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ABSTRACT 

AN “OFF-THE-SHELF” POST FIRE HYDROLOGIC MODEL FOR CALIFORNIA 

WILDFIRES  

By 

Adolfo A Retana-Garcia 

Frequent wildfires have become a significant disruptor of forest ecosystems, driven by 

climate change, land use alterations, and human activities. While wildfires play a crucial 

role in natural processes, their increasing frequency necessitates a deeper understanding 

of their ecological, social, and economic impacts. This study delves into the intricacies of 

wildfire dynamics by using a hydrological model called ParFlow-CLM that requires 

calibrating and validating datasets to analyze water resources, soil conditions, burn ratios, 

and other vital parameters. This research delves into three major wildfires of significant 

impact: the August, Delta, and Creek fires. Starting with the August fire, an extensive 

wildfire ravaged the Coast Range of Northern California from August 16, 2020, to 

November 15, 2020. Following this, the Delta Fire, a notable 2018 wildfire in the Shasta-

Trinity National Forest, unfolded from September 5, 2018, to October 07, 2018. Lastly, 

the Creek Fire occurred in central California's Sierra National Forest, spanning Fresno 

and Madera counties from September 4, 2020, to December 24, 2020.  

We are directing our attention towards examining the enduring consequences stemming 

from the fires, which encompass the formation of a hydrophobic layer, loss of vegetation, 

alterations in soil composition, and modifications in both surface and subsurface flow 

dynamics. This includes investigating water flux, long-term storage in the subsurface, and 

the potential for floods and hazardous overland flow. By developing an 'off-the-shelf' 
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model, we lay the groundwork for a versatile tool applicable to diverse research needs. 

Our study compared ECOSTRESS and MODIS data, with ECOSTRESS offering limited 

insights into ET accuracy. Despite data constraints, our model showed a moderate 

correlation (R = 0.4416) with ECOSTRESS and a weaker correlation (R = 0.3747) with 

MODIS but benefited from a more extensive data set. The project's limitations included 

restricted ECOSTRESS data and challenges in configuring the model for fire conditions 

but valuable insights for future study improvement. 
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CHAPTER 1 

INTRODUCTION 

Wildfires, although often associated with destruction, are a natural phenomenon 

that plays a pivotal role in shaping our landscapes and ecosystems (Stevens-Rumann, 

Morgan, 2019) (Zavala, Celis, Jordan, 2014) (Pérez-Cabello, Montorio, Borini Alves, 

2021) (Hernández Ayala, Mann, Grosvenor, 2021). These events are unpredictable and 

vary in magnitude; wildfires have a remarkable impact on society, ecosystems, 

hydrological parameters, and the broader environment, making them a complex and 

dynamic force of nature that demands ongoing research. (Stevens-Rumann, Morgan, 2019) 

(Hernández Ayala, Mann, Grosvenor, 2021) (Jung, Hogue, Rademacher, Meixner, 2008) 

The frequency and burn severity of these natural disasters significantly varies depending 

on geographic location, climate, and existing hydrological conditions such as soil moisture 

and land cover type. (Jensen, Reager, Zajic, Rousseau, Rodell, Hinkley, 2018) (Ilan Stavi, 

2019). In the past four decades, the Southwestern regions of the United States have 

witnessed a significant increase in wildfires (Miller, Safford, 2012). These areas often go 

through a recovery cycle, only to see a resurgence of wildfires in the same geographic 

location (Miller, Safford, 2012). Studies suggest that regions with low soil moisture levels 

are at a higher risk of experiencing more frequent and more extensive wildfires (Buhk, 

Meyn, Jentsch, 2006) (Schnur, Xie, Wang, 2010) (Jensen, Reager, Zajic, Rousseau, Rodell, 

Hinkley, 2017) (Hernández Ayala, Mann, Grosvenor, 2021). Jensen et al. (2017) 

demonstrated that areas characterized as arid desert or dry environments, similar to our 

study sites in California, experience low soil moisture levels and face an elevated risk of 

wildfires. Similarly, Buhk et al. (2006) highlighted the vulnerability of regions with 



 

 2 

depleted soil moisture through the fire season (Summer), expressing concerns of fire 

resurgences. Hernández Ayala et al. (2021) further indicated that California is known for 

low soil moisture levels and is predisposed to more frequent and extensive wildfires 

because of high temperature seasons. Together, these studies provide compelling evidence 

that areas with similar climate to  California  are at a heightened risk of experiencing 

wildfires of greater frequency and magnitude. Researchers predict that the frequency and 

intensity of wildfires will continue to rise over the next century due to the impacts of 

climate change (A.L. Westerling, B.P Bryant, 2007) (Mathew W. Jones, Adam Smith, 

Richard Betts, Josep G. Candadell, I. Colin Prentice, Corinne Le Quere, 2020) (Marcos 

Rodrigues, Paloma Ibarra, Maite Echeverria 2014). Southern California is a perfect 

example of this trend, as it commonly experiences these occurrences due to its high 

exposure to heat and drought seasons that lead to dry vegetation. (Stevens-Rumann, 

