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ABSTRACT

Collaborative Reinforcement Learning Control of

Paired Vertical Axis Wind Turbines

By

Vladimir Pena

Capable of operating in omni-wind directions, vertical axis wind turbines are great can-

didates for ocean and urban applications, where wind directions vary frequently and

dramatically. However, there are still many challenges when it comes to the design of

control methods for turbines in urban settings, mainly due to the complex flow through

the turbine, which makes it challenging to obtain an accurate dynamics model. This

thesis proposes the use of a reinforcement learning algorithm to optimize a pitching

trajectory for the VAWT to maximize efficiency. A twin collaborative VAWT setup is

simulated under an urban-like environment for enhanced performance and faster learn-

ing. The application of a Parameter Exploring Policy Gradient (PGPE) is implemented

to learn the optimal pitch control of a VAWT under varying wind conditions. The con-

trol system uses power measurement only to adjust the control policy. A comprehensive

discussion of the parameter selection for policy approximation will be discussed. Three

wind conditions are simulated to validate the effectiveness of the proposed reinforcement

learning control method along with two policies tested. A comparison of the new wind

turbine control to the traditional controls, operation, and energy efficiency will be also

provided.
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CHAPTER 1

Introduction

It is well known that climate change imposes a huge challenge on many sensitive bio-

diverse regions and on the human population as well. With the continual use of fossil

fuels, climate change only accelerates and therefore the current global push for alternative

clean energy. Recently the demand for renewable energies has increased significantly.

Since the 19th century industrial revolution wind energy has been abandoned in favor of

fossil-fueled energy. Today, still roughly 60% of the electricity generated in the US comes

from fossil fuels compared to 8.5%1 from renewable energies reports the U.S. Energy

Information Administration (EIA), [1]. Although the push for legislative policy changes

across the world under the Paris Agreement has implied the need to alter the course of

power generation through the use of clean renewable energy.

As of 2023, the EIA shows the trend of consumption of both solar and wind energy

increasing rapidly overtaking the consumption of hydroelectric power. Wind turbines

contributed roughly around 18.3% of the power consumed in the renewable energy sector

in the year 2022, and as of August 2023 the leading clean sustainable energy source in the

US, overcoming hydroelectric and solar in terms of energy consumed [2]. From the years

2020 to 2021 a total capacity of wind energy of 13.4 GW was installed bringing the total

wind energy capacity to 135.9 GW, reports the EIA. On the other hand, solar energy got

an increase of an additional 20.2 GW in the year 2022 bringing the total PV capacity to

140.6 GW. And to add to that, in the first half of 2023 the US installed 34% more PV

1As of September 2023 the EIA began reporting the captured renewable energy to its equivalence in
fossil fuel and therefore may be reported as 13% in other papers. See reference for more info.

1



installations over the previous year [3]. In the USA the major leading renewable energy

sources are solar, wind, hydroelectric, geothermal, and biomass, biomass is a topic of

debate but nevertheless still a renewable source if harvested and sourced carefully, and

in total account for 300 GW installed capacity of renewable energy. Yet still renewable

energy accounts for 8.5% of the total energy consumed in 2022 in the US while demand

for energy keeps growing worsening the problem.

In a report published by the International Renewable Energy Agency (IRENA), [4],

the global energy capacity installed per renewable source are as follows, in GW, for the

year 2022: hydroelectric at 1255, solar PV at 1055, onshore wind turbines 836, bio-energy

at 151, offshore wind 63, geothermal 14.6, concentrated solar power at 6.6, and marine

0.5. Globally the leading country in renewable energy is China with a capacity installed

of 510 GW and by the end of 2023, it is expected to have installed a record-breaking

additional 200 GW of PV panels and ending the year with an expected total of 230

GW of added renewable energy capacity [3]. The Global Wind Energy Council (GWEC)

reports, [5], the added new wind energy global capacity in 2021 was 93.6 GW beating the

previous record by 1.8% from the previous year and bringing the total global wind energy

capacity to 837 GW. But the GWEC claims we are far from the 1.5◦C pathway and a net

zero energy production by 2050 set out by the Paris Agreement and the IRENA in which

case wind energy installments should quadruple to stay on track. Although renewable

energy trends continue to grow and catch traction globally, there is much more work

needed to reach sustainable energy production.
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1.1 Motivation

1.1.1 Renewable Energy and its Importance

An article by the International Energy Agency (IEA) gives a good overview of the current

global situation on access to energy which is important to summarize here [6]. Over

760 million people of the population live without access to electricity dominated by

the sub-Saharan African desert. This region accounts for over 80% of the population

without access to electricity. COVID-19 and the energy crisis have slowed the progress

toward the continued expansion of access to electricity, and less than a fifth of African

countries have a target date of 2030 to provide universal access to electricity for their

population. In Asia, the population with access to electricity greatly increased. In 2010

the population with access to electricity was 79% and in the year 2022 increased to 97%.

On a brighter note, under the Indian Saubhagya scheme India, Indonesia, and Bangladesh

were able to extend access to electricity to more than 99% of their population even under

COVID-19 and the energy crisis. But the IEA reports we are far off track from achieving

universal access to electricity to the entire population claiming a need for 110 million new

connections to be made which at the current pace is not achievable. Instead, a reliance on

decentralized energy solutions for the time being can meet the goal of 2030 where 90% of

the electricity generation would be made available by renewable energy and connections

made via small energy grids and stand-alone systems. This solution is the least costly,

but an increase in consumer end products will limit the implementation of these systems

[6].

Bio-diverse regions and societies alike face unprecedented rapid changes due to climate
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change. According to the United States Environmental Protection Agency (EPA), the

retention of greenhouse gases not only affects climate change but also has direct adverse

effects on human health and society, large ecosystems, oceans, and Arctic regions covered

in snow and ice. On human health the warmer climate leads to health concerns for the

vulnerable population such as the elderly, poor health, the disabled, and the indigenous.

An increase in average temperature means longer heat waves that can cause heat-related

illness, an increase in mosquitoes that can carry potentially deadly diseases, and an

increase in Lyme disease that is influenced partially by climate among other things.

Society must adapt to a rapidly changing environment that experiences extreme weather

patterns such as new record temperature highs, flooding, eroding shore fronts due to

rapid ocean rise, extreme tropical storms that cause vast devastation on property, and

agriculture changes. Wildfire season is peaking much earlier and the top 10 worst wildfires

to have occurred all happened since the year 2004 and not only affect humans but have an

equal if not worse effect on wildlife displacing many native wildlife and damaging entire

ecosystems reports EPA. In water bodies streams and lakes are rising in temperature

affecting the water evaporation rate and marine life has also shifted along the US coast

in response to the rise in temperature. Finally, EPA reports Arctic regions are rapidly

losing their once abundance of glaciers and snow caps that have an impact on wildlife,

the rise of water levels, and the ability to reflect radiation. More information on the

effects of climate change can be found in reference [7].

Developed nations have a moral obligation to keep the environment clean for ev-

eryone. For many years developed nations have enjoyed the benefits of having access

to electricity accelerating their economy at a rapid pace increasing their infrastructure

4



and hence requiring more and more energy. This hunger for an increase in energy led

many countries to exploit the natural resources within their countries and in many cases

expand to weaker underdeveloped nations leaving them with the burden of an eroding

landscape. While no one country is immune from the effects of greenhouse gases and the

pollution caused by the production of electricity, underdeveloped nations experience the

consequences without the benefits of access to electricity leaving a vulnerable population

to the extremes of climate change. Therefore the moral obligation to produce energy

in a sustainable clean form and most importantly aid these underdeveloped countries in

ensuring their access to universal access to electricity.

Finally, an impactful aspect of renewable energy is ensuring a sustainable world for

generations. It is well known the globe climate is dynamic, changing over the course of

many years, and in the process, so do its inhabitants, including humans. From the ice

age to the natural global warming of our planet that exposed the modern landscape we

have now. Yet what many fail to recognize is the time frame in which these events occur.

For example, over the span of 100,000 years, the planet slowly increased in temperature

from 5◦ C to 8◦ C (9◦ to 14.4◦ F) [8]. Currently, the rate at which the global temperature

is increasing is occurring at a much faster rate with the highest increase beginning since

1975, increasing 0.10◦ to 0.15◦ C per decade and continuing since [9]. Since 1880, the

global average temperature has increased by 1.1◦ C. In modern times the production

of electricity contributes to 3/4 of greenhouse gases globally. The greenhouse gases are

carbon dioxide, nitrite oxide, methane, and fluorinated gases and compose up to 40%,

20%, 2.5 times, 100% more of the atmosphere chemical composition than pre-industrial

times [10]. Fluorinated gas is 100% man-made. Limiting the GHG and reducing the
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global temperature by becoming net zero energy producers will limit and preserve the

globe we currently inhabit for many generations. Therefore the need to continue to invest

in renewable energy technologies and hence the reason for this paper.

1.1.2 Overview of Turbine Wind Energy

Wind energy has been around for many centuries and used for a wide variety of tasks

ranging from sailing to food production. By the 11th century, wind turbines were used

extensively by the Middle East and were eventually introduced to the Europeans by

merchants and crusaders which eventually made its way to the Western world [11]. Wind

energy has proven to be an invaluable form of energy for many such as in early pre-

industrial Europe, rural areas, and early settlers in the Western world. The Dutch

windmill is an image familiar to most when one thinks of a windmill, which is common

for a picturesque backdrop of the Netherlands and is widely used as a water pump and

food processing plant. A predecessor to the modern utility-scale wind turbines currently

used today was introduced by two engineers from Austria and Scotland in the 1880s

along with other prominent engineers from that time era. Josef Friedländer from Austria

and Prof James Blyth from Scotland are said to be the first to install wind turbines

for electricity generation [12]. These systems were used to charge batteries to then

power single factories and a small number of other loads. The electrification of rural

areas powered by oil and the expensive costs of battery systems paused the continuing

development of wind turbines.

Modern-day utility turbines were developed following the 1970 oil crisis, but the

first utility-scale turbine in the MW scale dates back to 1941, with the installation of a
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HAWT developed by Palmer Cosslett Putnam and Clinton S. Smith, which was installed

in Vermont, USA [13]. The turbine had a capacity of 1.25 MW with a rotor diameter

of 175 feet and was used to power the local utility grid. Following the 1970 oil crisis

US Department of Energy invested heavily to modernize wind technology for both the

VAWT and the HAWT by employing NASA, Sandia National Laboratories (SNL), and

many other contractors. One of the main objectives of these studies was to transfer

research and technology of VAWT development from the government to the commercial

sector [14], [15]. SNL and NASA, alongside other companies, prototyped and employed

many turbines to study and improve the aerodynamics, structural tower design, electrical

motors, blades, modeling and control strategies, and the scalability of turbines. Although

none of these turbines would become commercially available, the goal of pushing turbine

technology forward was successful as many of the companies involved in the study were,

and to this day, wind turbine manufacturers. Danish development of wind turbines

was also fundamental given they had a vast majority of decentralized HAWT turbines

providing 5 to 25 kW of power. In 1978 the Danish deployed the first multi MW capacity

wind turbine in the world with modern technology such as pitch control and modern

blade design [16]. Nowadays the push for wind turbine technologies is driven by the

preservation of the environment more so than that of the scarcity of oil [11].

To this day there are many types of wind turbines and many more intricate novel

designs being developed that fall under a class of their own. Arguably the most prominent

and widely used are the Horizontal Axis Wind Turbine followed by the Vertical Axis Wind

Turbine. New turbine designs include bladeless turbines that turn kinetic wind energy

into vibrations designed by the company Vortex Bladeless, turbine designs inspired by the
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Archimedean spiral such as the Danish Archimedes windmill (AWM), turbines that are

inspired by hummingbirds considered for residential areas by Tyer Wind, and turbines

that have cylindrical tubes for blades for harsh typhoon environments implemented by a

Japanese startup Challenergy. In addition, novel turbine implementations such as floating

turbines that are taken up by scientific balloons, hybrid turbines that use two types of

turbines in one, and wind turbine implementation on infrastructure. All wind turbines

have pros and cons and have specific environmental implementation and therefore there

is not one that fits all applications. Such differentiating factors can be decentralized vs

centralized grid solutions, urban vs open field, onshore vs offshore, limitation on land

usage, moderate wind to extreme wind, aesthetics, and noise pollution among other

factors. These are some of the factors considered when choosing the correct wind turbine

for any application.

Economically speaking wind turbines have an Energy Return of Investment (ERI) of

18:1 but can vary depending on the size and type of the turbine [17]. Costs associated

with turbines are capital costs, operation and maintenance, capacity factors, lifetime and

depreciation, grid connectivity, and government programs such as incentives and subsi-

dies, which also impact the economics of wind turbines. With the increase of technology

and the general availability of wind energy, the price of electricity is beginning to become

increasingly affordable and is predicted to be a quarter of the price of fossil fuels in the

very near future as many indicators over the past decades show renewable energies price

fall below fossil fuels [18].
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Figure 1.1: Vertical axis wind turbine models [19].

1.1.3 Evolution of Vertical Axis Wind Turbines (VAWT)

The Vertical Axis Wind Turbine has been around for many years but the most notable

contribution in recent history is the development by French engineer Georges Darrieus

in 1925. The original Darrieus wind turbine has two blade designs, the Giromill and the

troposkein design, or the “egg-beater” design, which rotates about the axis perpendicular

to the incoming stream of air or a vertical axis as the name implies. This turbine is a

lift-based device that utilizes the aerodynamic forces created using airfoils such as those

found in airplanes as opposed to drag-based devices that rely solely on drag forces to

spin. Shown in Figure 1.1 are the many models developed over the years, from left to

right the Darrieus, H-blade, Helical, a variant of the Savonius drag type turbine, and the

Hybrid VAWT that incorporated both Savonius and Darrieus turbines. The focus of this

writing is on lift-type devices that utilize the aerodynamic forces created using airfoils.

In summary, an airfoil experiences aerodynamic forces by the creation of a pressure

difference acting on the airfoil surfaces which when integrated gives the aerodynamic
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forces. The summation of these forces gives the resultant force which is taken to act

at the aerodynamic center of the airfoil at ¼ length of the chord. The resultant force is

broken down into two components, lift and drag. These two forces are a function of the

airfoil’s angle of attack which is defined as the angle between the chord of the airfoil and

the relative wind velocity, refer to Figure 1.2. Unfortunately, the relation between the

aerodynamic forces and the angle of attack gets much more complicated as the airfoil

reaches higher angles of attack, or more specifically once the airfoil reaches and passes its

stall angle [20]. Once the airfoil reaches its stall angle drag is the dominant force caused

by the boundary layer separation. In addition, the forces are no longer steady but rather

unsteady, and transient analysis is required among other challenges. Consequently, the

VAWT suffers from a phenomenon known as dynamic stall due to the high angles of

attack during normal operation, which greatly reduces the performance of the VAWT in

power generation. Not to mention the turbine’s inability to self-start and lower efficiency

when compared to the HAWT. On the other hand, the turbine’s ability to receive wind

from any direction, omnidirectional, ease of manufacturing and installation, and load

reduction on the tower due to the location of the generator at the base have all made the

Darrieus VAWT a formidable candidate for urban-based applications and more recently

in offshore applications [15]. This renewed interest has brought a wave of research in

recent years and the development of a newer advanced VAWT.

