity [kg/kg], surface pressure [Pa], eastward wind 

component [m/s], northward wind component [m/s], longwave radiation [W/m2], 

shortwave radiation [W/m2], and total precipitation [mm/s]. This data was sourced from 

the Phase 2 North American Land Data Assimilation System (NLDAS-2) at a 

0.125°x0.125° (~ 13.875 km x 13.875 km) spatial resolution (Xia, et al., 2012). NLDAS-

2 covers the entire continental United States and extends from 25° to 53° Latitude and 

from -125° to -67° Longitude.  NLDAS-2 combines satellite data, radar precipitation 

measurements, and precipitation gauge observations to form land surface forcing model 
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datasets. These datasets are spatially extrapolated to the finer resolution of the NLDAS-2 

grid and temporally interpolated to an hourly time step (Xia et al., 2012). The research 

team employed a similar workflow to sort the various inputs into standardized units, cell 

size, and matrix origin.  

 We differentiated between pre- and post-fire conditions by simulating a change in 

saturated hydraulic conductivity (Ksat). Fire severity is correlated with hydrophobic layer 

formation, which is a critical factor in determining the change to runoff, erosion, and 

vegetation recovery (Keeley, 2009). Fox et al. (Fox, 2007) found that saturated hydraulic 

conductivity increases with increasing soil particle size distribution and decreases post-

fire based on burn severity. To account for this, we used an empirical equation to 

determine saturated hydraulic conductivity based on the Difference Normalized Burn 

Ratio (dNBR) as done by Atchley et al. (Atchley, 2018). Normalized Burn Ratio (NBR) 

uses the ratio between near-infrared (NIR) and shortwave infrared (SWIR) to note the 

health of vegetation in each area (Miller & Thode, 2007). To account for variations in 

vegetation type, the difference in pre- and post-fire NBR is used to estimate burn 

severity; the difference is referred to as dNBR. The higher the dNBR, the higher the burn 

severity (Keeley, 2009).  

Test Study Area 

We identified the 2020 August Fire as an ideal test study area. The fire occurred 

in August of 2020 and burned over one million acres and spanned seven northern 

California counties near the Mendocino National Forest. The fire started on 8/16/2020 by 

lightning strikes and was contained on 11/11/2020. The burnscar spanned from 39.4° N, -

123.5° E to 40.4° N, -122.5° E.   
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Figure 2. Test Study Area 

 

 The team focused on a portion of the burnscar near a reservoir to have in-situ 

water level data that can be used to calibrate the model in later efforts. The chosen 

extents were: 40.0608° N, -123.4569° E – 40.3860° N, -123.1064° N. The cell 

dimensions for the model were 30m x 30m x 1 m in the x, y, and z directions. The 

number of cells in the x, y, and z directions were 464, 224, and 10, respectively. This 

resulted in a total of 1,039,360 cells in the computational matrix. The discretization of 

this matrix is described in the pre-processing and processing sections below.  

Pre-processing 

The deliverable from this research project is a MATLAB package that can 

produce ParFlow-CLM run files to model pre- and post-fire conditions for the 2020-2021 

fire season. Before executing the MATLAB code, the research team had to synthesize, 

edit, and format the raw input files using ArcGIS Pro version 2.9.3 (ESRI, 2011). 

Namely, four geospatial datasets needed to be uniformly formatted. These inputs 

included (1) meteorologic forcing from NLDAS, (2) burn severity raster files from the 
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United States Geological Survey (USGS) Burned Area Emergency Response (BAER) 

Imagery Support Program  (USGS, 2020), (3) digital elevation models (DEM) from the 

National Elevation Dataset (United States Geologic Service, 2018), and (4) land cover 

distribution from the North American Land Change Monitoring System (NALC; (North 

American Land Change Monitoring System, 2015)). A visualization of the four 

significant inputs proceeding through the pre-processing workflow is shown in Figure 3.  

 

Figure 3. Pre-processing workflow 

The research team gathered national, hourly meteorologic data (NLDAS) from 

January 1st, 2020 – December 31st, 2021. Each NLDAS time step contained all eleven 

variables for each of the 103,936 cells in the 464 (longitude) x 224 (latitude) grid. Two 

years of NLDAS data required over 2.2 GB of storage. This dataset was archived and 

processed in MATLAB, as described in the MATLAB section below.  