Morgan, 2019) (Hernández Ayala, Mann, Grosvenor, 2021) (Jung, Hogue, Rademacher, 

Meixner, 2008). Under these conditions, it is typical for “Megafires” to develop and pose 

a higher threat as they have a more significant impact, leading to post-fire erosion, water 

supply impacts, and destructive flash flooding or debris flow. Megafires are highly 

intensive wildfires that cover a vast area of vegetation and have an extremely high burn 

intensity capable of changing soil characteristics and immensely affecting the hydrologic 

response of watersheds. (Moody, Ebel, 2012) (Neary, Gottfried, DeBano, Tecle, 2003) 

(Nawa Raj Pradhan, Ian Floyd, 2021) (Alicia M. Kinoshita, Terri S. Hogue, 2011) (Van 

Leeuwen, 2008). Low-severity fires have a minimal impact on aboveground vegetation, 

leaving most of it unharmed. On the other hand, high-severity fires (Megafires) cause 

extensive damage, often killing all aboveground vegetation resulting in a significant 
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reduction in the leaf area available for transpiration. The effects of high-severity fires can 

last for decades as the vegetation slowly recovers from the intense burning. (M. Poulos, 

Barton, W. Koch, E. Kolb, E. Thode, 2021)   

Assessing burn severity following a wildfire is crucial for understanding changes 

in soil and overland flow dynamics. When a wildfire occurs, the organic compounds in the 

soil vaporize, reducing the adhesion between soil particles and resulting in the formation 

of a hydrophobic layer (Ilan Stavi, 2019) (Stavi, Barkai, Knoll, Glion, Katra, Brook, Zaady, 

2016) (Clothiera, Vogelera, and Magesan, 1999). This hydrophobic layer transforms the 

very nature of the soil, turning it into an impermeable barrier that repels water. This leads 

to an increase in overland flow, reduced water infiltration into the subsurface, and, in most 

instances, inhibited vegetation growth, leading to a decrease in evapotranspiration for 

several years during post-fire recovery. (B.E Clothier, I. Vogeler, G.N Magesan, 2000) 

(L.F. Debano, 2000). (Ilan Stavi, 2019) (Jane G Cawson, Petter Nyman Hugh G. Smith, 

Patrick N.J. Lane, Gary J. Sheridan, 2016)  

Over the years, numerous studies have illustrated the effectiveness of remote 

sensing in assessing wildfire impacts. (Van Leeuwen, 2008) (Stisen, Jensen, Sandholt, 

Grimes, 2008) (Kittel, Nielsen, Tøttrup, Bauer-Gottwein, 2018). Satellite-based remote 

sensing technologies have revolutionized wildfire research and have become valuable tools 

for monitoring and evaluating post-fire conditions. Satellite observations can be used to 

meet the significant high-resolution data demands of hydrologic models needed to define 

the domain and calibrate model outputs effectively. (Stisen, Jensen, Sandholt, Grimes, 

2008) (Kittel, Nielsen, Tøttrup, Bauer-Gottwein, 2018). Standard remote sensing datasets 

used for model parameterization include the Land Remote-Sensing Satellite System 



 

 4 

(LANDSAT), Advanced Very High-Resolution Radiometer (AVHRR), Moderate 

Resolution Imaging Spectroradiometer (MODIS), and Ecosystem Spaceborne Thermal 

Radiometer Experiment on Space Station (ECOSTRESS). Researchers methods consist of 

using techniques and satellite measurements such as Multispectral Scanner (MSS), 

Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+), Normalized 

Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Advanced 

Land Imager (ALI) to quantify and categorize vegetation (Viana Soto, Aguado, Martinez, 

2017) (Perez-Cabello, Montorio, Alves, 2021) (Van Leeuwen, 2008). 

Post-fire analysis has become extremely popular, but there are still several gaps in 

this research topic. Studies must address the long-term ecological impact of wildfires on 

diverse ecosystems and improve post-fire recovery and resilience strategies. It is crucial to 

consider the deformation of the hydrophobic layer in the hydrologic model for up to 1-10 

years or more; no hydrologic models attempt to demonstrate this process. This project aims 

to create a user-friendly, off-the-shelf modeling framework that is readily accessible even 

to researchers and land managers lacking prior modeling expertise and coding. We aim to 

develop a postfire hydrologic modeling framework that bridges the knowledge gaps 

surrounding wildfires' impacts on our ecological, social, and economic platforms. We seek 

to explicitly account for the formation of hydrophobic layers and explore its deformation. 

In addition, we would like to demonstrate the effectiveness of utilizing open-access satellite 

observations to enrich our model's calibration. Our team has developed pre-processing 

scripts for land use, elevation, burn maps, and evapotranspiration satellite products from 

NASA, NASA JPL,  the US Forest Service,  and the US Geological Survey to execute 

ParFlow-CLM watershed models that represent pre- and post-wildfire hydrologic 
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conditions. The framework of our study allows for individual control and spatial variation 

of hydraulic properties, making it a well-suited tool for investigating post-wildfire 

hydrology in landscapes. 