Beginning in the 1970 the Sandia National Laboratories began research on the Dar-

rieus VAWT in an effort to bring the VAWT up to date with modern wind technology

and share gathered knowledge with the commercial industry. These studies resulted in

a better understanding of the VAWT and all its challenges along with the development
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Figure 1.2: Airfoil aerodynamics depiction after [21].

of 4 prototype turbines. The biggest challenge was the structural integrity and the safe

operating speeds of the turbines as 1 of the four turbines collapsed due to buckling and

another failed due to braking malfunctions. With the gained knowledge from their last

culminating prototype turbine, the 34 m ‘Test Bed’ VAWT turbine, the Sandia Na-

tional Laboratories partnered with FloWind Corporation in attempt to commercialize

the VAWT using the 17 m VAWT platform developed by SNL due to its high success.

Although the VAWT showed great success the project was never realized after FloWind

Corporation went bankrupt in 1997. After this, the VAWT lost all funding and interest

from the US government until 2012. Most importantly from these studies, the SNL found

that VAWT at 500kW and higher capacity ratings are direct competitors to the HAWT

at the time of this research [15].

Aside from the large-scale VAWT implementation, there has been a great push for

small-scale VAWT implementation for urban use. Many researchers have studied the

influence of geometric design parameters on wind turbine performance. Some of these

parameters are the aspect ratio of the turbine, the solidity of the turbine, the number of

blades, blade supports, the turbine tower, and blade design. Ultimately these parameters
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affect the aerodynamics of the turbine and vary greatly depending on the operating

environment the turbine is to be installed. In many studies, solidity is considered to be

one of the most important design parameters [22], [23], [24]. The solidity of a turbine

is a key parameter in determining the optimal operating speed of the turbine relative

to the wind speed or the tip speed ratio, TSR, and is defined as the ratio of the blade

area to the frontal swept area of the turbine. This is one parameter that defines the

optimal operating speed of the turbine. In an urban setting [22] reports a high solidity

turbine with a variable speed setup is optimal. In general, the higher the TSR the lower

the pitching amplitude and vice-versa. Research cited has investigated the effects of

solidity by increasing the number of blades and using larger chord length blades [22],

[23]. Increasing the number of blades also helps with the reduction of torque peaks that

cause early failure on the bearings and gear train. Blade design and blade profile design

have also been researched extensively. Most notably in the SNL research campaign blade

profiles were designed specifically for the VAWT. In addition to blade profiles, helical

blades designed to combat cyclic stress the VAWT experiences have been implemented.

The helical blade design ensured the blades were always in contact with the incoming wind

ensuring a smooth torque transition as opposed to the two peak torque per revolution, or

how many number of blades the turbine has, experienced by traditional straight blades

[25]. The aspect ratio of a turbine is another key parameter and is defined as the height

of the turbine to its radius. The aspect ratio is found to influence the Reynolds number

where increasing the aspect ratio decreases the Reynolds number and vice versa. [26]

found that increasing the Reynolds number, by having a low aspect ratio, increases the

power coefficient of the VAWT by increasing the lift coefficient of the blade and reducing
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the drag coefficient. Both the solidity of a turbine and the aspect ratio determine the

optimal operational speed of a turbine. Generally, the lower the aspect ratio and the

higher the solidity of the turbine, the slower the rotational speed. These are just some of

the important parameters that have influenced the VAWT design for urban applications

over the years, but many more are currently being investigated.

For smaller turbines, auxiliary systems such as pitching mechanisms have been a hot

topic lately. Pitching mechanisms allow turbines to operate in a vast range of wind

speed conditions, allow VAWT to self-start, and position blades to reduce or eliminate

the production of negative torque [27]. Pitching mechanisms have been implemented in

the form of a 4-bar linkage system, the implementation of DC motors for the control of

single and multiple-blade pitching, and cam and lobe systems. Although adding these

systems generally requires complex assemblies and control, the benefits can outweigh the

additional complexity to the design, and [28] finds the control system operation only

consumes about 1% of total gross power produced.

While there are many modifications of the VAWT, they are out of the scope of this

thesis such as hybrid VAWT that incorporates drag-based turbines with lift-type turbines.

As such this is a very brief overview of the development and evolution of the VAWT as

there is much more ongoing research to develop the VAWT even further. The previous

information was given in the hopes of giving the reader a broad overview of the evolution

of the VAWT and where it is today. The focus is mainly on straight-blade VAWT instead

of the full Darrieus VAWT.
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1.1.4 Historical Developments of VAWT Control Systems

Historical development of the VAWT is narrow, especially for the H- blade VAWT. The

early studies of the VAWT done by SNL were mostly focused on those of the Darrieus

Phi turbine with curved blades. These turbines had controls for starting/stopping, grid

integration, and turbine protection as well as power optimization using variable speed

operation. The development of the variable speed control algorithm from the SNL test

campaign was a major advancement in the controls of the VAWT and one of the first to

implement a true variable speed operation [15]. This variable speed algorithm allowed

the turbine to follow its maximum efficiency curve at lower wind speeds, avoid structural

damages through speed control, and turbine braking through regenerative braking.

Early control development for the VAWT was a difficult task as there was little known

knowledge of the aerodynamics of the turbine. Designing for the optimal operating point

of the VAWT encompassed many design considerations. For example, the structural in-

tegrity that in turn could affect the aerodynamics of the turbine and on top of that had

to be manufacturable and therefore the controls were relied upon to avoid unsafe opera-

tional speed. But at the time, and to this day, there is no validated aerodynamic model

for the VAWT that can capture the true performance of the turbine as predicted values

were often affected by the smoothness of the blade where dirty blades in one occasion

led to higher coefficient of performance, SNL ‘Test Bed’ VAWT, and lowered the per-

formance for another, 19m FloWind turbine. Validated aeroelastic models are currently

being researched by SNL for offshore implementation and commercial certification.

Early development and deployment of pitch control was used by the McDonell Aircraft
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Company which used both electric DC motors and push rod cam follower mechanisms

in their VAWT [15], [29]. The pitch control varied the pitch for one half of the turbine

to a constant negative pitch angle and a constant positive pitch for the other half of

the turbine. With pitch control, the company claims it can reach a higher maximum

coefficient of power than that of the Darrieus VAWT [29]. Through initial research

and investigation and early aerodynamic models, the turbine was expected to make

a coefficient of power of 0.401 after losses [30]. In the first wind tunnel tests of the

Giromill, the power consumption of the pitch control system was only 3% of the total

power produced by the turbine, which was deemed cost-effective. The prototype was

built in 1980 and successfully deployed, but due to its complexity and higher annual

energy cost, the program did not continue [25]. Although the program did not continue,

the interest in pitch control mechanisms on smaller VAWT still calls the attention of

many researchers and is currently a hot topic for researchers worldwide.

1.1.5 Importance of Control Systems in Wind Turbines

The advancements in technologies translate directly to efficiency gains in the performance

of wind turbines through improvements in the control system. Control systems are

widely used in modern wind turbine systems, for single turbines but especially for the

collection of wind turbines called a wind turbine farm. Technology plays a crucial role in

monitoring the performance of individual turbines whether on a farm or stand-alone by

using a collection of monitoring equipment that make up the workings of the controls.

Advancements in technology such as in the form of physical equipment, sensors, and

monitoring equipment, or in nonphysical forms such as advancements in algorithms that
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compromise the brains of the control system increase the overall performance of existing

turbines. To illustrate the importance of control systems we can look into well-known

industries such as automotive. Many automotive manufacturers have been using the

same power plant, in this case, an internal combustion engine, for many years with minor

mechanical modifications. These cars improve their efficiency in terms of power output

and gas consumption. What changed here is the development of new technology in both

physical and nonphysical forms. Because of the development of sophisticated sensors, the

algorithm has more in-depth knowledge of the workings of the internal combustion engine

leading to better informed decision making. Likewise, with the advancements of control

algorithms, the control system can take advantage of the additional information provided

by the sensors and output the best outcome-provided inputs. The same principle applies

to the wind turbine systems in which case the goal of the control system is to provide

the best outcome, maximizing power output, given inputs of its environment. Examples

of critical control functions in a wind turbine system are

• Turbine speed regulation - different wind turbines have different optimal rotational

speeds that are influenced by environmental factors such as wind.

• Power optimization - a high-level goal of the control system for obvious reasons

• Blade angle - depending on the operation can be used to optimize for power, start-

up process and shutdown process, blade load control, and more.

• Yaw - position the turbine nacelle in the direction of incoming wind.

• Grid power integration - safely load power production to existing grids.
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• Load control - used for optimizing power, turbine speed control and load shedding.

• Start-up and shut down processes - startup and shutdown process uses a conjunction

of turbine mechanisms to start or slow turbine.

• Fault detection - monitors the turbine for mechanical issues and operational safety

by preventing overloading the structure mechanically and electrically.

• Energy storage - turbine control system with battery storage system integration for

decentralized systems.

• Adaptation control - modern algorithms that continuously monitor turbine perfor-

mance and degradation in addition to external factors to adjust parameters that

help the turbine retain or even improve turbine performance.

The control system of a wind turbine is a crucial part of the turbine which brings it to

the modern day era. It ensures the turbine system operates safely while maximizing the

power output of a particular turbine or a collection of turbines.

1.2 Literature Review

The focus of this review is on the development of pitch optimization algorithm and their

applications through controls. In addition to speed control development and use in wind

turbines. Due to the VAWT’s inability to self-start, highly fluctuating angle of attack (α)

during operation, dynamic stall at low TSR caused by high angles of attack, and fatigue

loading due to high torque variation around the azimuthal position of the turbine, the

VAWT is regarded as being inefficient when compared to the HAWT. Although inefficient

when compared to the HAWT the VAWT has several key design advantages that can
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be leveraged to operate in areas deemed inoperable by the HAWT due to highly erratic

winds such as in urban areas and can be further enhanced by both pitch control and load

control.

Pitch control systems are a crucial component of wind turbines, as they determine

the angle of the turbine blades relative to the blade tangential path in a VAWT and

maintain steady angles of attack. Pitch control allows wind turbines to optimize energy

capture and, in many instances, improve the life expectancy of the turbine by moderating

torque loading on the blades and structure overall. More importantly the pitching control

mechanism is used to ultimately implement the optimized pitch trajectory. The main

goal of the optimized pitch trajectory is to 1) help moderate the angle of attack, 2)

help the turbine self-start, and 3) help limit speed by load shedding and thus help avoid

structural damage. The predefined or defined pitch trajectory is one calculated off line

or developed in real time by the optimization algorithm and thus the job of the controller

to implement said trajectory. The development of the pitch trajectory involves the input

of multiple variables such as the turbine speed, wind speed, local angle of attack of each

blade, velocity inflow, and turbine geometric parameters, and its main goal to reduce the

high angles of attack experienced by the nominal operation of the VAWT, first function.

These inputs are then fed into a complex formulation that predicts the optimal trajectory

based on the current environmental state. The second function allows the turbine to start

by positioning the blades in the optimal position to allow for maximum tangential forces

and therefore self-start. The third function of pitch control is to use pitching to increase

the drag instead of lift forces to limit the overspeeding of the turbine. The second and

third points will not be discussed further in this thesis as they are out of the scope.
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Recently, there has also been an expanded use case for the pitching mechanism to

improve not only the individual turbine performance but the performance of a collective

wind turbine farm or in our case a set of turbines. While the fundamental concept of

pitch control remains the same, ongoing developments and innovations in this area will

be briefly mentioned. The next section will review some of the pitching optimization

and control implementations being studied. With an emphasis on Individual Blade Pitch

Control and Predictive Pitch Control & Machine Learning and AI.

1.2.1 State-of-the-Art Control Strategies & Recent Advances in Innovations

in VAWT

Pitch Optimization

There have been numerous investigations regarding the optimization of the VAWT blade

pitch angle for individual blade pitching. Much research has gone into the implementation

of a sine-cosine pitch trajectory due to the cyclic nature of the turbine. Given the TSR of

the turbine is directly linked to the angles of attack experienced during operation, pitch

is a function of TSR. Zhang et al [31],[32], and [33] used a sine function with a scaling

factor to increase or decrease the amplitude of pitching trajectory based on turbine speed.

Further [31] enhanced the scaling by separating the scaling factor in two for the windward

and leeward, upwind and downwind in our definition, sides of turbines, and by applying

a fitted curve over the original pitch trajectory to smoothen the blade pitching velocity

to reduce torque fluctuation. In the lower tip speed ratio, the author of [31] reported a

performance increase of 146%. Li et al [34] developed a genetic optimization algorithm

with minimal optimization parameters to sufficiently cover the optimal solution space for
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a pitch trajectory formulation for a wide range of TSRs. The algorithm integrated the

use of CFD to evaluate 805 random curves generated by the algorithm. After optimizing

the turbine, the author reported an impressive 64% efficiency, although it came at a

simulation time of 145 hours. Similarly, Ma et al [35] and Paraschivoiu [36] used a genetic

algorithm to optimize a cosine-like pitch trajectory using a small number of parameters,

2 and 3 respectively, to find the optimal pitch trajectory across a variety of TSRs. To go

through the evolution of pitch trajectory optimization the authors used the single disk

multiple stream tube method to validate the fitness of the curves. The authors reported

an efficiency increase of 8 to 20% under the variety of different TSRs by [35] and a 30%

increase by [36]. Jain et al [27] conducted a parametric study on a small-scale VAWT

with a 4 bar drag linkage to implement variable amplitude blade pitching. Their study

showed a sinusoidal pitch trajectory with a high amplitude of 35 degrees is needed for

TSRs lower than 0.5 and less than 8 degrees after a TSR of 2.5. They concluded that

with a pitching mechanism and high solidity turbine, they can extract more energy and

increase efficiency from 10% to 36%, depending on the TSR. In addition to the sinusoidal

pitching curve, [37] has proposed an adjustment law for blade pitching. Their goal was to

maximize the turbine’s coefficient of torque and therefore assess the optimal blade angle

to always give the highest value. They used a high-fidelity model to improve the flow field

around the blades and within the turbine to reflect an accurate local angle of attack. This

ensured a better adjustment law given their pitching was highly dependent on the flow

field around the blade. Given the highly non-linearity of the optimal trajectory, a curve

was fitted over the original trajectory and improved the turbine’s output by 14.56%.
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Predictive Pitch Control & Machine Learning and Artificial Intelligence:

Predictive algorithms and models use weather forecasts and historical wind data to pre-

dict wind conditions in the near future. This information is then used to adjust blade

pitch angles to optimize energy production proactively. Artificial intelligence and ma-

chine learning algorithms are also being employed in pitch control systems to continuously

optimize blade angles based on historical data and real-time conditions as well. Abdal-

rahman et al [28] used a Multi-Layer Perception Artificial Neural Network (MLP-ANN)

algorithm to implement an intelligent pitch controller. The MLP-ANN was used to learn

the internal aerodynamics of the VAWT and then used to estimate the power output of

the turbine based on three inputs: the turbine TSR, blade angle, and blade pitch. In

addition, the MLP-ANN was used as the pitch controller as well and when compared to

traditional controls, such as a PID, was much faster in response time. The efficiency of

this method improved the turbine performance by as much as 25% in some instances.