We extracted burn severity maps for California spanning 2015 to 2021 from the 

United States Geologic Survey (USGS) Burned Area Rapid Response (BAER) website 
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(USGS, 2020). These burn severity maps show the severity and extent of fire damage 

within each burned area or burn scar. This portal provided raw dNBR values, which were 

converted to saturated hydraulic conductivity (Ksat) using Equation 2.3. Note that it 

differs from that presented in the literature (Atchley, 2018). The formula presented had 

the first constant defined as 390. However, when the team tried to apply this formula to 

dNBR datasets, the resulting Ksat values were higher than expected by a few orders of 

magnitude. The team then looked at the supplemental tables provided in the paper. It 

concluded that there was a typographical error in the transcription of the formula used to 

convert dNBR to Ksat.  

𝐾𝑠𝑎𝑡 = 0.39 ∗ exp(−0.0056 𝑑𝑁𝐵𝑅)                        (2.3) 

Once the dNBR values were converted to Ksat values for each burn scar, the 

processed rasters were clipped to burn extents and mosaiced into a single raster; we 

placed -9999 in cells where there were no burn scars present. This Ksat raster was in a 

UTM 10N coordinate system and had a 20-meter by 20-meter resolution. 

We downloaded LiDAR data for all fifty-eight counties in the state of California. 

The LiDAR dataset was in the UTM 10N coordinate system and had a 30-meter by 30-

meter resolution. We used the LiDAR dataset to extract the digital elevation map (DEM), 

and it was merged into a single cohesive TIFF file for the state.   

Land coverage data was downloaded from the North American Land Change 

Monitoring System (NALC; North American Land Change Monitoring System,2015). 

This land cover was classified into nineteen vegetation types, while the International 

Geosphere Biosphere Programme classification system used by CLM only used eighteen. 

The land cover was reclassified according to the same method implemented by Condon 
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(2015). This land cover raster file was in the World Geodetic System 1984 (WGS 84) 

coordinate system and had a 30-meter by 30-meter resolution. 

The input data sets had varying coordinate systems, the most common being in 

World Geodetic System 1984 (WGS 84) and Universal Transverse Mercator (UTM). The 

WGS 84 coordinate system provides spatial location based on latitude and longitude, 

while UTM uses meters. Due to the earth’s curvature, UTM is a projection of spherical 

latitude and longitude coordinates to sections of rectangular coordinates that conform to a 

grid. The section used in California is UTM 10N. The cell size for each raster was 

determined by converting a 30-meter by 30-meter raster from UTM 10N to WGS 84 and 

using the given cell size in degrees. The rasters were clipped to the same extent to 

maintain the same origin point for each matrix.  

When reading the data sets into MATLAB, the elevation, saturated hydraulic 

conductivity, and landcover rasters maps were converted into two-dimensional matrices 

visualized as a table with 1094 columns and 1015 rows. Forcing the rasters into the same 

coordinate system, cell size, and origin ensured that MATLAB could overlay the matrices 

to extract the appropriate data, as the code would look for data at the same column and 

row number.  

MATLAB Processing 

The team produced a MATLAB script for processing the terrain, land cover, 

meteorology, and saturated hydraulic conductivity information into the format required 

for ParFlow-CLM to run successfully. This code is structured into the main script that 

hosts the user-defined inputs and calls on fourteen subscripts, one for each subroutine.  

The user-defined inputs include spatial limits, model resolution, temporal limits, temporal 
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resolution, hydraulic parameters, soil type, file paths, and folder names. The fourteen 

subscripts execute tasks including importing, clipping, formatting, georeferencing, 

calculations, conversions and synthesizing. Table 2 lists the user-defined variables, 

descriptions, and default values.  

The following section outlines the steps necessary for the user to run the script 

package built by the research team. First, the user downloads the file package that 

contains the MATLAB scripts and preprocessed data files. Upon opening the MATLAB 

script, the user is prompted to enter minimum and maximum latitude and longitude 

coordinates. The horizontal spatial resolution (30m x 30m) was predetermined by the 

resolution of the input datasets and is currently not a parameter the user can change. The 

user sets the vertical resolution and depth of the model. The team initially used the 

general vertical discretization (DZ) of 1 meter and NZ as ten layers creating a total 

domain depth of 10 meters.  