CHAPTER 2 

MATERIALS AND METHODS 

Study Site 

We identified three significant wildfires, Delta Fire (2018), Creek Fire (2020), and August 

Fire (2020), as the primary focus for our study. Although these fires are all located in 

California, they vary in size and burn severity, antecedent moisture condit ions, and 

vegetation type. The Delta Fire was part of a series of wildfires that ravaged the Shasta-

Trinity National Forest in the northern part of California. The fire ignited on September 

05, 2018, by human-related activities still under investigation. The fire burned 

approximately 63,000 acres with a medium to high burn severity. The burn scar of this fire 

spanned from 41.08° N, -122.32°E to 40.92° N, -122.60° E. Our model domain consisted 

of a 30m spatial resolution in the x-y extents and a 15m spatial resolution in the z-direction. 

The number of cells in the x, y, and z directions were 884, 503, and 15 or over 6 million 

computation cells. 
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Figure 1: The Delta Fire in 2018 Consisted of the Slate Creek-Sacramento River, East Fork, Trinity River 

Watersheds 

The Creek Fire was a devastating wildfire in the Sierra National Forest in 

California. The fire ignited on September 4, 2020, by lightning strikes and quickly grew 

into one of the largest and most destructive wildfires in California's history. The fire was 

fueled by dry vegetation, hot temperatures, and fierce winds, leading to rapid and 

unpredictable spread. The fire burned approximately 380,000 acres with a medium to high 

burn severity ratio. The burn scar of this fire spanned from 37.64° N, -118.94°E to 36.98° 

N, -119.48° E. The cell dimensions for the model were 30m x 30m x 15m in the x, y, and 

z. The number of cells in the x, y, and z directions were 1692, 2046, and 15 or almost 52 

million computation cells.  
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Figure 2: The Creek Fire in 2020 Consisted of Chiquito Creek, Stevenson Creek-San Joaquin River 

Watersheds. 

 

ParFlow-CLM 

We used ParFlow-CLM, a coupled model framework that simulates the surface-subsurface 

interactions and atmospheric fluxes to simulate our pre- and post-fire hydrologic 

conditions. (Kollet, Maxwell, 2005). ParFlow is a numerical model that simulates spatially 

distributed surface and subsurface water flow to demonstrate the hydrological cycle. It 

combines the three-dimensional groundwater flow, overland flow, and land surface 

processes using complex equations that help simulate water and energy fluxes in complex 

real-world domains. ParFlow utilizes and solves an upper boundary condition (Neumann 

type) combined with the shallow water equations, boundary source-sink, mixed forms of 

Richard’s Equation, and flux relationships from Darcy and Manning’s equations. 
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Figure 3: Representation of ParFlow 

Mixed Form of Richards’ (solving for h): (Kollet, Maxwell, 2005) 

𝑆𝑠𝑆𝑤(ℎ) 𝜕ℎ

𝜕𝑡
+  𝜃

𝜕𝑆𝑤 (ℎ)

𝜕𝑡
= ∇𝑞 + 𝑞𝑟(𝑥,𝑧)        Eq 1  

Upper Boundary Condition (Neumann type) combined with the Shallow water 

equation. (solving for the same h): (Kollet, Maxwell, 2005) 

𝑘(−𝐾𝑠(𝑥)𝑘𝑟(ℎ)∇(ℎ + 𝑧) =
𝜕||ℎ,0||

𝜕𝑡
− ∇||ℎ,0||𝑣𝑠𝑤 + 𝑞𝑟(𝑥)   Eq 2  

Boundary Source-Sink generated from the weather and land surface processes: 

(Kollet, Maxwell, 2005) 

𝑞𝑟(𝑥) = 𝑃(𝑥) − 𝐸(𝑥)      𝑞𝑟(𝑥,𝑧) =  −𝐸𝑇(𝑥,𝑧)     Eq 3  

 

Flux Relationships from Darcy and Manning’s Equation: (Kollet, Maxwell, 2005) 

𝒒 =  𝐾𝑠(𝑥)𝑘𝑟(ℎ)[∇(ℎ + 𝑧)𝑐𝑜𝑠𝛽𝑥 + 𝑠𝑖𝑛𝛽𝑥 ] 

𝑣𝑥 =
√𝑆𝑓,𝑥

𝑛
ψs

2/3 

          Eq 4  
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It is important to note that Richard’s Equation and the shallow water equation are two 

nonlinear equations that demonstrate the interaction between the systems. Solving these 

equations generates a three-dimensional variably flow using either an orthogonal or terrain-

following grid (Maxwell, 2013). ParFlow is coupled with the Community Land Model 

(CLM), a land surface and atmospheric model that simulates the exchange of energy, water, 

and momentum between the land surface and the atmosphere. CLM uses the International 

Geosphere-Biosphere Programme (IGBP) classifications to define eighteen types of 

biomes needed for ParFlow. Each biome type is associated with nineteen physical 

parameters, including minimum and maximum leaf area index values, aerodynamic 

resistance, and other essential classifications.  