Shen and Ruiz [38] developed an online fast reinforcement learning algorithm to control a

pitching mechanism based on a 4-bar drag bar linkage. The learning algorithm used was

a PGPE algorithm to optimize the length of the drag bar link based on the TSR. The

pitching trajectory formulated was based on the kinematics of the 4-bar linkage and its

correlation to the dynamics of the turbine. Therefore, in controlling the 4-bar mechanism

it directly influenced the performance of the turbine. The algorithm was successful in

obtaining the optimal length of the drag bar linkage in just under a minute in both con-

stant and variable wind environments. In addition, the algorithm was able to self-start

the VAWT. The algorithm developed here increased the turbine performance by 30.5%
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efficiency when compared to the turbine without any pitching mechanism, or zero pitch.

[39] used a Bayesian reinforcement algorithm with Markov Chain Monte Carlo approach

to predict the wind change and learn the VAWT dynamics to keep the turbine speed at

an optimal operating speed and therefore maximize power. The inputs to the control, in

this case a Radial Basis Neural Network, are the wind speed and acceleration, generator

speed and acceleration, and load voltage with load current. Based on the current policy

generated, the controller varies the speed by controlling the current load, reducing or

increasing the speed. By using the Bayesian RL MCMC controller the efficiency of the

controller was 89% as opposed to the traditional Maximum Power Point Tracker of 78%

vastly used in the renewable sector and proven controller.

Dual turbine Operation:

With multiple turbines, coordinated pitch control systems can be employed to reduce

wake effects. Adjusting the pitch of specific turbines to minimize wake interference can

increase overall energy production across the wind farm. [40] used a dynamic pitch control

on a combination of both the upwind and downwind turbines based on the turbine array.

The upwind turbine with dynamic pitch control had a positive influence on the downwind

turbine when their relative angle was less than 30 degrees. In contrast, the downwind

turbine with dynamic pitch control benefited from the upwind accelerated turbine wake

when their relative angle was greater than 30 degrees. This improved overall efficiency

for both turbines by up to 20% when compared with a single turbine. [40] concluded that

the dynamic pitching mechanism along with turbine array placement should be done in

such a way as to take advantage of the turbine wake and dynamic pitching. [41] applied
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machine learning techniques along with optimization techniques to solve for a staggered

VAWT configuration dynamic. [41] used the ANN and Kriging methods to estimate

the performance of two closely staggered twin-VAWTS. Both ANN and Kriging were

trained off of 22.45% of high-fidelity CFD simulations taking the turbines’ pitch angle

as input and average torque produced as output. They concluded that both the Kriging

and ANN had an output R2 of 99% and 98% respectively when determining the torque

based on pitch input. Overall, this method saved design time of a little over 75%. [42]

also conducted a study on a twin VAWT setup to determine the effect of pitching on

the performance of both the upwind turbine and the downwind turbine. The pitching

range of both turbines ranged from 0 to -6 degrees. Chen concluded the downwind

turbine benefited from the upwind turbine pitching by an increase of performance by

7.1% whereas the upwind turbine under the influence of the downwind turbine pitching

gained a performance increase of 4.7%. [43] Hassanpour et al conducted a study on

the effects of 3 design parameters for the formation of twin VAWT with a 3D analysis

approach. The author used the Taguchi method to investigate three parameters: the

horizontal separation of the turbines h, the angle relative to each other β, and the mid-

vertical distance relative to each other S. The author concluded that the most impactful

variables according to the Taguchi method are the height difference between the turbines,

the angle relative to each other and finally the horizontal distance, h > β > S The

optimal values the author concluded with is a height difference of h = 0, angle difference

of β = 90, and lastly a horizontal distance of 1.5D or 1.5 turbine diameters. The power

output increased by 26.60% compared to that of a single turbine. In this study, there

was no pitch control. On the other hand, [44] conducted a 2D analysis with 5 parameters
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using the same optimization approach. In this analysis, the impact of each parameter is

λ > β > RD > S/d > ϕ. Where λ is the TSR, β inflow angle, RD rotational direction,

S/d horizontal distance, and lastly ϕ blade pitch.

1.2.2 Challenges and Opportunities in VAWT Control

For many years, the Vertical Axis Wind Turbine (VAWT) has been overshadowed by

the more efficient Horizontal Axis Wind Turbines (HAWT). As a result, the emphasis on

implementing modern control techniques has been directed towards Horizontal Axis Wind

Turbines. A major issue with the VAWT, apart from its lower efficiency, is the inability

to self-start requiring external power in addition to any auxiliary mechanisms for the

external motor or blade pitching mechanisms. The starting phase of the VAWT can be a

complex task and even more so the comprehension of the aerodynamics and is easy to see

why many would opt to go with the HAWT. Although recently the VAWT’s self-starting

issue has been addressed by many authors the advantage the VAWT has over the HAWT,

being omni-directional, puts it in a stochastic wind environment making it difficult to

design for. What continues to limit the advancement of the VAWT is the accurate

modeling of the unsteady aerodynamics that is highly non-linear and consequently limits

the performance of classical controls. Today, machine learning techniques have become an

important tool for both solving complex control tasks and for real-time control updates

with little to no insight of the system dynamics. This makes machine learning the perfect

candidate to help solve and alleviate the modeling of the VAWT unsteady aerodynamic

environment.
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1.3 Objectives and Potential Contributions

Although RL has experienced success in various applications, RL still requires a large set

of data for training. Pitch control policies are normally trained using simulated data from

computational fluid dynamics (CFD) simulations. While the CFD data provides insights

into the aerodynamic characteristics of a turbine, it cannot guarantee the completeness

of the data in representing the environment. The training process takes a long time as

simulating the turbine dynamics can take hours or days iterating through solutions such

that most of the time is dedicated to solving the turbine dynamics rather than learning.

To solve this problem, previous work has designed a fast online RL control of VAWTs

[38]. To ensure the speed of convergence, only one parameter was used to optimize a

reconfigurable periodic motion, which could then be used for online learning. To build

upon the previous work, we propose a collaborative RL pitching control method for

VAWTs that work in parallel. Herein, we loosen the constraint on the formulation for a

pitching trajectory, such that it can better approach the optimal pitching trajectory and

introduce newer reinforcement learning techniques from [45] to bring the algorithm up

to date. Rather than focusing on solving the turbine dynamics, we propose the use of an

online model-free RL algorithm. To maintain fast convergence, a collaborative learning

strategy is proposed, such that the involved turbines can explore effectively to achieve

high energy conversion efficiency. The main contributions of this thesis are as follows:

(1) A collaborative online RL control of a pair of VAWTs is proposed, where the

sampling efficiency is significantly improved through symmetric sampling which

can be extended to wind farms.
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(2) A smooth periodic function is designed to formulate a flexible pitching trajectory,

which uses as few as six parameters to strike a balance between flexibility and

accuracy.

(3) A simulation software kit is developed for studying collaborative pitching control

of paired VAWTs, and it can be used by engineers to access their turbine control

strategies.

1.4 Thesis Overview

The thesis is organized as follows. In Chapter 1 we discussed the importance of renew-

able energy and the current state of Vertical Axis Wind Turbines. In Chapter 2, the

aerodynamics of a VAWT are formulated and the pitch angle for control is introduced.

The fundamentals of the aerodynamics model, the Double Multiple Stream Tube model,

are presented, and an introduction to the optimization algorithm Policy Gradient Pa-

rameter Exploration (PGPE) is provided. Chapter 3 presents the setup of the Dual

Collaborative Wind Turbine model. An overview of the pseudo-code will be presented to

demonstrate the implementation of newer reinforcement learning techniques and the use

of PGPE symmetric sampling to extend the optimization algorithm to a second turbine.

An overview of the problem and the expected outcomes is presented in detail. In Chapter

4, the numerical results are presented and discussed. Finally in Chapter 5 will end with

the conclusion.
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CHAPTER 2

Background

Based on gained knowledge from the literature review, the VAWT wind turbine dynamics

are formulated in this chapter. In addition, the introduction to Policy Gradients and the

implementation of the PGPE structure from [46] for the VAWT introduced and similar

control structure found in literature.

2.1 Mathematical Modeling of the VAWT

2.1.1 Blade Element Theory

Blade element (BE) model is a useful method to determine the aerodynamic forces of the

blade given geometric parameters. This method alone does not suffice as an additional

model is required to determine the inflow of air but once obtained the aerodynamic forces

can be calculated using the BE method. In this study we will be pairing the BE model

with the momentum model and solve for the inflow iteratively. The working principle of

a lift-driven VAWT is illustrated in Figure 2.1. Here, the resultant wind over a turbine

blade is a combination of the incoming wind and the rotation-induced and therefore

calculated as

VR =
√
V∞(1− a)2 + ωR2 (2.1)

where V∞ is the undisturbed wind speed, ω is the turbine rotational velocity, R is the

turbine radius, and a the induction factor. As the resultant wind passes over an airfoil,

it generates lift, L⃗, and drag, D⃗, forces. These two forces are functions of the angle of

attack α of the corresponding airfoil, which is defined as the angle between the chord line

of the airfoil and the resultant wind velocity. Without pitch control, the angle of attack
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Figure 2.1: Working principle of a lift-driven VAWT.

of a VAWT can be calculated by

α0(θ, λ) = tan−1

(
(1− a) sin θ

(1− a) cos θ + λ

)
(2.2)

where θ is the azimuth angle of the blade, λ is the TSR, and a is the axial induction factor.

The axial induction factor, a, gives an estimation factor for the incoming wind and how

much the undisturbed wind velocity is affected by the actuator disk [47]. The induction

factor will be discussed further in the next section but it is important to mention here

as the blade element theory requires an estimation of the inflow to properly calculate

α. TSR is the angular velocity of the turbine to the incoming free stream wind and is

defined as

λ =
ωR

V∞
. (2.3)
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Let the pitch control angle be β, then the effective angle of attack, or inflow angle,

becomes

ψ = α′(θ, λ) + β. (2.4)

From Eq. (2.2) and (2.3), it can be seen that the VAWT may experience dynamic stall

at some positions when λ is small due to the high angles of attack. With pitch control,

this situation can be mitigated or completely avoided.

The lift and drag forces generated by the airfoil can be determined using the blade

element approach, given by

L⃗ =
1

2
ρV 2

RCL(α)Ab (2.5)

D⃗ =
1

2
ρV 2

RCD(α)Ab (2.6)

where ρ is the air density, CL and CD are the lift and drag coefficients, and Ab is the blade

area defined as Ab = ch for a straight blade with a chord length of c and a height of h.

The blade element approach discretizes the length of the blade to find the performance

of the blade in a 2D plane. These forces are then integrated along the length of the blade

to determine the total thrust, torque, and power of the blade and the turbine as a whole.

To determine the thrust force and torque in a simpler manner the lift and drag forces

are decomposed into the form of normal and tangential components decomposed by the

inflow angle given by

F⃗N = L⃗ cosψ + D⃗ sinψ, (2.7)

F⃗T = L⃗ sinψ − D⃗ cosψ. (2.8)
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Figure 2.2: Aerodynamic forces acting on blades.

The average torque generated by the turbine is given by

τ =
1

2π

NB∑
i=1

∫ 2π

0

F⃗T,i(θ)Rdθ (2.9)

where NB is the number of blades. Then, the average power generated by the turbine

becomes,

P =
1

T

NB∑
i=1

∫ 2π

0

F⃗T,i(θ)Rωdθ (2.10)

where 1/T is the period of the turbine. The available wind power traveling through the

turbine can be calculated by

Pw =
1

2
ρAfV

3
∞ (2.11)

where Af = 2Rh is the frontal area of the turbine. Hence, the efficiency of a turbine,

i.e., the coefficient of power, can be calculated by

Cp =
P

Pw

(2.12)
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2.1.2 Double Multiple Stream Tube Model (DMST)

The DMST model has been a popular aerodynamic model for the performance prediction

of the VAWT amongst researchers due to its proven success over the years [15], [27], [33],

[36]. Although considered a low-fidelity model, the DMST is considered a great tool for

early development of the VAWT and fast analysis with dependable results that capture

the overall performance of the VAWT, given its geometric parameters and expected

operating environment. In total four stream tube models have been studied [48]. The

DMST model is the latest evolution of the stream tube model growing in complexity from

the Single-streamtube model that considered only one actuator disk and one stream tube

to a dual actuator disk with multiple stream tube model, or simply the DMST. The

DMST model relies fundamentally on both the momentum theory and blade element

theory to deduce the induction factor, a, by equating the thrust force obtained by each

and iteratively solving for said induction factor. Due to its low computational requirement

and its ability to capture the VAWT general performance it is suitable for our pitching

control studies. Although it should be noted the assumptions made by DMST which are

listed in [47] and reiterated here,

• considers homogeneous, incompressible, steady-state fluid flow

• no frictional drag

• an infinite number of blades

• uniform thrust over the disk or rotor area

• a nonrotating wake
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• static pressure far upstream and far downstream undisturbed ambient static pres-

sure.

From the limitation above we can see the DMST model is limited to an in-depth analysis

of the VAWT, as many models are. Still, the DMST model has been shown to reflect

accurate performance predictions of the VAWT when used within the limits or scope of

the model [15], [36].