The script ‘create_variableDZ.m’ in the script package specifies variable thickness of 

the burned and unburned layers. The uppermost layers of the matrix produced by the 

MATLAB script are defined as the burn layers. The variable nlayers defines the number 

of layers to be modeled as the depth of the burn penetration. Four burn layers were used 

in the example model at a thickness of 0.025m each. The rest of the soil thickness is split 

between the remaining unburned layers. The MATLAB script uses heterogenous Ksat 

values for the burn layers and homogeneous Ksat values for the nonburn layers.  
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Table 2. MATLAB User-Defined Variables 

 Variable Name Description Class Default Values 

1 runname File Name String testrun 

2 predir Server Directory String 
/home/rrodri144/Research/ 

Parflowrun 

3 latmax Maximum Latitude Double 40.3860 

5 latmin Minimum Latitude Double 40.0608 

6 lonmin Maximum Longitude Double -123.4569 

7 lonmax Minimum Longitude Double -123.1064 

8 dx Cell Width Integer 30 

10 dy Cell Height Integer 30 

11 dz Cell Depth Integer 1 

12 nz Number of Vertical Layers Integer 10 

14 nlayers Number of Burn Layers Integer 4 

18 xlower 
Lower Piezometric Head 

Limit 
Double 3 

20 xupper 
Upper Piezometric Head 

Limit 
Double 12.4 

21 drv_clmin_restart Starting with Restart File? Integer 2 

24 ICPressurevalue Initial Pressure Double 0.0 

25 mannings_u 
Manning’s n for Unburned 

Surface 
Double 0.035 

26 mannings_b 
Manning’s n for Burned 

Surface 
Double 0.02 

28 specificstor_u 
Specific Storage for 

Unburned Surface 
Double 1.0e-5 

30 specificstor_b 
Specific Storage for 

Burned Surface 
Double 1.0e-5 

32 dump Output Interval Integer -1 

33 startdate Start Date Date 01/03/2021 

35 enddate End Date Date 01/10/2021 

36 SubSoil_Depth Soil Depth Integer 10 

38 Soil_Type Soil Type String SANDY LOAM 

43 indname Indicator File Name String INDICATORFILENAME.pfb 

44 rootdir Local Directory String 

C:/Users/rodri/Documents/ 

Cal_State_LA/ParFlow/ 

Research 

47 OutputFolderName Output Folder Name String Parflowrun 

48 OutDir Output Directory String [rootdir,’/Parflowrun/’] 
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The user defines the initial piezometric head, manning’s surface roughness, and 

specific storage pending general knowledge of the surface and groundwater conditions.  

The user is prompted to select the soil type for the model domain. Based on the soil type 

hydraulic conductivity, porosity, and van Genuchten parameters as defined in the 

Gleeson Table  (Gleeson, et al., 2011).  

Finally, the user shall specify the name of the model run (runname) and the host 

directory for the raw input files and output runfiles (Outdir).  

A detailed visualization of the workflow shown in Figure 3 is expanded in Figures 4-

7. Figure 4 shows the workflow and steps necessary to clip and process the DEM. Figure 

5 shows the clipping and formatting of the landcover data. Here, the schematic shows that 

there is X and Y data associated with each row in the final format. This is consistent with 

the formatting required by CLM.   Figure 6 shows the clipping and formatting of the 

NLDAS forcing data. Figure 7 shows the steps and combination of saturated hydraulic 

conductivity in the format required by ParFlow-CLM. Table 3 describes each subscript 

and follows the workflow shown in Figures 4-7.  

 

Figure 4. DEM processing 
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Figure 5. Landcover Processing 

 

Figure 6. NLDAS Processing 
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Figure 7. Saturated Hydraulic Conductivity Processing 
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CHAPTER 3 

Results 

MATLAB 

The MATLAB package can process the topographic, burn severity, atmospheric 

forcings, and land cover data sets into the appropriate run files in 282.8 seconds or just 

under 5 minutes. Once the runfiles are compiled a researcher can start the ParFlow-CLM 

model with minimal effort. Table 3 lists the name, function summaries, and run times for 

each subscript included in the MATLAB package. Notably, reformatting the land cover 

data took nearly half of the entire runtime. The next longest time sink is the Burnscar.m 

subscript. This subscript replaces null Ksat values with the Ksat values from the Gleeson 

Table and then builds the 3-dimensional matrix by stacking 2-dimensional layers at the 

appropriate thickness. 

ParFlow-CLM 

Once the runfiles are compiled in MATLAB, the researcher can launch the model run 

in ParFlow-CLM. The team had access to a computer cluster allowing for selecting the 

number of processors used for each run. The team chose to run a one-year simulation 

using 16 processing cores divided by 4 for the x direction and 4 for the y direction. 