Table 1: Description of the seventeen parameters used to estimate ET; each parameter changes for each 

land use classification. 

# Variable  Description 

1 lai Maximum leaf area index [-] 

2 lai0 Minimum leaf area index [-] 

3 sai Stem area index [-] 

4 z0m Aerodynamic roughness length [m] 

5 displa Displacement height [m] 

6 dleaf Leaf dimension [m] 

7 

roota 

Fitted numerical index of rooting 

distribution 

8 
rootb 

Fitted numerical index of rooting 
distribution 

9 rhol_vis leaf reflectance visual spectrum 

10 rhol_nir leaf reflectance near infrared spectrum 

11 rhos_vis stem reflectance visual spectrum  

12 rhos_nir stem reflectance near infrared spectrum 

13 taul_vis leaf transmittance visual spectrum 

14 taul_nir leaf transmittance near infrared spectrum 

15 taus_vis stem transmittance visual spectrum 

16 taus_nir stem transmittance near infrared spectrum 

17 xl leaf/stem orientation index 
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These parameters play a crucial role in calculating surface evaporation, evapotranspiration 

from the root zone, conditions related to open canopy, and the overall evapotranspiration 

within a specified geographical region. The model configuration is defined  by grid cells in 

the x, y, and z directions. The more grid cells we generate, the finer the resolution we 

receive for our study area. This also means that it comes at a higher computational cost. 

Every cell within the domain is attributed to specific physical properties, such as saturated 

hydraulic conductivity, porosity, Leaf Area Index, and Burn Severity, which are 

instrumental in quantifying changes in hydrological conditions as time progresses. 

Model Configuration 

ParFlow typically lacks provisions for incorporating burn conditions within its default 

settings. Our research requires adjustments to these specific files in response to this 

limitation. In this study, we update the drv_vegp and drv_vegm DAT files utilized by 

ParFlow-CLM. The default drv_vegp.dat file includes basic parameters that correlate with 

eighteen specific vegetation types (Table 2), and it is responsible for informing ParFlow-

CLM of all the parameters listed on Table 1. The drv_vegm DAT file designates a binary 

yes or no for each cell in the domain for each landuse type. To consider burned conditions, 

we manually add fourteen additional vegetation types that now consider medium to high 

burn. Under medium conditions, the maximum and minimum leaf area index (LAI) are 

assumed to be 30% of the original parameter value. Under high conditions, the maximum 

and minimum leaf area index are assumed to be zero for bare soil as there is no vegetation 

available.  
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Figure 4: Required CLM.F90 update to ParFlow-CLM 

To consider these new medium burn severity classifications, we had to update the default 

number of landcover classifications in ParFlow-CLM from 18 to 32. We recompiled  

ParFlow-CLM on the Curie cluster managed by the College of ECST and College of NSS 

after updating the drv%nt parameter from 18 to 32. Figure 4 highlights the line of code 

from the CLM.F90 file users must update to include the additional vegetation types that 

consider medium burn (MED BURN) classifications (summarized in Table 2). The landuse 

type is defined based on the burn severity map developed by the Burned Area Emergency 

Response (BAER). All unburned locations did not receive a change in landcover type 

(Category 1 – 18), any moderate burn severity locations were changed to the medium burn 

classification of the original landcover type at that location (Category 19 – 32), and 

landcover type at high burn severity locations were changed to a bare soil classification  

(Category 18). 

Table 2: Description of the original 18 Landcover Types and 14 new medium burn classifications (32 total) 

that define vegetation parameters. 

Original Landcover Types 

Category Landcover Types Category Landcover Types 

1 Evergreen needleleaf forests 10 grasslands 

2 Evergreen broadleaf forests 11 permanent wetlands 

3 Deciduous needleleaf forests 12 croplands 

4 deciduous broadleaf forests 13 urban and built-up lands 

5 mixed forests 14 
cropland / natural vegetation 
mosaics 

6 closed shrublands 15 snow and ice 
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7 open shrublands 16 barren or sparsely vegetated 

8 woody savannas 17 water bodies 

9 savannas 18 bare soil 

Additional Burn Landcover Types 

19 
evergreen needleleaf forests 

MED BURN 
26 woody savannas MED BURN 

20 
evergreen broadleaf forests 

MED BURN 
27 savannas MED BURN 

21 
deciduous needleleaf forests 

MED BURN 
28 grasslands MED BURN 

22 
deciduous broadleaf forests 
MED BURN 

29 
permanent wetlands MED 
BURN 

23 mixed forests MED BURN 30 croplands MED BURN 

24 
closed shrublands MED 
BURN 

31 
cropland / natural vegetation 
mosaics MED BURN 

25 open shrublands MED BURN 32 
barren or sparsely vegetated 

MED BURN 

This meticulous customization enables us to simulate realistic scenarios based on the burn 

scar itself, providing a more comprehensive and accurate representation of the complex 

interactions between vegetation, soil, and water dynamics within the ParFlow framework. 