The derivation of the DMST considers the conservation of linear momentum that is

applied to a control volume around the VAWT as shown in Figure 2.3. The DMST model

inserts two infinitesimal thin actuator disks in place of the turbine, one on the upper wind

side of the turbine and the other in the downwind side of the turbine. Given the linear

conservation of momentum, the thrust force across each disk can be determined for both

the upwind actuation disk and lower as

Tup = ṁd(V∞ − Ve) (2.13)

Tdown = ṁd′(Ve − Vw). (2.14)

V∞ is the undisturbed incoming wind velocity, Ve is the induced air velocity after passing

the first actuator disk, and Vw is the induced velocity after passing the second actuator

disk known as the wake velocity. Likewise, the thrust can also be found across each

actuator disk by applying Bernoulli’s function to the closed control volume across each
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actuator. The following is for the upwind actuator disk,

p∞ + 1/2ρV 2
∞ = p+d + 1/2ρV 2

d

p−d + 1/2ρV 2
d = pe + 1/2ρV 2

e

(2.15)

and for the downwind actuator disk,

pe + 1/2ρV 2
e = p+d′ + 1/2ρV 2

d′

p−d′ + 1/2ρV 2
d′ = pw + 1/2ρV 2

w

(2.16)

and finally recognizing thrust across each actuator can be defined as

Tup = A(p+d − p
−
d ) (2.17)

Tdown = A(p+d′ − p
−
d′). (2.18)

The pressure values are obtained through Eqs. (2.15) for p+d and p−d and the same for p+d′

and p−d′ using Eq. (2.16) thus the following equation for thrust is given as

Tup = 1/2ρAd(V
2
∞ − V 2

e ) (2.19)

Tdown = 1/2ρAd′(V
2
e − V 2

w). (2.20)

Finally equating Eqs. (2.19) and (2.13) and likewise for the downstream actuator disk

(2.20) and (2.14) and recognizing ṁ = ρAdVd over the actuator disk, ρAd′Vd′ for the lower

actuator disk, we can conclude the air stream velocity across each actuator disk is the
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average of the upwind velocity and downstream

Vd =
V∞ + Ve

2
(2.21)

Vd′ =
Ve + Vw

2
, (2.22)

assuming the wake for the downstream actuator disk is fully developed [48]. The in-

duction factor is defined as the fractional decrease of free stream air across the actuator

disk,

a =
V∞ − Vd
V∞

(2.23)

a′ =
Ve − Vd′
Ve

, (2.24)

where a is the induction factor for the upper actuator disk and a′ for the downwind

actuator. These induction factors are then used to determine the velocity across each

actuator disk for Vd and Vd′ using the previous Eqs. (2.21) and (2.22) to determine the

inflow in terms of the induction factor to give,

Vd = (1− a)V∞ (2.25)

Vd′ = (1− a′)(1− 2a)V∞. (2.26)

The DMST model divides the turbine into two half cycles and splits the turbine

into multiple adjacent aerodynamic stream tubes for analysis. The turbine is divided

into equal arc lengths of 2Nst, two times the number of stream tubes, and therefore arc
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Figure 2.3: Double multiple stream tube model.

length of Sst and ∆θ = π/Nst. Each stream tube is located around the azimuthal of the

turbine and located by its angle denoted as θst which corresponds to the center of the

actuator disk. The frontal area of each actuator disk is defined as Ast = dhR∆θ sin θst.

See Figure 2.3 for depiction. To solve for the induction factor the thrust force obtained

by the BE method is equated to the linear conservation of momentum thrust. Therefore

the induction factor is solved iteratively. The thrust coefficient at each stream tube using

the BE method is defined as the average thrust force at the stream tube location divided

by the dynamic pressure and swept area of the actuator disk,

Ct,s =
Tst,avg

1/2ρV 2
∞Ast

(2.27)

where Tst,avg, and Ast are the average thrust force and the area of stream tube st. The

average thrust force in the stream tube can be further written as Tst,avg = B∆θ
2π
Tinst where

Tinst = 1/2ρV 2
relc(−Ctcos(θ) + Cnsin(θ)). The number of blades is defined by B and the
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chord length as c. By submitting the calculation of the thrust force, the thrust coefficient

can be further written as the average thrust coefficient of the turbine as

CTBET =
Bc

2πR

(
VR
V∞

)2(
−Ct

cos θ

sin θ
+ Cn

)
, (2.28)

CT ′
BET =

Bc

2πR

(
V ′
R

Ve

)2(
−Ct

cos θ

sin θ
+ Cn

)
. (2.29)

The momentum theory therefore also provides a relation between the induction factor

and the stream tube loading derived from Eqs. (2.21) and (2.22) and Eqs. (2.25) and

(2.26) to define two more important variables Ve and Vw. The downstream wake of the

first actuator is defined as Ve = V∞(1 − 2a) and the downstream wake of the second

actuator is defined as Vw = V∞(1−2a)(1−2a′). These values are then used in the thrust

equation derived from the Bernoulli principle, Eqs. (2.19) and (2.20), and divided by

the dynamic force 1/2ρV 2
∞Ast for the upwind and 1/2ρV 2

e Ast for the downwind actuator

which then gives the thrust coefficient from the conservation of linear momentum,

CTMOM = 4a(1− a), (2.30)

CTMOM = 4a′(1− a′). (2.31)

The DMST solver equates Eqs. (2.28),(2.30) and (2.29),(2.31) to iteratively solve for the

induction factor recognizing that wind velocities from the BE theory are also functions of

the axial induction factor, a. Once the induction factors have been solved the summation

of torque multiplied by rotational speed at each stream tube is obtained and divided by
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the available wind power to find the overall coefficient of power of the wind turbine. The

indices of the first summation indicate the frontal and downwind power generation, 1

and 2 respectively.

CP =
2∑

i=1

∑Nst

st=1
NB
2π

∫ 2π

0
τi,st(θ, ast)ωdθ

1/2ρAfV 3
∞

(2.32)

2.1.3 System Description and Dynamic Modeling of VAWT

Figure 2.4: Control system block diagram.

The block diagram of the high-level overview of the control system is given in Figure

2.4, which illustrates the integration of the pitch control and load control subsystems, as

well as their interactions with the aerodynamics of the turbine. The block diagram is an

interpretation from [49] and [28] that describe the aerodynamic, mechanical, electrical,

and control blocks in detail, but in this study, the mechanical and electrical blocks are

not included due to their low-level detailed design analysis, which is not in the scope of

this thesis. In addition, these systems, although important, will not add to the analysis

of turbine performance as the turbine dynamics is considered a black box to the pitch

control algorithm, the main focus of this thesis, and only requires the rotor aerodynamics.

Furthermore, all inputs and outputs are considered high-level, requiring a subsystem

to interpret these values. For example, the input load control value would need to
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be interpreted by a micro-controller that would then require the need to switch high-

efficiency electronic components to operate the resistive load [39] and therefore out of

the scope of this study. The goal for load control is to ensure the turbine works at the

designed optimal TSR which is a function of the geometric parameters of the turbine.

Meanwhile, the pitch control optimizes the blade pitch angle, maximizing lift forces and

thus improving the coefficient of power.

Load Control Block

The load control block is a single input and single output control system that keeps the

TSR at a reference value, λr. The reference value is set at the optimal operating TSR

of the turbine which depends mainly on the solidity of a turbine as previously discussed.

The solidity of a turbine is a key parameter in determining the performance of the turbine

and is defined as the ratio of the blade area to the frontal swept area of the turbine,

σ =
NBc

d
. (2.33)

A large number of high-fidelity computational fluid dynamics simulations concluded that

the optimal TSR can be determined through only the knowledge of the turbine geometric

parameters [22]. Rezaeiha et al. finds an optimal VAWT has a moderate to high solidity

given it is a variable speed VAWT for urban applications. Moderate to high solidity

VAWT achieves their maximum power coefficient at a lower TSR but at the cost of

increased angles of attack. Therefore, using the findings of [22] the optimal TSR of the

turbine in question is found using the solidity of the turbine, and a variable speed control
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is implemented based on the correlation derived from [22],

λopt = 2.693σ−0.329 − 1.605. (2.34)

For the implementation of the variable speed control intuitively, if the rotation speed

of the turbine is too fast/slow, the control system will increase/decrease the load. This

control behavior can be formulated using a simple PID control or any other control

method where λr = λopt.

The dynamics model of a VAWT is given by a simple one-mass model,

Jω̇ = τa − τl, (2.35)

where J is the mass momentum of inertia, ω̇ is the angular rate, τl is the resistive load

torque, and τa is the aerodynamic torque, given by

τa(θ, ψ) =
1

2
ρAfV

2
∞RCτ (θ, ψ) (2.36)

where Cτ is the total torque coefficient of the turbine and is a function of the turbine’s

angular position θ, the inflow angle of attack of each blade, and Af the frontal area of the

turbine. The resistive load, τl, is the controlling parameter, or the input control value.

This value is used by the control algorithm chosen, which in this study is a simple PI

controller and will be discussed in the next section. The inputs to the aerodynamic block

are wind speed V∞, rotor speed ωr, and pitch angle β. The output of the aerodynamic

block is the updated rotor speed ωnew and the coefficient of power CP .
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Figure 2.5: Structure of CoRL pitch control.

Pitch Control Block

Since the wind traveling through a VAWT can change at any time, increasing the learning

speed is critical for the success of online RL pitch control. To improve the efficiency in

exploration, thereby the speed of convergence, a collaborative RL pitch control method

is proposed, and its structure is shown in Figure 2.5. Similar to a typical RL structure,

it consists of an agent and the environment it interacts with. Differently, the collab-

orative RL (CoRL) algorithm strategizes the sampling and decision-making process to

capture the possible nonlinear relationship between the actions and behavior of the tur-

bines. Pitch control optimizes the pitch trajectory iteratively as it interacts with the

environment, in this case, the aerodynamic block, by receiving a reward and adjusting

the parameters of the pitching control policy accordingly. The actions are generated

according to this pitching control policy and then sent back to the turbine in the envi-

ronment, which updates the states of the turbines and provides feedback to the agents in

the form of rewards or penalties. With enough trial-and-error explorations, the agent can

learn a policy that optimizes its actions to maximize the cumulative rewards it receives
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from the environment.

2.2 Control System of VAWT

2.2.1 Policy Gradient Policy Exploration (PGPE) for Pitch Optimization

Policy Gradient Policy Exploration (PGPE) introduced a new way to learn using model-

free reinforcement learning, specifically designed for partially observable Markov decision

problems. The method proposed by [46] estimates a likelihood gradient by sampling di-

rectly over the parameter space, leading to more accurate gradient estimations, compared

to methods like REINFORCE. The PGPE algorithm is a deterministic policy that can

determine the entire action-state history on a single sample, as opposed to a probabilistic

policy that samples every action, leading to high variance in the gradient estimation. Like

other PG methods, PGPE can be applied to a high dimensional, continuous state-action

stochastic environment.

Markov Decision Process

PGPE basis its general framework of episodic reinforcement learning in a Markovian

environment. It follows the Markovian decision process where the agent takes an ac-

tion in an environment following a policy which leads to rewards based on states and

actions r(at, st) at a time step t. Almost all RL problems take the form of the Markov

Decision Processes (MDP) where actions not only determine immediate rewards but also

future rewards and future state interaction as well [50]. MDP is a class of sequential

decision-making processes where an action influences the outcome of an event condition-

ally independent from the past given the present state. An MDP consists of 5 elements
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that define the probability distribution from one state to another

M = (S,A,R, P, s0) (2.37)

where S the set of state space, A ∈ IRN is the action space, R is the reward function

r(st, at), P the transition dynamics p(st+1|st, at) , and s0 the initial state distribution. In

the RL problem, the action is taken according to a policy function that defines the agent’s

behavior. Of course, in the RL problem, the transition dynamics are unknown and must

be learned through exploration and sampling methods such as the Monte Carlo method.

Although exploration is key to finding optimal trajectories it can also lead to known

unwanted state interactions that detract the agent from its goal, that is to maximize the

long-term reward and therefore the need for efficient exploration methods.

Policy Gradients

Policy gradients are a very popular algorithm in RL methods as they expand into control

for continuous states and actions as opposed to discrete values. This method searches

the gradient in the policy space directly rather than from a value function and tries to

derive the best policy by optimizing for the parameters ϑ in the parameterized function

πϑ(a|s). The goal of PG methods is to find the set of parameters ϑ that maximize the

agent’s expected reward

J(ϑ) =

∫
H

p(h|ϑ)r(h)dh, (2.38)

where T is the history rollout or sequence of state-action pairs defined h = [s1:T , a1:T ],

r(h) the reward function
∑T

t=1 r(t), and p(h|ϑ) the probability density of the history
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conditionally dependent on the parameters. To maximize the reward function then the

gradient of the expected return is taken, in addition to using the log trick ∇xy(x) =

y(x)∇x logx, as

∇θJ(ϑ) =

∫
H

p(h|ϑ)∇ϑ log p(h|ϑ)r(h)dh. (2.39)

Because the environment is Markovian the states are conditionally independent from the

parameters and the actions taken and therefore the probability density can be defined as

p(h|ϑ) = p(s0)
T∏
t=1

p(st+1|st, at)p(at|st,ϑ) (2.40)

and applying Eq. (2.40) to Eq. (2.39) we are left with

∇ϑJ(ϑ) =

∫
H

p(h|ϑ)
T∑
t=1

∇ϑ log p(at|st,ϑ)r(h)dh. (2.41)

Taking the integral of this gradient is unfeasible over the histories and therefore is ap-

proximated by using sampling methods such as the Monte Carlo method and expressed

as

∇ϑJ(ϑ) ≈
1

N

N∑
n=1

T∑
t=1

∇ϑ log p(a
n
t |snt ,ϑ)r(hn). (2.42)

Equation (2.42) is the base equation for the PG methods where different algorithms

model p(at|st,ϑ) differently. Traditional PG methods model p(at|st,ϑ) as a probabilistic

policy where the policy is defined as a parametric function approximator that outputs

the probabilities of taking different actions, a ∼ πϑ(a|s), where PGPE replaces this with

a probability distribution over the parameters ϑ themselves [51].
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PGPE Algorithm

Policy Gradient Parameter Exploration as mentioned in the previous section deviates

from typical PG methods in that it optimizes its search over the parameters. In taking

actions from a policy at every time step, [46] contest leads to high variance when sampling

over the histories and therefore leads to a noisy gradient due to the differentiation of policy

to the parameters and sampling at each time step. On the other hand, PGPE employs

a deterministic control and can generate an entire history from one parameter sample

reducing the variance in the gradient estimation. Reducing “samples-per-history” is what

[46] reports reduces high variance. This is defined as

p(at, st,ϱ) =

∫
ϑ

p(ϑ|ϱ)δFϑ(st),atdϑ, (2.43)

where ϱ is the parameters determining the distribution over the parameters ϑ, Fϑ(st)

the deterministic action chosen by the model with parameters ϑ in st, and δ the Dirac

delta function. The expected reward is then given J(ϱ) as

J(ϱ) =

∫
Θ

∫
H

p(h,ϑ|ϱ)r(h)dhdϑ. (2.44)

Following the same steps as with the derivation of PG sampling methods by taking

the gradient of ∇J(ϱ), using the “log trick” again, recognizing that h is conditionally

independent of ϱ given the parameters ϑ, p(h,ϑ|ϱ) = p(h|ϑ)p(ϑ|ϱ), we can express the
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gradient estimation of ∇ϱJ(ϱ) as