Among many output variables, three hydrologically significant outputs are Surface 

Storage, Subsurface Storage, and Surface Runoff. They indicate the amount of water 

stored on the surface, in the ground, and running off the surface.  

Figure 8 shows the graphs of these three variables over time. Surface storage and 

runoff don’t rise until the subsurface is saturated near hour 200. This can be explained as 
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the spin-up time required for the model to reach the initial equilibrium. This spin-up time 

may vary with the model domain and time span chosen. 

 The runoff graph in Figure 8 shows that the model starts to reach hydrologic 

equilibrium at approximately hour 600. At this point, the total runoff value throughout 

the watershed begins to level off and oscillate slightly. This oscillation is a result of the 

same storm being cycled through the model until model reaches equilibrium. The near 

constant runoff can be interpreted as the base flow of the model domain. For modeling 

purposes, the results from these base flow runs can be used as the initial conditions for 

subsequent models.  

 The team validated the model completion by analyzing the difference between 

computed and expected water balance for the entire model run. The standard percent 

difference for this type of model validation is 10-3. Figure 9 shows that the model 

achieved this at hour 1430.   
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Table 3. MATLAB Summary Table  

Subscript Name Description 

Runtime 

(Sec) 

Clip_DEM.m 
Trim the digital elevation model to the user-defined 

extent 24.4 

Process_DEM.m 
Format the DEM into a single column of elevation 

values with the number of rows and columns 

defined at the top of the text file 13.2 

Convert_DEM.m 
convert the matrix origin from WGS to UTM 

coordinate system 1 

Clip_Landcover.m Trim the landcover raster to the user-defined extent 8.3 

landcover_ind.m 

Format the landcover raster to a single column, then 

convert categorical data to a one-hot-encoding 

format 127.1 

extract_nc.m 

Extract meteorological forcings to the user-defined 

spatial and temporal extent, then format to CLM 

specified format.  16.4 

Import_Gleeson.m 
Import the Gleeson table, which defines the van 

Genuchten parameters based on soil type.  4.4 

EG_Ksat.m 

Replace null values in the unburned Ksat raster with 

Ksat values from the Gleeson table based on user-

defined soil type 22.4 

create_variableDZ.m 
Calculate the depth of each matrix layer based on 

user-specified total depth and layers burned.  0.3 

Burnscar.m 

Replace null values in the unburned Ksat raster with 

Ksat values from the Gleeson table based on user-

defined soil type. Build a 3-dimensional raster by 

layering burned matrices over unburned matrices. 42.4 

Burnscar_Conversion.m 
Format the 3D burnscar matrix into a single column 

of elevation values with the number of rows and 

columns defined at the top of the text file 9.5 

Create_drv_clmin.m Create the file necessary to initiate the CLM run 1.5 

Indicatorfield.m 
Build a 3D indicator field of values that matches the 

domain size 11.6 

Create_TCL.m Create the file necessary to initiate the ParFlow run 0.3 

Total   282.8 
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Figure 8. ParFlow Results Graphs 

 

 
Figure 9. Percent Difference in Expected versus Observed Water Balance 
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Chapter 4 

Conclusion 

This work was initially envisioned as a two-phase study where Phase One built 

the framework. Phase Two used the framework to compare model sensitivity to many 

parameters and validate against several datasets. Running the sample model to 

completion proves that this framework is a viable method of initiating ParFlow-CLM 

models with minimal effort.  

For Phase Two, other researchers in the Lopez Water Lab are currently using this 

framework to run simulations focused on their area of interest. These endeavors include 

studying hydrophobic layer development and degradation over time and the effect of 

wildfires on watershed hydrology on a decade-long time scale. Future work by the lab 

may explore hillslope instability based on pre- and post-fire conditions.  

Future development of this framework may include prompts in the user-defined 

section indicating the minimum and maximum latitude and longitude coordinates 

available for modeling and a clear definition of the maximum domain size recommended 

per processor available. The horizontal spatial resolution (30m x 30m) was predetermined 

by the resolution of the input datasets and is currently not a parameter the user can 

change, however, updated input datasets may change this in the future. This framework 

may also advance in reclassifying vegetation types based on burn severity. Currently, the 

framework only changes the saturated hydraulic conductivity. The model should reflect 

the amount of vegetation loss by changing the land cover type and using the appropriate 

leaf area index values based on the available remote sensed data. Hydrophobic layer 
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thickness and position is known to vary over time, so the model should reflect this as 

well. 
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