The domain matrix is manually customized to represent a range of landscapes, from hillside 

terrain to entire watersheds. (Condon and Maxwell, 2015); however, the size and precision 

of the domain are constrained by the available number of processors and computing time. 

Higher resolution and a more extensive spatial domain demand more computational cells, 

consequently necessitating more computations per time step.  

To produce ParFlow-CLM run files that model post and pre-fire simulations, we developed 

a pre-processing script in MATLAB. Before running any MATLAB script, the research 

team synthesized, edited, and formatted raw input files, outlined below using ArcGIS Pro 

(ESRI, 2011).  
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Table 3: Satellite observations required for domain development (NLDAS-2, BAER, DEM) and model 

comparison (MODIS and ECOSTRESS) 

Name  Agency Source  Resolution What it provides 

NLDAS-2  
(North American Land 

Data Assimilation System-
Version 2) 

NASA, NOAA, 
 USDA, 

Princeton 
University  

Varies  
(e.g., 1/8th or 1/16th 

degree) 

Land surface model outputs,  
meteorological data, etc. 

BAER  
(Burned Area Emergency 

Response) 
USGS  

Not applicable  
(program, not dataset) 

Emergency response 
assessments 

 and stabilization data  

DEM  
(Digital Elevation Model) 

USGS  

Varies  
(e.g., 1 meter, 30 

meters),  
domain specific 

Elevation data for terrain 
 modeling and analysis 

MODIS NASA, USGS  

Varies  
(e.g., 250 meter, 500 

meters),  
domain specific 

Remote sensing data for 
 land cover, vegetation, etc. 

ECOSTRESS NASA, JPL Varies (e.g., 70 meters) 
Thermal infrared data for 

monitoring plant parameters 

The North American Land Data Assimilation System-Version 2 (NLDAS-2) dataset 

encompasses crucial atmospheric variables including air temperature [K], precipitation 

[mms-1], specific humidity [kgkg-1], surface pressure [Pa], incoming shortwave [Wm-2] and 

longwave radiation [Wm-2], and wind speed [ms-1]. These elements are essential for 

comprehensively understanding the complex interactions between the atmosphere and land 

surface processes. NLDAS-2 employs advanced data assimilation techniques, integrating 

observational data from diverse sources such as weather stations, remote sensing 

technologies, and satellite observations. This integration ensures the production of high-

quality data products that are invaluable for various applications in environmental research, 

hydrology, and meteorology.  
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Burned Area Emergency Response (BAER) is a critical post-wildfire assessment process 

designed to evaluate and mitigate immediate risks to human life, property, and natural 

resources in the aftermath of a wildfire. (US Forest Service, USDA, 2024) BAER can 

conduct rapid assessments to identify potential post-fire hazards such as soil erosion, water 

quality degradation, debris flows, and other environmental concerns. These assessments 

are essential for guiding emergency response efforts and informing post-fire rehabilitation 

strategies. BAER utilizes a multidisciplinary approach, drawing on expertise from various 

fields, including hydrology, soil science, geomorphology, ecology, and forestry. By swiftly 

assessing the impacts of wildfires and implementing targeted mitigation measures, BAER 

plays a crucial role in safeguarding ecosystems and communities in fire-affected areas. To 

further assists our project analysis, we obtained burn severity maps for California covering 

the years 2016 to 2022 from the United States Geological Survey (USGS) Burned Area 

Rapid Response (BAER) website (USGS, 2020). These maps vividly depict the extent and 

severity of fire damage within each affected area or burn scar (Figures 1 and 2). Through 

this resource, we accessed raw dNBR values, subsequently translating them into saturated 

hydraulic conductivity (Ksat) using Equation 5. (Atchley, A. L., Kinoshita, A. M., Lopez, 

S. R., Trader, L., & Middleton, R.,2018) 

                                               Ksat =  0.39 ∗ exp (−0.0056  dNBR)     Eq 5 

  

The ECOSTRESS (Ecosystem Spaceborne Thermal Radiometer Experiment on Space 

Station) mission is pivotal in wildfire research, offering unparalleled insights into post-fire 

ecosystem dynamics and hydrological processes. (Jet Propulsion Laboratory, NASA, 

2024) Developed by NASA, ECOSTRESS provides crucial data for our study sites on land 

surface temperature, evapotranspiration rates, and vegetation health, all of which are 
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instrumental in assessing the impacts of wildfires on landscapes. (Joshua B. Fisher, et al. 