∇ϱJ(ϱ) ≈
1

N

N∑
n=1

∇ϱ log p(ϑ|ϱ)r(hn). (2.45)

Therefore Eq. (2.45) gives the sampling over the parameter distribution. See [51] for

further derivation. Finally, the parameter ϱ in the basic PGPE form is represented as a

set of mean parameters µi and deviations σi that define a normal distribution for each

parameter of ϑ and are represented as

p(ϑi|ϱi) = N (ϑi|µi, σ
2) (2.46)

p(ϑi|ϱi) =
1

σ
√
2π

exp
1
2
(
ϑi−µi

σ
)2 . (2.47)

Taking the derivative of log p(ϑ|ϱ) w.r.t. µi and σi we get the gradient representation to

make the update rules of PGPE

∇µi log p(ϑ|ϱ) =
(ϑi − µi)

σ2
i

(2.48)

∇σi log p(ϑ|ϱ) =
(ϑi − µi)

2 − σ2
i

σ3
i

. (2.49)

Equations (2.48) and (2.49) can be substituted into Eq. (2.45) to approximate the reward

gradient. Given enough samples, this approximation can be achieved up to arbitrary

accuracy. Equation (2.45) also implies that each sample requires a rolling out of the

entire state-action history.
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2.2.2 PI Speed Control

The PI controller is implemented for variable speed control setting the optimal operating

TSR for the turbine as the reference point. The error is therefore the difference between

the actual and desired, e = λ− λr. The resistive torque load is then defined as

τl = max(Kp e+Ki

∫
e dt, 0) (2.50)

where Kp and Ki are the gains for the proportional and integral terms. This load con-

troller applies load if the actual TSR is higher than the desired value.
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CHAPTER 3

Collaborative Dual Wind Turbine Reinforcement Learning

In Chapter 2, the introduction to the base PGPE algorithm was introduced, and the

general control structure was presented. In this Chapter, further enhancement of the

base algorithm will be presented and extended to the development and formulation of our

twin VAWT setup. In addition, the application of the base PGPE algorithm to the single

wind turbine setup with added improvements where applicable. The use of the DMST

software and MATLAB to study the VAWT base performance and develop ground truth

for the PGPE algorithm will be presented. Finally, the collaborative learning between

the two turbines will be explained in detail, and the forward Euler method will be used

to step incrementally through time which will also be discussed.

3.1 Policy Updates with CoRL - Symmetric Sampling

To further enhance the base PGPE algorithm the author [51] updated the model to

include reward baseline, symmetric sampling, and reward normalization to which we have

included and taken advantage of here. To consider the previous explorations, sampling

with a baseline reward is used. The baseline reward rb is defined as a moving average

reward over previous samples. By defining the step size as γ = γσ2, the parameter update

can be given by

∆µi = γµ(r − rb)(ϑi − µi)

∆σi = γσ(r − rb)
(ϑi − µi)

2 − (σi)
2

σi
.

(3.1)
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The reward baseline ensures the gradient estimate converges faster as the parameter’s

respective rewards r(t) will be compared against a moving average reward rb. If the

reward r(t) > rb then the parameters chosen will be more likely to be moving in the

correct direction of the gradient whereas the opposite is true if r(t) < rb and therefore

the parameters chosen will be likely avoided. Therefore adjusting ϱ in favor of the

parameters ϑ that will produce favorable results.

Another refinement made is symmetric sampling which allows for a better gradient

estimation when the reward received is strongly skewed. Symmetric sampling samples

from either side of the current mean of the parameter ϑ where a perturbation is randomly

chosen from ϵ ∼ N (0, σ) and added/subtracted from the parameter to give ϑ+ = µ + ϵ

and ϑ− = µ − ϵ. The reward produced by these trajectories are denoted as r+ and r−

for ϑ+ and ϑ− respectively. Using these two samples the estimation using equation 2.45

gives

∇µiJ(ϱ) ≈
ϵi(r

+ − r−)
2(σi)2

(3.2)

and using the same step size γ as before gives

∆µi =
γµϵi(r

+ − r−)
2

∆σi = γσ

(
r+ + r−

2
− b

)(
ϵ2i − (σi)

2

σi

)
.

(3.3)

Symmetric sampling is the foundation of collaborative learning for the dual wind turbine

operation. In the learning environment, the symmetric samples imply each turbine, under

the same policy, receives a different parameter distribution and a mirror trajectory and

reward formed. By forming a mirror sample of each sample taken the weighted average
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of the update improves even though it requires twice as much samples as they would for

the single sampling method. This leads to a faster convergence and a better gradient

estimation as is shown in [46] and will be shown here.

The final refinement is reward normalization. The reward normalization allows the

updates to be independent of the rewards scale and therefore a poorly defined reward

scale does not influence the learning. If the maximum reward that an agent can receive

is known then this scalar will be defined as m and if it is not then the highest reward

received thus far will be used. Then the µ updates will be divided by the difference of

the maximum scalar reward m and the mean reward of the symmetric samples and the

σ updates by dividing the maximum reward m and the reward baseline rb giving

∆µi =
γµϵi(r

+ − r−)
2m− r+ − r−

∆σi =
γσ

m− rb

(
r+ + r−

2
− b

)(
(ϵi)

2 − (σi)
2

σi

)
.

(3.4)

The policy formulation provides a flexible representation of pitching trajectories with

six parameters, which makes online learning possible. Herein, the policy parameters are

iteratively updated using CoRL policy gradient with parameter exploration. The policy

parameters ϑ = [c1, ..., c6] ∈ Θ are assumed to be random mutually independent variables

that follow a normal distribution ϑ ∼ N (µ, σ2), where µ and σ will be updated according

to the explorative trials. Here, two turbines under the same wind conditions are used to

explain the CoRL process. The two turbines are assumed to be identical and share the

same optimal pitch control policy. In a typical PG method, the exploration method is

usually carried out by perturbing the action found by the probabilistic policy, whereas

49



in PGPE, the perturbation is carried out directly over the parameter space by adding

random noise to each parameter ϑi. For the two turbines new trails, i.e., ϑ+ = µ+ ϵ and

ϑ− = µ− ϵ are dependent and symmetrically sampled from the distribution ϵ ∼ N (0, σ).

From the formulation of the pitching trajectory in Eq. (3.7), the pitching trajectory is

entirely determined by the parameter samples ϑt. The state and reward at cycle t are

st = {λ(t), CP (t)} and r(t) = CP (t), respectively. The expected reward given parameters

ϱ = {µ, σ} and a sequence of state-action pairs h = {st, at|t = 1 : T} can be found by

the following integration over the state-action history space H and the parameter space

Θ given by Eq. (2.44) and ultimately expressed as (2.45). The pseudo-code is shown in

Algorithm 1. Here, the baseline reward is expressed as the exponential moving average

Algorithm 1: PGPE with Symmetric Sampling [46]

Initialize: µ0 = 0
Initialize: σ0 = σinit

while TRUE do
for n=1 to N do

draw perturbation ϵn ∼ N (0, Iσ2)
ϑ+,n = µ+ ϵn

ϑ−,n = µ− ϵn
evaluate r+,n = r(h(ϑ+,n))
evaluate r−,n = r(h(ϑ−,n))

T = [ti,j]i,j with tij := ϵji

S = [si,j]i,j with sij :=
(ϵji )

2−σ2
i

σi

rT = [(r+,1 − r−,1), ..., (r+,N − r−,N)]T

rS = [ (r
+,1−r−,1)

2
− b, ..., (r

+,N−r−,N )
2

− b]T
update µ = µ+ γµTrT
update σ = σ + γσSrS
update rb accordingly

over the previous rewards and defined as

rb = mbrb + (1−mb)rt (3.5)
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where mb is the weight factor and rt is the reward received at time t. The µ center

solutions in this study are initialized at zero although they can be initialized at an

initial guess, which can speed up optimization. However, to show the effectiveness of

the algorithm with additional updates to the code, we demonstrate the ability of the

algorithm to find the optimal trajectory quickly without an initial guess.

3.1.1 Clip Up

Toklu et al., [45], proposed using new machine learning techniques to speed up gradient

convergence by using adaptive update algorithms. The Clip Up optimizer ultimately

combines the heavy ball momentum mβ, gradient normalization g
||g|| , and lastly gradient

clipping to control the rate at which the center solutions µ are updated,

µt+1 ←− µt + ClipUp(∇f(µt)). (3.6)

A common issue with gradient estimation is the gradient divergence or slow convergence

when parameters pertaining to the optimization algorithm such as step size γ, parameter

initialization µinit, population size M , etc. are not set up properly. This is mainly due

to the uncontrolled gradient estimation for the divergent case and the constant step size

when updating the parameters for the slow convergence case. Clip Up uses heavy ball

momentum mβ to follow the gradient direction, which is weighted heavier, allowing for

the optimization to avoid outliers or directions that are not as frequent, thus helping the

gradient converge faster. In other words, the gradient velocity will increase in the direc-

tion weighted favorably and negatively in those that are not. In addition to limiting the

direction of the gradient, Clip Up optimizer also implements gradient normalization in

51



which the gradient magnitude is decoupled from its direction. Therefore gradient magni-

tudes are controlled by an additional mechanism. With a variable gradient magnitude, or

non-normalized gradient, the step size must be adjusted accordingly to the reward scale

therefore the sensitivity in the reward scale must be considered and changed throughout

the training process or for different environment conditions. With gradient normaliza-

tion, the step size γ is considered a hyperparameter for the Euclidean distance, g
||g|| , and

therefore independent of the reward scale. Finally, Clip Up implements gradient clipping

that does not allow the gradient to go beyond the update speed threshold vthreshold

can overshoot the local minimum and cause instabilities in the gradient. The Clip Up

optimizer pseudo code is shown in Algorithm 2.

Algorithm 2: Clip Up Optimizer [45]

Initialize: Velocity v0 = 0
Hyperparameters: Step size γµ

Maximum speed vmax

Momentum mβ

Input: Estimated gradient ∇f(µk)

1 v′
k+1 ←− mβ · vk + γµ · (∇f(µ)k/||∇f(µ)k||)

2 if ||v′
k+1|| > vmax then

3 vk+1 ←− vmax · (v′
k+1/||v′

k+1||)
4 else
5 vk+1 ←− v′

k+1

6 return vk+1

3.2 Pitching Policy

The policy in an RL learning algorithm is usually represented by a parameterized function

approximator. The goal of RL is then to optimize the parameters such that the function

approximates the desired behavior. A feedback loop between the agent, environment,

and the feedback reward function to the optimization algorithm achieves this. See Figure
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2.5. Therefore there are various ways to define the pitching policy and even more ways

to define the reward function. Given the previous pitching studies mentioned in the

literature review, there are key takeaways of the pitching formulation to improve efficiency

and power gains of the turbine listed here:

(1) pitching is dependent on individual blade position

(2) pitching amplitude is dependent on the turbine speed

(3) pitching must be smooth and continuous

(4) pitching ultimately influences torque fluctuation and power.

Given these insights, we employed two pitch policies that incorporate these key takeaways

in the form of a mathematical expression, or policy.

3.2.1 Sine Policy

Given the cyclic operating nature of wind turbines, we know the control policy should

also be a periodic function of the rotation angle of the turbine. Here, a transformed sine

function is proposed to formulate the nonlinear policy which is taken from [52] with a

slight modification that ensures continuity between the first and second half of the sine

wave after independent vertical shifting. The policy is a continuous function necessary

for the smooth operation of the turbine. Additionally, it can represent very flexible

trajectories requiring as few as six parameters. The formulation of the policy is given by

the following four operations, namely skewing, flattening, scaling, and shifting operations

βsine = T3T2T1(f1) (3.7)
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where the base function is

f1(θ) = sin(θ + c1) (3.8)

where the skewing operation maps the above original sinusoidal function to a periodic

function that has the same frequency and magnitude but with a skewness defined by the

skewness factor c2 ∈ [−0.5, 0.5],

T1 : f(θ) −→ sin(θ + c1 + c2f(t)). (3.9)

The flattening operation flattens the peak of the sinusoidal function,

T2 : f(θ) −→

√
1 + c23

1 + c23f(t)
2
f(θ) (3.10)

and the scaling and translating operations are given by

T3 : f(θ) −→
(
c4 −

c4 − c5
1 + e−zK((θ−π)−yK)

)
f(t) + c6 (3.11)

where the scaling term is defined as a scaled sigmoid membership function, it scales the

first and second half cycle with a different factor of c4 and c5 and ensures the smooth

and periodic properties of the scaling transformation. K is a constant factor that defines

the slope of the transition in scaling and set as K = [1, 10] for all simulations. The

proposed pitching trajectory has the following advantages: 1) all the parameters have

clear physical meaning and can be constrained according to the physical limits and prior

information about the pitching trajectory; 2) it guarantees the smoothness of the pitch-
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Table 3.1: Parameter definition.

Parameters Definition
ζ(c1) phase shift factor
a(c2) skewness factor
b(c3) flatness factor
s1(c4) upper half scaling factor
s2(c5) lower half scaling factor
d(c6) offset shift factor

ing trajectory; 3) build upon prior this formulation uses only six parameters c1,c2,. . . ,c6,

yet provides a very flexible trajectory representation. Figure 3.1 provides an illustration

of the transformation process of the proposed pitching trajectory. Therefore, the param-

Figure 3.1: Illustration of pitching trajectory formulation.

eters, ϑ = [c1, c2, c3, c4, c5, c6] = [ζ, a, b, s1, s2, d], are the parameters optimized directly

by the PGPE algorithm. Table 3.1 gives the summary of each parameter where each

parameter is expressed by a center solution µ1,...,6 and deviation σ1,...,6.
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3.2.2 Spline Policy

The spline function is a smooth, continuous, and flexible function that meets the criteria

for a good pitching policy candidate. Therefore, a spline function, or parameterized

curve, is also implemented as a pitching policy. The spline policy was also set to have

the same number of parameters to compare the results with the six-parameter sine policy.

In contrast to the sine policy, the spline function is not constrained to a base function.

Therefore the spline function can take any shape that could be a positive or negative

feature given the parameters ϑ = [c1, c2, c3, c4, c5, c6] are initialized at 0 and therefore

starts as a flat line. This could lead to slow convergence or an unstable policy. On the

other hand, the spline policy can lead to a more elegant solution than what the sine

policy could give given it is not constrained to any particular function. Therefore the

spline function from MATLAB is implemented as:

βspline = spline(x,µ,θ) (3.12)

where x = length(µ) is the number of equally spaced segments of the spline equal to

the number of parameters, µ are the center solution values, and θ is the discretized

azimuthal positions around the turbine given by the aerodynamic solver. Therefore, the

PGPE algorithm directly optimizes for the parameters µ and corresponding deviations σ

optimizing the probability distribution over p(ϑ|ϱ) to obtain the maximum reward. Fig-

ure 3.2 shows a representation of the spline policy with the six equally spaced parameters.

In addition, it shows a general representation of the formulation of the spline policy using

PGPE with symmetric sampling that shows the mean solution with its initial search dis-
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Figure 3.2: Spline policy formulation using PGPE with symmetric sampling.

tribution size. The parameter that samples from the normal distribution ϑ ∼ N (µ, σ) is

used by the base PGPE, whereas for the symmetrical sampling algorithm, the deviations

are taken from ϵ ∼ N (0,σ) and added to the center solutions where the parameters are

ϑ = µ± ϵ.

3.3 Twin VAWT Setup

For this study we chose to use the same VAWT dimensional parameters used in [28]

and [53] which have experimental data as well as simulated data. In addition, we use

the DMST model developed by [54], [55] which has been validated across other sources.

Table 3.2 gives the turbine dimensions.

The solidity of the turbine is in the higher range which aligns with the goal of analyzing

57



Table 3.2: VAWT geometric parameters.

Geometric Parameters Values Unit
Chord Length c 0.246 m
Radius R 0.850 m
Number of Blades N 3 −
Moment of Inertia J 3 Kg −m2

Blade Profile NACA 0021 −
Aspect Ratio 1 −
Solidity σ 0.44 −

a VAWT that has its optimal operating speed in the lower range. Consequently, this also

means the turbine will experience significant dynamic stall in its operation without any

pitch control. Inputting the wind turbine geometric parameters given in Table 3.2 into

Eq. (2.34) we get an estimated optimal TSR of 1.94. The discrepancy here, between

Figure 3.3 and Eq. (2.34), lies in the fact that the optimal TSR given by Eq. (2.34) does

not take into account any pitching though the coefficient of power is a function of both

TSR and pitching, Cp(λ, β). Whereas taking a closer look at Figure 3.3, we can see the

curve for when the pitch is zero the optimal TSR leans much closer to 2.5. From the

experimental results, and simulation, shown from [53] and [28] the optimal TSR, λopt,

falls in the range of 2 - 2.5 which is what the current DMST gives. Figure 3.3 shows

the performance of the given turbine under various TSRs and collective pitch. The best

collective pitch/TSR combination is βcollective = 6, λ = 2.5 given by the DMST model.

3.3.1 MATLAB Pitch Optimization

Collective pitch is not as effective as it would be for the HAWT where the angle of

attack α is constant throughout the azimuthal position of each blade. The VAWT, on

the other hand, can benefit from individual blade pitching that is a function of both λ

and θ. Because the pitch trajectory is an optimization problem that can be solved using
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Figure 3.3: VAWT performance curve for collective blade pitching.

a constant TSR we turn to the MATLAB Optimization Toolbox to use their built-in

nonlinear programming methods. The optimization algorithm used is the interior point

(IPM) method. From the literature, optimal pitch trajectories follow a sinusoidal-like

curve, and therefore, a sine wave was expected by using the spline function in MATLAB

optimizing six parameters to formulate the pitch trajectory. The parameters, c1...c6,

were equally spaced between [0 : 2π] just as would be done for the PGPE algorithm. The

optimization problem to minimize, or maximize in this case, is the power output from

the turbine and the variable optimization variable β that represents pitch. Subject to a

pitching range of - 20 to 20 degrees and the first and last parameters are constrained to
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Figure 3.4: Optimal pitching trajectories under various tip speed ratios.

equal each other to ensure continuity between revolutions. In standard form:

Minimize:

minβf(β) : −P = 1/2ρAfV
3
∞CP (λ, β)

Subject to:

−20 ≤ β ≤ 20

Aeq = [1, 0, 0, 0, 0,−1]

beq = [0]

(3.13)
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Figure 3.4 shows multiple optimal pitch trajectories for various TSRs, λ = [1.5 : 0.1 : 2.5].

We can see that, indeed, the optimal pitch trajectory follows a smooth sinusoidal-like

trajectory. In addition, the lower the λ, the higher the pitching amplitude and vice-

versa. From Figure 3.5a we can determine the pitch trajectory with the highest CP falls

at TSR of ∼ 1.9 at CP = 0.4165. Therefore, a TSR of 1.9, 1.94 as given by Eq. (2.34),

will be the focus of the remaining study, and the optimized pitching trajectory from the

MATLAB optimizer, Figure 3.5b, will be used as the ground truth for evaluating the

PGPE-optimized pitch.

3.3.2 Environment

Symmetric sampling requires sampling two identical points in which these two points

at time t are subject to the same observational state st. The algorithm thus perturbs

the deterministic action by sampling from either side of the distribution by adding and

subtracting noise ϵ ∼ N (0, σ) to the deterministic action determined by the parameters

ϑ = µ+
−ϵ as discussed in Chapter 2. As mentioned earlier PGPE is meant to be im-

plemented in an episodic case and therefore the algorithm is updated after each turbine

revolution that ends a trajectory T . Consequently, following the deterministic action,

pitching trajectory βpgpe taken by the policy ϱ(µ, σ), both turbines end up in different

states after the end of a trajectory, most importantly under different wind speeds and

turbine rotational speeds. In a simulated problem, this is not an issue as the end of a

turbine revolution ends the simulation and resets both turbines with the position θ = 0

starting again, and thus all states to initial states st = st0 or initial state distribution

p(s0) as in this case. To bring this algorithm to a real-time online learning algorithm, the
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(a) CP over various TSRs.

(b) Optimal Pitch Trajectory λopt = 1.9.

Figure 3.5: VAWT performance for individual pitch control.
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Figure 3.6: CoRL environment.

time scheme implemented when stepping through iterations requires special attention.

There is also a need to overcome the discrepancy in observational states given that both

turbines operate independently from one another and only share the policy as would be

in a real environment. Although in a real environment time is absolute, here time is

stepped forward using the Euler forward method given the turbine dynamics,

ωt+1 = ωt + ω̇∆t,

∆t =
2π

ωt

,

ω̇ =
τaero − τl

J
.

(3.14)

To overcome the issue of unsymmetrical samples the observational states had to be as

close as possible, mainly the turbine speeds and perceived incoming wind, to keep both

turbines operating under the same time scale and avoid gradient calculation issues. Thus,

the major driver here is the turbine speeds, which influence the time stepped in the

simulation as seen in Eq. (3.14), the interpolation of wind speed based on the time

stamp, and the turbine position. Therefore, the importance of the PI controller that

moderates both turbine speeds and from this, a constraint in the optimization process
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arises:

TSR1 − TSR2 << 1 (3.15)

The speed difference between turbines must be as small as possible to ensure both tur-

bines operate under the same time scale and keep the policy updates from diverging and

becoming unstable.

Following the sequence of events from Figure 3.6 the agent formulates two pitch

trajectories by the method described in the beginning of this section based on the current

policy ϱpgpe. The wind profile is either a constant value for the duration of training or is

a variable wind profile V∞(t) with a length larger or equal to the duration of simulation

time. For the variable wind case, the wind values are interpolated based on the running

‘real-time’, tnew = told + ∆t, and thus the importance of having both turbines run on

the same time scale. Given the pitch trajectories, βpgpe = [βi, βj] and turbine states

st = [V∞i,j, λi,j], the turbine plant is simulated and the output from the environment are

the new states st+1 and the reward rt = [ri, rj] = [CPi
, CPj

] which is fed to the agent

for optimization updates. The reward received from the environment is the coefficient of

power out from each turbine. Therefore, the updates are made solely based on the power

output.

3.4 Policy Updates for Single VAWT

3.4.1 PGPE for Single Turbine Operation

For the single turbine operation, the base PGPE algorithm is used. This is due to

the non-symmetric application of the single turbine. In a simulation environment, the

simulation of multiple turbines and their symmetric counteraction leads to a more robust
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gradient estimation. The multiple simulation candidates refer to the population size in

evolutionary algorithms such as PGPE and in a simulation environment the gradient

estimation is greatly improved by having a larger batch. For either case in this study,

dual and single turbine operation, the population size is one. The goal of this work is

to show the use of PGPE as an online algorithm that does not rely on simulated virtual

environments but rather learns as an online algorithm and therefore all turbine plants

are assumed to be ‘real’ and continuous where states are passed on from the current

episode to the next. One of the main problems with traditional controls, and even more

modern controls such as Model Predictive Control (MPC), is the need for an accurate

description of the aerodynamic model of the VAWT. If such a model was available the

use of PGPE with a large population size would suffice to determine an optimal pitch

control without the need for an online implementation, and for that matter, the other

control methods described earlier as well. Yet there is no such model available and the

reliance on simulated environments does not suffice to guarantee an optimal pitch control

therefore increasing the population size in the simulated environment would not be as

unuseful. Therefore, to show the usefulness of an online reinforcement learning algorithm

to interact with the real-world environment and approximate the dynamics of the VAWT,

we propose the use of PGPE with updates to demonstrate the effectiveness in learning

the VAWT dynamics overcoming the shortfall of traditional control methods. The base

PGPE pseudo code is shown in Algorithm 3.

The reward baseline rb is updated the same as in the dual turbine operation, Eq.

(3.5). In addition, the Clip Up optimizer is also implemented to update the center

solutions µ and standard deviation parameters σ. The main difference as noted earlier
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Algorithm 3: PGPE [46]

Initialize: µ0 = 0
Initialize: σ0 = σinit

while TRUE do
for n=1 to N do

draw perturbation ϑn ∼ N (µ, Iσ2)
evaluate rn = r(h(ϑn))

T = [ti,j]i,j with tij := (ϑj
i − µi)

S = [si,j]i,j with sij :=
(ti,j)

2−σ2
i

σi

rT = [(r1 − b), ..., (rN − b)]T
update µ = µ+ ClipUpTrT
update σ = σ + γσSrS
update rb accordingly

Figure 3.7: Control block diagram for single turbine.

is the optimization in which symmetric sampling is not done and therefore the gradient

calculation differs. Here the parameter is directly sampled from N ∼ (µ, Iσ2) and

evaluated directly. Thereafter, the gradient for µ and σ is estimated using Eq. (3.1) and

finally applying reward normalization.

3.4.2 Environment

The environment for the single turbine operation is the same the dual turbine operation

with the exception of the second turbine. The sequence of events is the same and the
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inputs to the environment are the parameters by the agent and output the rewards and

next states st+1. Figure 3.7 shows the block diagram for the single turbine which is

identical to the dual turbine operation. What differs the most is in the optimization

technique as described in the previous section.
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CHAPTER 4

Numerical Results

The performance of the proposed CoRL developed in Chapter 3 is verified using three

wind profile simulation cases to showcase the difference in modifying the policy described

in Chapter 3 and the comparison to a single wind turbine operation under constant and

varying wind. The proposed sine policy function is used for the first simulation case with

the dual turbine collaborative operation under a constant wind profile. The sine policy

was used as an initial starting point as it is the more stable policy of the two. Variations

in the sine policy parameters would not be as completely random as in the spline policy

function where there were no constraints placed. In addition, due to the stability of the

sine policy, the PI parameters were found experimentally during the training of the sine

policy. After this, the spline policy was also trained under the constant wind profile with

the same PI parameters as the sine policy case. Convergence time for all three cases under

the constant wind profile and unsteady wind profiles were found and compared as well as

their rewards. For the constant wind case the optimal pitch trajectory was compared to

the optimized trajectory given by the MATALB optimizer shown in Chapter 3. Note for

the dual collaborative operation, both policies used the same hyperparameters. The main

difference was in the policy formulation. This is true for the remainder of the simulated

cases. In the single turbine operation, the learning rate had to be reduced from γ = 0.005

to γ = 0.0025 to get the algorithm to stabilize and eventually converge.

The PI controller greatly impacted the stability and convergence of the collaborative

pitch control in keeping both turbines operating at the same speed. Only once the
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turbines reached their optimal operating speed could the algorithm begin optimizing the

pitch trajectory irrespective of λ, keeping in mind that CP is a function of both λ and β.

4.1 Initialization of Dual Turbines

The initialization of the PGPE borrows from [45], where the hyperparameters with the

greatest attention on the maximum velocity vmax, step size for both center solution

and deviation updates γµ,σ, and the initialization of the standard deviation parameters

σinit. The initialization of σinit requires a distribution size that is not too small where

exploration would be minimized and not too large that would cause an unsteady search

policy and/or a slow convergence. The standard deviation is defined as the search radius

from the center solution rpgpe = ||σinit|| and σinit = qvmax where q has a value between

10 to 20, although for our case we found a value of 30 to be adequate. In addition, due

to the parameter space being in the radian space, the search radius was also brought to

the radian space giving the standard deviation initialization as

σinit = qvmax

( π

180

)
. (4.1)

The maximum velocity is set as vmax = γµ/2 and therefore all hyperparameters are in

the same distance scale and therefore tuning of the parameters can be made intuitively

over the center solution distribution ϱϑ ∼ (µ, σ). Finally, the momentum parameter mβ

is set to 0.9.
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Table 4.1: Hyperparameters for CoRL.

Hyperparameters Values
Learning rate γµ 0.005
Max velocity vmax 0.01
Search radius q 30
Sigma learning rate γσ 0.05
Sigma max learning rate γσmax 0.2
Momentum mβ 0.9

4.2 Optimal Pitching Trajectory using Online PGPE Algorithm

4.2.1 Constant Wind Condition

CoRL Wind Turbine Setup: To begin training, a constant wind profile of 6m/s was

chosen as the starting point to verify whether the algorithm could indeed converge under

a steady state environment. The indicated free stream wind velocity is those found on a

typical windy day in a costal area or on top of a hill but is not considered too windy. As

previously mentioned, the sine policy was first simulated with the hyperparameters shown

in Table 2. The solution parameters, µ, were all initiated at zero and the distribution

over the solution parameters was set at rpgpe = vmaxq(π/180) as done in [45]. Since the

parameters are in the radian space, the conversion factor in the parentheses was added to

keep the solution space within this space otherwise the search radius would be too large

and have a hard time converging. We found a search radius of 30 to cover an adequate

initial search space as opposed to the 15 recommended by [45].

After tuning, the PID was able to stabilize the wind turbine speed of λopt ≈ 1.94

under 10 seconds of operation taking the settling time of 1% the desired value. Although

there is a relatively high overshoot, the controller is able to eventually correct the speed,

applying corrections only after every turbine revolution. In reality, the PI controller
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(a) Policy reward. (b) PI speed regulation.

(c) Pitch evolution.

Figure 4.1: CoRL sine policy - Constant wind.
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would be updated in real-time or every 5ms. Still, due to the limitations of accessing the

dynamics in between revolutions using the DMST model, updates were given only after

a turbine revolution. From the reward graph in Figure 4.1, it can be seen the algorithm

converges right around 60 iterations which is within 5% of the highest CP achieved by the

MATLAB optimization and at 40 iterations surpassed a CP of 0.400. In physical time

the turbine would need approximately 15.9 seconds to reach an optimal pitch trajectory.