2020) (K. Meerdink, J. Hook, A. Roberts, A. Abbott, 2019)( (Jet Propulsion Laboratory, 

NASA, 2024) By monitoring thermal emissions from vegetation and soil, ECOSTRESS 

enables researchers to rapidly detect post-fire changes in ecosystem health, identify areas 

at risk of vegetation stress or mortality, and evaluate the resilience of ecosystems to fire 

disturbances. This comprehensive understanding of post-fire dynamics is essential for 

guiding post-fire management strategies, including rehabilitation efforts to restore 

ecosystem functionality and mitigate potential hazards such as soil erosion and water 

quality degradation. Through its precise measurements and global coverage, ECOSTRESS 

is pivotal in advancing our knowledge of wildfire impacts and supporting informed 

decision-making for ecosystem resilience and community safety in fire-prone regions.  

 

Figure 5: Project Workflow 

After compiling the run files in MATLAB, the script initiates the model run within 

ParFlow-CLM. Utilizing a computer cluster, the research team had the flexibility to choose 
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the number of processors allocated for each run. For all the pre- and post-fire simulations, 

the team opted for 16 processing cores, distributing them with 4 in the x-direction, 4 in the 

y-direction, and 1 in the z-direction and running at an hourly timestep. Our post-processing 

script calculates surface storage, subsurface storage, surface runoff, evapotranspiration 

(2D), domain total evapotranspiration, transpiration, and soil evaporation.  

Model Domain 

The spin-up time can vary based on the selected model domain and time frame. On average, 

the spin-up time for all runs ranged from 100 to 121 restarts, with each run lasting 8 hours. 

This totals approximately 35 to 40 days of spin-up time. The time frame for the Delta fire 

is from September 05, 2016, to September 05, 2018, for pre-fire conditions. After 

completing this time frame, we follow up with post-fire conditions all the way through 

September 01, 2022. As for the Creek Fire, the pre-fire conditions are from September 04, 

2018, to September 04, 2022. After completing this time frame for Creek Fire, we follow 

up with post-fire conditions all the way through September 01, 2022.  

Our computational model for the Delta fire scenario encompasses a domain defined by 884 

grid cells in the x-direction, 503 grid cells in the y-direction, and 15 grid cells in the z-

direction, with grid spacings of 30 meters along the x and y axes, and 1 meter along the z-

axis. The starting coordinates of the domain are 533385Northing and 4530362 Easting in 

UTM Coordinates. To compute the total space covered by the domain, we multiply the 

number of grid cells in each direction by their corresponding spacing: 26.52 kilometers in 

the x-direction, 15.1 kilometers in the y-direction, and 15 meters in the z-direction, 

resulting in a total domain space of approximately 6 km3. 
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In ParFlow, the variable "dz" commonly signifies the vertical grid spacing or cell thickness 

within the computational domain's vertical direction for pre- and post-fire conditions. This 

parameter is essential for capturing the three-dimensional configuration of the subsurface 

environment, particularly in simulations involving groundwater flow, transport, and burned 

layer impact. The choice of vertical grid spacing is critical for achieving accuracy in 

representing the burn layer of the shallow portion of the surface. The topmost sections of 

the matrix generated by the MATLAB script are identified as the burn layers. The variable 

"nlayers" specifies the number of layers designated to model the depth of burn penetration. 

In the provided model example, four burn layers were employed, each having a thickness 

of 0.025 meters (or 2.5 cm). 

Table 4: Variable discretization in the z-direction for the total depth (nx*dz = 884(Delta) and 1692(Creek)) 

Layer # Thickness (m) 

Depth 1 0.025 

Depth 2 0.025 

Depth 3 0.025 

Depth 4 0.025 

Depth 5 1.25 

Depth 6 1.25 

Depth 7 2.25 

Depth 8 2.9 

Depth 9 2.25 

Depth 10 1.25 

Depth 11 0.75 

Depth 12 0.75 

Depth 13 0.75 

Depth 14 0.75 

Depth 15 0.75 
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Model Validation 

To verify the model's accuracy, we must compare our results to current Earth-observing 

satellites such as Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS 

works based on remote sensing principles, capturing data by measuring the electromagnetic  

radiation reflected or emitted by the Earth's surface. It operates in thirty-six spectral bands 

and is designed to capture data in various spectral bands ranging from visible to infrared 

wavelengths. This instrument can collect information about Earth’s surface and 

atmosphere, such as climate change, weather monitoring, and land cover mapping. (C.O 

Justice, J.R.G Townshend, E.F Vermote, E Masuoka, R.E Wolfe, N Saleous, D.P Roy, J.T 

Morisette, 2002) MODIS provides a high temporal resolution, capturing frequent images 

of the Earth’s surface, essential for monitoring the dynamics of wildfire events. We utilized 

a product derived from MODIS called MOD16 to compare our ET parameters. The 

MOD16 product offers estimates of evapotranspiration (ET) at a spatial resolution of 

approximately 500 meters and a temporal resolution of 8 days, making it valuable for 

analyzing ET dynamics across various landscapes and over time.  MOD16 focuses on 

providing estimates of actual evapotranspiration (ET) at a global scale. MOD16 algorithm 

employs a simplified form of the Penman-Monteith equation (Equation 6), a widely used 

method for estimating evapotranspiration. The equation considers land surface 

temperature, vegetation characteristics, and meteorological variables to calculate the 

amount of water vapor leaving the land surface due to evapotranspiration. (Yuan, Y. Ma, 