After which the turbine mean reward is 0.4072 which is the average CP of the turbine.

In addition, the pitch evolution is seen in the figure to show the transition between every

iteration which is mostly confined to the dense trajectory plots in 4.1c. Figure 4.1c

gives a glimpse of the inner workings of the PGPE algorithm as it shows the range of

distribution over the solution parameters. Lastly, the final pitch trajectory is shown in

Figure 4.2. Given the relatively small optimal TSR, the turbine experiences large angles

of attack during operation. Therefore, the pitch angle has to greatly compensate to avoid

dynamic stalling, increasing pitch to 14 degrees in the frontal half and -7 degrees in the

rear half of the turbine. Shown in this figure are two pitch trajectories; one of them is the

center solutions once converged to the criteria mentioned above, and the other with the

parameters that got the highest reward, CP of 0.4101. Although the max CP is less than

the one achieved by the MATLAB optimization toolbox, it was expected as the pitching

trajectory under the sinuosodial policy is confined to a sine curve.

Following the same procedure as with the sinusoidal policy, the spline function was

implemented to formulate the pitch trajectory. As mentioned previously, the same hyper-

parameters were used as well as PID parameters. All µspline parameters were initialized

at zero as before, and the same search radius used rpgpe. Like in the sine policy, the wind
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Figure 4.2: Optimal sinusoidal pitch trajectory - Constant wind.

turbine speed is stabilized within a few seconds and settled in under 10 seconds. It can

be seen from the reward figure, Figure 4.3a, that the spline policy converges around the

same time frames as the sine policy at right around 60 iterations which translates to 13.6

seconds. Although the spline policy converges to a slightly higher reward and ultimately

outperforms the MATLAB optimization by receiving a max reward of CP = 0.4176. The

average CP of the policy is 0.4152 after convergence. In Figure 4.4, we can see the spline

policy reached the CP output by the MATLAB optimization at iteration 57 of 0.4165,

which is roughly 15 seconds of training. Furthermore, at iteration 281, corresponding
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to 26 seconds the spline function receives its highest reward. The spline optimal pitch

trajectory reaches a little over 15 degrees in the first half and -7 pitching degrees as seen

in the previous policy.

Table 4.2: Hyperparameters for single operation WT.

Hyperparameters Values
Learning rate γ 0.0025
Max velocity vmax 0.005
Search radius q 30
Sigma learning rate γσ 0.05
Sigma max learning rate γσmax 0.2
Momentum mβ 0.9

Single Operation Wind Turbine: To provide a comparison of the single vs dual wind

turbine algorithm performance, a single turbine was simulated under the same envi-

ronment as the dual wind turbine configuration. The goal here is to demonstrate the

advantage of the symmetric sampling of the PGPE in a real environment to achieve a

faster convergence speed. The single wind turbine algorithm used the non-symmetric

PGPE version with the Clip Up enhancement. In addition, the sinusoidal policy was

used due to its stability. All hyperparameters were used similarly to the dual turbine

configuration except for the learning rate which was decreased to γµ = 0.0025, as the

algorithm had a hard time converging with the larger learning rate used in the dual wind

turbine configuration. As such, one can immediately see that the single turbine algorithm

is already at a disadvantage.

From the pitch trajectory evolution figure, Figure 4.5, the effects of the small learning

rate can be seen by the dense pitch trajectory curves throughout the plot. The smaller

step size means the gradient is updated slower and, therefore, the dense pitching curves
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(a) Policy reward. (b) PI speed regulation.

(c) Pitch evolution.

Figure 4.3: CoRL spline policy - Constant wind.
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Figure 4.4: Optimal spline pitch trajectory- Constant wind.

throughout the plot. In addition, the trajectories don’t seem to converge on any particular

range of trajectory as is obvious in the CoRL spline and sinusoidal policies. However,

the base algorithm still received a relatively high CP of 0.4083 but only achieved a CP

of 0.400 at 153 seconds much slower than the other simulations. In addition, the turbine

speed is not as steady as the previous simulations, and therefore, the algorithm is unable

to optimize fully under the optimal speed λopt. Because of the lack of convergence, the

simulation was run again, this time with initiated values to improve convergence time.

The sine wave was initiated with the parameters µ = [0, 0.1, 0.04, 0.36, 0.25, 0.05]. In
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(a) Policy reward. (b) PI speed regulation.

(c) Pitch evolution.

Figure 4.5: Single WT sinusoidal policy - Constant wind.

77



summary, the sine wave was not skewed, had very little flatness, an upper amplitude of

20 degrees, and lower amplitude of 15 degrees, and a small phase shift of 3 degrees.

Figure 4.6 shows the updated run after initializing the center solutions with an initial

guess. This time around, we see the pitch evolution is focused on a smaller range of

solutions, and the solution begins to stabilize when referring to the reward graph. The

highest reward received in the second run is a CP of 0.4081 and a mean reward of 3965

after convergence. It also crossed the CP threshold of 0.400 much faster at 107.7 seconds,

45 seconds faster than the first run. Still, we can see the performance of the dual turbine

is far superior. Although the algorithm of the single and dual turbine configuration is

not the same, they draw from the same underlying PGPE algorithm, and one can see

the advantage of the symmetric sample over the single sample by converging faster and

to a higher mean reward due to a better estimate of the gradient.

Figure 4.7 shows the best pitching trajectories for all the cases run under a constant

wind environment. The spline function had the highest reward and was the closest to

our ground truth pitch trajectory provided by the MATLAB optimization toolbox. The

sinusoidal pitching policies are shifted up and have lower pitching amplitude in the front

half than those in the spline policies. Yet all pitching trajectories fall under a similar area,

and thus, moving forward, we can conclude that PGPE’s solutions are valid candidates.

In Figure 4.8 we can see the trajectory evolution from each of the policies. The CoRL

policies are initiated at zero and find the range of possible pitch trajectories fairly quickly.

From the subfigure 4.8c we can see the single turbine policy with the solutions initiated

at zero has a difficult time converging on a range of possible solutions whereas the same

policy with initiated center solutions converges on what seem to be two sets of pitch
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(a) Updated Reward. (b) Pitch evolution.

(c) Optimal Trajectory Comparison.

Figure 4.6: Single WT sinusoidal policy - Updated initialization.
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Figure 4.7: Optimal pitch trajectories comparison for constant wind.

trajectory ranges and therefore the constant dip of reward in Figure 4.6a.

4.2.2 Variable Wind Condition using a Ramp Wind Function

A wind ramp function was used to test the stability of the algorithm to see the effects

the varying wind conditions would have on the algorithm. The wind function sampled

had a windspeed frequency update of 10 over the span of the simulated time and was

generated to change the slope of the wind after each update randomly. The windspeed

graph is shown in Figure 4.9. This wind profile is used for all three simulation cases using

the sinusoidal policy, spline policy and lastly the single wind turbine operation.
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(a) CoRL sine policy pitch evolution. (b) CoRL spline policy pitch evolution.

(c) Single WT sine policy pitch evolution
with µ = 0.

(d) Single WT sine policy pitch evolution
with µ = init.

Figure 4.8: Pitch evolution for constant wind environment.

Table 4.3: Result summary of constant wind case.

Performance Parameters Single WT Initialized Sine Policy Spline Policy
Mean reward 0.3965 0.4072 0.4152
Max reward 0.4081 0.4101 0.4176
Convergence time [s], r = 0.4 107.7 15.9 13.7
Converged Yes Yes Yes
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Figure 4.9: Variable wind profile - Ramp function.

CoRL Wind Turbine Setup: For the sinusoidal and spline functions the same hy-

perparameters were used as in the first case in addition the same PID parameters were

also used. All µ center solutions were initialized at zero and σ = rpgpe as done in the

previous constant wind simulations. Again, the first policy simulated was the sinusoidal

policy. Seen in Figure 4.10 is the reward, final pitch trajectory, and lastly the TSR.

Since the wind profile is dynamic, the TSR has more oscillations as the PID controller

tries to maintain optimal speed control. Consequently, this is also reflected in the reward

plot as there are many more oscillations in the reward as well. The PID had a similar
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initial performance settling the wind speed in under 10 seconds. The mean reward of

the sinusoidal policy after converging was 0.4081 which is comparable to the constant

wind simulations. Interestingly, the parameters converged in roughly the same time as

before, reaching the CP threshold of 0.4 in roughly 10 seconds, 5 seconds faster than in

the constant wind environment. This can be attributed to the TSR varying a little more

than in the constant wind environment leading to differences in the CP performances as

CP (λ, β). The final pitch trajectory was observed to be similar when compared to the

constant wind profile velocity. The curve has a positive offset at 3 degrees and upper

amplitude peak is at 14 degrees and the lower amplitude is at roughly -9 degrees.

Similarly, the same initialization technique was used for the spline function and the

same hyperparameters as for the sine policy function. The PID controller was able to

stabilize the turbine speed in under 10 seconds, and the solution parameters converged at

a slower but comparable rate than the sinusoidal policy reaching the CP threshold of 0.400

at 18.2 seconds compared to the 10 seconds of the sinusoidal policy and slower than in

the constant wind environment which is expected. The mean reward after convergence

comes out to 0.4159 which is higher than the constant wind pitch trajectory and the

sinusoidal policy. Shown in Figure 4.11 is the optimal pitch trajectory. We can start

seeing the problem with the spline function as although it is continuous it is not smooth

from one trajectory to the other. There must be another constraint placed on the spline

policy such that the end points meet in a smooth differentiable curve. Nevertheless, this

pitching curve is one of many optimal pitching trajectories sampled from the distribution

N ∼ (0,σ) of the current policy and is the current µ center solutions at the end of the

simulation.
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(a) Policy reward. (b) PI speed regulation.

(c) Optimal Pitch.

Figure 4.10: CoRL sinusoidal policy – Varying wind.
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(a) Policy reward. (b) PI speed regulation.

(c) Optimal Pitch.

Figure 4.11: CoRL spline policy – Varying wind.
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Table 4.4: Result summary of varying wind case.

Performance Parameters Single WT Initialized Sine Policy Spline Policy
Mean reward 0.3925 0.4081 0.4159
Max reward 0.4071 0.4103 0.4179
Convergence time [s], r = 0.4 138.0 9.1 18.2
Converged Yes Yes Yes

Single Wind Turbine Operation: The same initialization was followed, using the same

approach as with the constant wind profile for the single wind turbine operation. The

solution parameters were initialized at an initial guess as before. The PID controller

settled the turbine wind speed in roughly 5 seconds but was much more noisy when

compared to the other simulations which reduces the maximum CP achievable if not

operating in the optimal speed. One reason for this difficulty in obtaining the optimal

speed is the inability of the algorithm to converge to an optimal range of solutions, giving

pitching trajectories that cause unstable forces that slow or speed the turbine at a faster

rate than can be managed by the PI controller. That is why we can see the reward

graph is correlated to the turbine speed graph. The solution parameters in this study

crossed the CP threshold in roughly 138 seconds or 320 iterations. The highest reward is

a respectable 0.4081, and the mean reward CP of 0.4071. Due to the time convergence

and instability in the reward graph, we can see the single wind turbine operation is not

up to par with the dual wind turbine configuration although capable of generating decent

pitch trajectories. Therefore, in the next simulation case, the single-operation turbine

configuration will not be used. See Figure 4.12 for results.
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(a) Wind speed. (b) Policy reward.

(c) Optimal Pitch. (d) PI speed regulation.

Figure 4.12: Single WT sinusoidal policy – Varying wind.
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Figure 4.13: Synthetic random wind.

4.2.3 Synthetic Random Wind

In the final case we tested the algorithm performance with a synthetic wind profile. The

average speed of the wind profile is 6.5 m/s with the simulated total time is 20 minutes.

The wind profile frequency update is set at 0.15 Hz shown in Figure 4.13.

CoRL Wind Turbine Operation: The sinusoidal policy was first tested vs the synthetic

wind data. Although the sine policy was the more stable of the two it failed to learn

adequately within the given time frame. The deviation step size γσmax had to be increased

from 0.2 to 0.5 to stabilize the distribution update of the parameters while the other
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hyperparameters were left the same. The step size was increased to allow the distribution

over the center solution to increase and, therefore, be able to adapt faster given the rapid

change in TSR. From the turbine wind speed graph, Figure 4.14, we can immediately see

the effects of the noisy wind speed as the TSR greatly fluctuates at one point. However,

the PID controller is able to maintain the desired optimal TSR value within ±4% for most

of the simulated time, yet we can see the two peaks at two extremes where the turbine

speed almost reaches zero and the other where the turbine exceeds a TSR of 3. There

was a major drop in TSR when the wind speed dropped to 2 m/s towards the beginning

of the simulation. At this point, the TSR dropped to almost zero. Here we see a massive

performance drop as the turbine cannot produce power due to the lack of wind and PID

response to remove the turbine load, producing almost no power, abrupt shift in dynamics

leading to poor performance of deterministic control, and consequently receiving a small

reward. For the drop in TSR, we can attribute this to low wind speed and, therefore, not

enough aerodynamic torque to sustain the given load by the PID. In addition, because

this range in TSR has not been experienced by the algorithm, the deterministic control

does not have the proper parameters to overcome this dip and, therefore, the loss of CP

and, as later will be discussed, the highly unsymmetrical samples from both turbines.

Yet the PID controller is able to return the TSR to its optimal TSR and the PGPE

algorithm is also able to return to its optimal pitch trajectory without diverging. The

solution parameters crossed the CP threshold of 0.400 in 20.4 seconds, the slowest yet

but not surprising, and maintained an average of 0.4066 after convergence.

For the spline policy, the same hyperparameters were used as those used for the

sinusoidal policy adjusting the max learning rate of the deviation parameter. As can
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(a) Policy reward. (b) PI speed regulation.

(c) Optimal Pitch.

Figure 4.14: CoRL sine policy – Synthetic wind.
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Table 4.5: Result summary of synthetic wind case.

Performance Parameters Sine Policy Spline Policy
Mean reward 0.4066 0.4159
Max reward 0.4103 0.4179
Convergence time [s], r = 0.4 20.4 18.5
Converged Yes Yes

be seen in Figure 4.15 the PID controller was able to keep the turbine speed constant

throughout the simulated time but had its trouble as in the previous simulation. The

PID controller was able to bring the speed to a steady state similar to the previous

simulations under 10 seconds with the exception of when the wind speed dropped to a

low 2 m/s. But nevertheless, the controller was able to compensate by removing the

turbine load and allowing the turbine’s optimal speed to return. From the reward graph,

we can see a major reward dip in the same section as where the wind speed drops below

2 m/s. The reward loss in the spline policy is much greater than seen in that of the

sinusoidal policy. As mentioned earlier the spline function can take various forms and

therefore not as stable as the other policy. In this case, it was still able to return to its

nominal state without becoming unstable and failing, which shows the robustness of the

PGPE algorithm and the CoRL setup. The average reward after convergence comes at

0.4088, lower than the previous simulations but nevertheless respectable. Looking at the

pitching trajectory after the simulation, we can see it is similar to the optimized pitch

trajectory output by the MATLAB optimization algorithm and under the constant wind

environment.
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(a) Policy reward. (b) PI speed regulation.