Chen, Wang, Li, 2021) 



 

 19 

𝐿𝐸 =  
∆∗(𝑅𝑛𝑒𝑡−𝐺0 )+ 𝐶𝑝∗𝜌𝑎∗

𝑉𝑃𝐷

𝑟𝑎

∆+𝛾∗(1+
𝑟𝑠
𝑟𝑎

)
      Eq 6   

Estimations of Evapotranspiration are essential for verifying the accuracy and stability of 

our model to ensure that the results being produced represent a high temporal resolution of 

what can occur as a result of a wildfire.  

In our statistical analysis comparing ParFlow-CLM daily evapotranspiration simulations 

with observed data from ECOSTRESS and MODIS16, we utilized Pearson’s Correlation 

(R). Pearson's correlation coefficient (Equation 7) measures the strength and direction of 

the linear relationship between two variables. It ranges from -1 to 1, where 1 indicates a 

perfect positive linear relationship, -1 indicates a perfect negative linear relationship, and 

0 indicates no linear relationship. In our study, we compare the instantaneous daily ET 

from our modeling simulation to the total daily ET from both satellite products. 

𝑅 =
∑ ((𝑋𝑖−𝑋)(𝑌𝑖 −𝑌))𝑁

𝑖=1

√∑ (𝑋𝑖 −𝑋)
2  ∑ (𝑌𝑖 −𝑌)

2 𝑁
𝑖 =1𝑁

𝑖=1

    Eq 7 

Where Xi and Yi are individual data points and 𝑋 and 𝑌 are the means of the X and Y 

variables, respectively. We utilized scatter plots to depict the correlation and accuracy of 

the datasets, which offer a visual understanding of the overall pattern and distribution 

between the simulated and observed data. This approach involved comparing simulated 

versus observed ET products at shared daily observations, providing insights into how well 

the simulated data aligns with observed trends over time.  
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To properly compare our results with ECOSTRESS data, we applied a moving mean 

average function to the available data in MATLAB. Given that ECOSTRESS is relatively 

new, there are several data gaps within the timeframe of our study. By applying the moving 

mean average, we can effectively fill in these data gaps and enable a more robust 

comparison with the averaged values of existing data. 

The use of a moving mean average helps to smooth out short-term fluctuations and 

highlight longer-term trends in the data, ensuring that our comparisons are more reliable. 

This approach not only allows us to address the issue of missing data but also enhances the 

overall quality of our analysis by reducing noise. Consequently, we can make more 

accurate and meaningful comparisons between our results and the ECOSTRESS data, 

thereby strengthening the validity of our findings. 

 

CHAPTER 3 

RESULTS 

movIssues with Model Simulations 

On May 1st, Dr. Lopez and I confirmed there was an issue accessing the Curie machine 

and messaged the administrators. They learned that the Head node on the Curie Cluster 

failed pausing all model simulations and preventing any users from accessing files on the 

cluster. It was down until May 6th, causing the loss of valuable computational time. As a 

result, I will be presenting only the results of the Delta Fire in the Results section for 

09/05/2016 to 04/01/2019. It takes approximately 8 real-time hours to simulate 26 days for 

our large domain; we would have been able to complete an additional year in 4 days. 



 

 21 

Observed vs Simulated 

We conducted a comparative analysis of our simulated results with data from both 

ECOSTRESS and MODIS products, spanning from September 5, 2016, to April 01, 2019. 

While ECOSTRESS, introduced in 2018, provides valuable insights, its limited timeframe 

and sparse or unreliable observations restrict its dataset. Despite these limitations, 

ECOSTRESS managed to cover 09/01/2018 to 04/01/2019 of the observed data simulated 

in our studies. Conversely, with its more extended operational history, MODIS offers a 

broader temporal scope and more consistent observations. 

 
Figure 6: Raw ECOSTRESSV Data from 09/05/1/2018- 04/01/2019 Vs Pre/Post Fires Data  for Slate 

Creek-Sacramento River, East Fork.  
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Figure 7: Moving Mean ECOSTRESSV Data from 09/05/1/2018- 04/01/2019 Vs Pre/Post Fires Data for 

Slate Creek-Sacramento River, East Fork 

The graphs above illustrate the relationship between ECOSTRESS data, and our simulated 

Pre- and Post-Fire runs data. Although the ECOSTRESS dataset contains limited data for 

our current time frame, we can still observe a similar peak time among the three d atasets. 