(c) Optimal Pitch.

Figure 4.15: CoRL Spline policy – Synthetic wind.
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4.3 Dual Turbine Performance Metric

Convergence of Parameters

To determine the convergence of the parameters, µ we mainly used the reward plot as an

indicator and used the individual parameter evolution throughout the simulation as well.

The PGPE algorithm updates the solution parameter, µ, in the direction of the gradient

and updates the search distribution, σ, of each parameter as well. As the parameters

begin to converge the search distribution stabilizes within a range of possible solutions. In

some cases, the search distribution is so small that it may seem as though the parameter

converges on a single value. Figure 4.16 shows the optimization of all six parameters of

the sinusoidal policy for the synthetic wind data. We can see all parameters are initialized

at zero and from there, they begin to move to their final range of values slowly. The search

distribution radius is initialized as rpgpe = q ∗ velmaxπ/180 = 0.0052. At the end of the

simulation, the search distribution is σ = [0.0035, 0.0052, 0.0020, 0.0032, 0.0094, 0.0022] =

[a, b, d, s1, s2, ζ]. From the values and the graphs of Figure 4.16, we can see the center

solutions settled in a solution range rather than a value. What we can deduce from

these values is the offset shift factor d and s1 are not as greatly affected by the varying

environment whereas the lower half scaling factor s2 is influenced a little more by the

environment and therefore does not converge on a single parameter but rather a range

of values depending on the combination of the environment and the other parameters.

Yet all the center solutions, or parameters µ, are in the same order of magnitude, and

therefore, all parameters are influential to the optimal pitch trajectory.
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Dual Turbine Environmental Operation and Algorithm Robustness

For the symmetric PGPE algorithm to work properly, both turbines must operate with

the same environmental input. This means both turbines had to be operating at the

same speed and under the same wind conditions or cause the PGPE algorithm to become

unstable. The reality is that getting an in-sync wind turbine operation is challenging as

there could be wind variations from one location to the next and/or speed controllers

that can’t perfectly sync the turbine speeds. In our simulations these imperfections were

taken into account as the turbine dynamics were generated based on the policy actions.

In this case, two turbines took two mirroring actions where noise was added to one

turbine and subtracted from the other. This means one turbine could take a pitching

trajectory that dramatically affects the dynamics of the turbine decreasing the turbine

speeds by inducing more aerodynamic drag than lift. Whereas the other turbine could

have chosen a more optimal pitching trajectory keeping the turbine speed stable. Given

the erratic action of the first turbine, the speed controller cannot react fast enough, and

the environmental input is now a semi-asymmetric input. From the Figure 4.17 we can

see the TSRs of both turbines during the simulation. If we take a closer look at some

of the peaks, we can see the two turbines operate at a different TSR suggesting either a

difference in wind speed or a difference in turbine angular speed. But as can be seen, the

dual turbine operation is, for the most part, in sync, operating within 4% of each other,

and regardless of the discrepancies in turbine operation, the algorithm is still able to find

the optimal distribution of parameters and converge within a reasonable time. This shows

the algorithm’s stability even with non-ideal symmetric samples. Taking a closer look at
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the large gap at iteration 500 we can see the large difference in turbine speeds causing a

sharp decrease in rewards as seen in Figure 4.14. In this scenario, the turbines were at

different speeds for nearly 20 seconds, reducing the reward but ultimately overcoming the

reward loss with both the help of the PI controller and the larger deviation learning rate

allowing a faster recovery. If we take a closer look at Figure 4.17 we can see that Turbine

2 is much more stable than Turbine 1 in which case the TSR for Turbine 1 did not

fluctuate as much as the other and is also reflected in the reward, Figure 4.19. Because

both turbines share the same policy and the solution is updated taking into account both

rewards, where the better of the two is favored positively, the stability of Turbine 2 helps

bring back Turbine 1 to a stable region. In addition, since the PI controller is unable to

adjust the speed of the turbines when the speed is lower than the optimal speed, then it

is the pitching control which allows the turbine to return back to its optimal speed. If we

recall the performance of the VAWT is a function of both TSR and pitching, CP (λ, β).

Periodic and Continuous Pitching Trajectory

Given that the wind turbine’s fundamental operation is periodic, it makes sense to use

a continuous periodic pitch trajectory. From the two policies used the spline policy was

able to generate a higher average reward than the sinusoidal policy. Although the spline

pitch trajectory was able to produce higher rewards, in practice the pitch trajectory is

not one that would be feasible given the abrupt pitching action after each revolution.

Plotted in Figure 4.20 is the periodic sinusoidal policy pitching trajectory along with the

spline policy. As can be seen near the end of the trajectory, the slope is negative and

then must quickly change to a positive slope for the spline policy. Because of the lack of

96



Figure 4.17: Dual turbine speed comparison.

individual blade dynamics, the algorithm has no transitional information as the DMST

algorithm assumes no boundary layer separation. In addition, this abrupt movement is

sure to introduce unnecessary vibration to the turbine, and given the frequency at which

the turbine operates may not even be possible to move at such a high rate. Therefore,

although a good test for the PGPE algorithm this policy can be ruled out. In contrast,

the sinusoidal policy has a much smoother transition between revolutions due to the

periodic nature of the sine curve and is close in average power efficiency.

Comparison to a Non-Controlled Turbine

Finally, Figure 4.21 shows the optimal power coefficient of the wind turbine without any

pitching. The optimal turbine speed is at 2.4 with a CP of 0.2749. In comparison, the

controlled turbine for the sinusoidal policy had a mean reward of CP 0.4066 giving an
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Figure 4.18: Large difference between turbine speeds.

improvement of 47.9% when compared to a non-controlled turbine. Lastly, to show the

mitigation of dynamic stall due to the pitch control implementation, Figure 4.22 shows

the reduction in the angle of attack during turbine operation in which the pitch angle is

added to the inflow angle to give us the effective angle of attack, α′, in which is now the

angle used to calculate turbine performance. Refer to Eq. 2.4.
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Figure 4.19: Reward comparison of turbines.
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(a) Sine policy.

(b) Spline policy.

Figure 4.20: Periodic pitching trajectories.
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Figure 4.21: Non-pitched turbine.
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Figure 4.22: Angle of attack reduction during operation for λ = 1.94.
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CHAPTER 5

Conclusion and Future Works

5.1 Conclusion

This work has demonstrated the use of a reinforcement learning algorithm to learn the

VAWT dynamics by directly interacting with the environment and learning by trial and

error. We demonstrated the use of a newer PGPE algorithm which incorporated newer

machine learning techniques that greatly improved the learning time. We also demon-

strated the use of PGPE as an online RL algorithm and its stability even under non-ideal

symmetric samples. In the case of the wind turbine operating under unsteady air, the

PGPE algorithm was able to compensate for the changing environment with minimal

fine-tuning of hyperparameters. In addition, the sinusoidal policy was demonstrated to

be a great candidate for the VAWT pitching that was intuitive and gave a great start to

the formulation of an optimized pitch trajectory based on only 6 parameters.

The development of future renewable energy systems intertwined with new state-of-

the-art technology is advancing the direction of renewable energy developments. Where

lack of technology once limited the extraction of energy under non-ideal environments,

such as urban areas for wind energy, are now being reconsidered. Technology has allowed

advancements in electronics, manufacturing techniques, and new methods for energy

harvesting that were once considered a far reach. Continued research efforts are still

ongoing as there is still much to be discovered and challenges to be solved.
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5.2 Future Direction

Due to the theoretical approach of the turbine environment the implementation of PGPE

on a physical turbine system is to be investigated. Challenges of implementation of PGPE

to a turbine system require a strong control system that moderates the speed of both

turbines and an investigation of the setup of both turbines such that the wake of one

system does not affect the other. In addition, switching from an episodic time frame to

a continuous application by using methodologies from existing RL techniques. Finally,

the extension of PGPE to a wind farm system from the dual turbine setup. This would

allow the use of a better gradient estimation by using a larger population size readily

implemented on PGPE.
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Appendix A

Simulating Environment using DMST Model

Provided here is the Collaborative Online Reinforcement Learning environment imple-

mented in MATLAB using the DMST model from [55]. This environment will be sim-

ulated twice for each turbine in which case each will have its own dynamic trajectory

with different outputs that will be used by the PGPE algorithm. The global variable

‘param’ and ‘param2’ contains all the geometrical parameters and states for the VAWTs,

the PI load control, PGPE parameters, and wind parameters. This is defined at the

beginning of the code to allow all functions to use these variables without redefining. In

addition to giving the geometric parameters to the DMST software to create the VAWT,

the aerodynamic coefficients of the airfoil being used is needed. The airfoil data provided

by the software was used for the ‘NACA 0021’ airfoil as it was used to validate its model.

function [reward,t,omega,windspeed,TSR,IER] = env_dyn(mu,param)

%% Load turbine parameters % geometric, wind data, and PI parameters

myTurbine = param.myTurbine; % creates turbine model in DMST software

R = param.R; % turbine radius

t = param.t; % time of the overall sim

tsr = param.tsr; % TSR init/last iteration

ier = param.ier; % integral error from last iteration

theta = myTurbine.theta; % discretized angular positions

%% load wind speed and turbine speed
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if t == 0

wind = param.wind_init;

omega = tsr*wind/R;

else

wind = para.windspeed;

omega = tsr*wind/R;

end

%% Generate pitch trajectory based on policy using

policy = param.policy;

switch policy

case ‘spline’

pitch = spline(0:(2*pi/(param.M)):2*pi,[mu(1:param.M);mu(1)],theta);

case ‘sine’

pitch = sinuosodial_f(mu,theta);

end

%% Simulate turbine under conditions

ii = 1; % counter

num_iter = 1; % number of revolutions to simulate

reward = zeros(length(num_iter));

while ii <= num_iter
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%% Solve using DMST model. See reference [55].

myTurbine.set (‘TSR’ , tsr );

myTurbine.set (‘pitch’ , pitch );

myTurbine.set (‘U’ , wind );

myTurbine.solve

Cp = myTurbine.solution.power.CP; % used as the reward

Tor = myTurbine.solution.torque.CT; % used to step time

Torque = zeros(1,length(theta));

for k = 1: length(theta)

Torque(k) = 0.5*param.rho*2*R*wind^2*R*Tor(k);

end

Tau = mean(Torque);

%% Update load control

er = param.tsr_ref - tsr;

ier = ier + er*2*pi/omega;

Load = max(-param.Kp*er - param.Ki*ier,0);

T = Tau - Load;

omega = omega+T/param.J*2*pi/omega;

if omega < 0 % For the rest of the simulation the reward will be zero

break

end
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tsr = omega*R/wind; % new TSR

t = t+2*pi/omega; % new time

% interpolate new wind data

wind = interp1(param.wind_data(:,1),param.wind_data(:,2),t);

%% Reward

reward(ii) = CP;

ii = ii + 1;

windspeed = wind; % update wind

TSR = tsr; % update tsr

IER = ier; % update integral error for PI control

end

Policy formulation for sinusoidal pitch trajectory implemented in MATLAB.

function sine_pitch = sinuosodial_f(mu,theta)

a_ = mu(1); % skewness factor

b = mu(2); % flatness parameter

d = mu(3); % offset parameter

s1 = mu(4); % amplitude for upwind half

s2 = mu(5); % amplitude for downwind half
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zeta_ = mu(6); % phase shift point

fo = sin(theta+zeta_); % initial sine curve

T1 = sin(theta+a_*fo+zeta_); % first transformation

T2 = sqrt((1+b^2)./(1+b^2*T1.^2)).*T1; % second transformation

T3 = zeros(1,length(theta));

s = s1-(s1-s2)*sigmf(theta-pi,[1 10]); % third transformation

T3 = s.*T2+d;

sine_pitch = T3;

end
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Appendix B

PGPE Symmetric Sampling with Clip Up

Code provided here is the code used in this thesis for the RL algorithm. Here PGPE

with Symmetric Sampling from [51] and the Clip Up optimizer from [45] is implemented

in MATLAB to optimize the parameterized policies.

%% Initialize all PGPE parameters

num_sol = #; % how many center solutions

mu = zeros(num_sol,1); % init center solutions

r_pgpe = param.q*param.vel_max*pi/180; % radian space

sig = ones(length(mu),1)*r_pgpe; % init deviation

i =1

while i < param.iters % param.iters time to train

for n = 1:param.Ns % param.Ns = 1 for our case

sig_sq = eye(length(sig)).*sig;

epsilon = diag(normrnd(0,sig_sq)); % E ~ N(0,I*sig)

mu_plus = mu+epsilon; % symm sample 1

mu_minus = mu-epsilon; % symm sample 2

[r_plus] = env_dyn(mu_plus,param); % sim turbine 1

r_plus = sum(r_plus); % rew from turbine 1

[r_minus] = env_dyn(mu_minus,param2);% sim turbine 2

r_minus = sum(r_minus); % rew from turbine 2
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T(:,n) = epsilon;

S(:,n) = (epsilon.^2-sig.^2)./sig;

rt(n) = (r_plus-r_minus)/(2*param.m-r_plus-r_minus);

rs(n) = ((r_plus+r_minus)/2-param.rb)/(param.m-param.rb);

end

%% Gradient update

est_grad = T*rt; % estimated gradient

%% Clip Up. See reference [45]

eucl_est_grad = norm(est_grad);

if eucl_est_grad == 0 % Check if zero

grad_norm = zeros(size(est_grad));

vel_prime = param.momentum*vel;

else

grad_norm = est_grad/eucl_est_grad; % nomalized gradient

vel_prime = param.momentum*vel + param.alpha*grad_norm;

end

eucl_vel_prime = norm(vel_prime); % norm of velocity

if eucl_vel_prime > param.vel_max % cap vel update

vel = param.vel_max*(vel_prime/eucl_vel_prime);

else

vel = vel_prime;
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end

%% update center solution and stdev

% update center solution

mu = mu + vel; % update the center solution

% update stdev

old_sig = sig;

sig = sig + param.sig_alpha*S*rs; % update stdev

allowed_change = abs(old_sig) * param.sig_max;

sig_min_allowed = old_sig - allowed_change;

sig_max_allowed = old_sig + allowed_change;

sig = clip(sig, sig_min_allowed, sig_max_allowed);

end
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