To further assist our observations, we plotted the moving mean average to fill in any 

missing data, better representing what ECOSTRESS could have provided. Simply 

comparing numeric results does not justify the accuracy of our model because the 

ECOSTRESS data represents a total sum of ET, whereas our model outputs instantaneous 

results. Due to this difference in data types, comparing the trends rather than the absolute 

values is more appropriate. Unfortunately, insufficient data was produced to compare the 

following dates after 04/01/2019 due to issues with the Curie Machine. 
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Figure 8: ECOSTRESS Vs. Simulated ET Correlation 

The graph above illustrates the Correlation between ECOSTRESS and Pre-Post Fire 

Simulations. An R-value of 0.4416 indicates a moderate positive linear correlation between 

the two datasets. This means that, generally, as one dataset increases, the other dataset  also 

increases, but the relationship is not very strong. While this value shows a positive trend, 

it is not close enough to 1 to be considered a strong correlation. It suggests that other factors 

or variabilities, such as the difference in data, influence the relationship between the 

datasets. In practical terms, this level of correlation implies that the simulated data has a 

moderate degree of accuracy in predicting or matching the observed data. There is a 

noticeable trend, but significant deviations from a perfect linear relationship are present. 
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Figure 9: MODIS Data from 09/05/1/2016- 04/01/2019 Vs Pre/Post Fires Data for Slate Creek-Sacramento 

River, East Fork. 

The graphs above illustrate the relationship between MODIS data and our simulated Pre- 

and Post-Fire runs data. Unlike the ECOSTRESS dataset, the MODIS dataset provides a 

more extensive collection of data, allowing us to observe the peak trends between the 

simulated and observed data. The abundance of MODIS data enables a more robust 

comparison, highlighting the alignment of peak times across the datasets. 

Again, we must emphasize that simply comparing numeric results does not fully justify the 

accuracy of our model because the MODIS data also represents the total sum of ET over 

the day, whereas our model outputs instantaneous results. This inherent difference in data 

types underscores the importance of comparing trends rather than absolute values. While 

the MODIS data shows similar peak times to our simulated data, there are also instances 

where the data diverges. These discrepancies can be at fault of several factors, including 

differences in spatial resolution and manual parameters inputs for ParFlow. Overall, the 
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detailed MODIS dataset plays a crucial role in validating our simulations and providing 

insights into the temporal patterns of ET before and after fire events. 

 

Figure 10: MODIS Vs. Simulated ET Correlation 

In our analysis, the MODIS dataset provided a more extensive collection of data points, 

allowing for a more precise visualization of trends over time. The correlation between the 

MODIS weekly sums of Evapotranspiration (ET) and our simulated data yielded a 

Pearson's Correlation Coefficient (R) of 0.3747. This indicates a weak to moderate positive 

linear relationship. Despite the larger volume of data from MODIS, which spans weekly 

ET sums, the correlation coefficient of 0.3747 suggests that while there is a positive trend 

between the observed and simulated data, it is not particularly strong. 

Data Limitations and Issues 

One of the main challenges we encountered in our project was the scarcity of data from 

ECOSTRESS. As ECOSTRESS was launched in 2018 and began providing data from January 
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1 of that year, it wasn't until 2018 that we could conduct a more comprehensive comparison 

between ECOSTRESS and our simulations. 

Configuring the model to operate effectively under fire conditions presented significant 

challenges, constituting a valuable learning experience for our team. Despite meticulous 

planning, the execution of the process encountered numerous unexpected hurdles, and the 

outcome diverged from our initial expectations. Over two months, during which the model 

remained inactive, we devoted considerable time and effort to troubleshooting and refining our 

approach, striving to ascertain the optimal settings and parameters necessary to achieve 

successful model operation under fire conditions. This downtime served as a critical period for 

experimentation and problem-solving, enabling us to gain insights and enhance our 

understanding of the complexities of simulating fire-related scenarios. 

CHAPTER 4 

CONCLUSION 

In conclusion, our study faced significant challenges due to technical issues with the Curie 

machine, resulting in a loss of valuable computational time and limiting the scope of our 

analysis. Despite these setbacks, we successfully conducted a comparative analysis of our 

simulated results with data from ECOSTRESS and MODIS. ECOSTRESS provided limited 

insights into ET but was still valuable for ensuring the accuracy of our model. The extensive 

and consistent dataset from MODIS allowed for a more robust comparison, highlighting peak 

trends and validating our simulations. 
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Our findings indicate a moderate positive linear correlation between ECOSTRESS and our 

simulated data, with an R-value of 0.4416, and a weaker positive correlation with MODIS data, 

with an R-value of 0.3747, but offered more data to analyze. While not strong, these 

correlations suggest that our model can reasonably predict trends in evapotranspiration (ET) 

but also highlight significant deviations due to differences in data types, spatial resolution, and 

model parameters. 

The primary limitation of our project was the restricted data availability from ECOSTRESS, 

which hindered a comprehensive comparison. Moreover, configuring the model to operate 

effectively under fire conditions posed significant challenges. Although unfortunate, the 

downtime due to the Curie machine failure provided an opportunity for extensive self -

reflection and lessons learned that can influence better management of future studies. 
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