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The present study considers uni- and multi-cellular
natural convection of air in an inclined, slender, two-
dimensional, rectangular enclosure, with emphasis
on the existence of multiple steady states. The
enclosure is subjected to a uniform heat flux along
the long sidewalls and adiabatic conditions at the
short-end walls. A mathematical model, based on
the two-dimensional conservation equations under
laminar flow and steady-state conditions, along with
the Boussinesq approximation, is first formulated
using non-dimensional stream function, vorticity
and temperature, and then solved analytically and
numerically, for different inclination angles, Rayleigh
numbers and aspect ratios. The analytical solution,
derived via the parallel-flow approximation, is used
to describe the fluid flow and heat transfer in the
core region, while detailed flow and temperature
distributions are computed by finite difference
approximations. By considering the cases of variable
inclination angles for a fixed aspect ratio and
different aspect ratios in a horizontal enclosure, the
results reveal the emergence of multiple steady-
state solutions for supercritical Rayleigh numbers
around the horizontal configuration. Close agreement
between numerical and analytical results confirms the
robustness of the approach and provides insights into
convective heat transfer mechanisms, including the
influence of aspect ratio on the evolution of the steady
states in horizontal enclosures.
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1. Introduction
Natural convection in enclosures has been a subject of significant interest in fluid dynamics
and heat transfer due to widespread occurrence in both natural and engineered systems [1–4].
This thermal transport process, driven by buoyancy forces resulting from temperature-induced
density differences within a fluid, plays a crucial role in various environmental, engineering
and commercial applications. These include atmospheric and oceanic circulation processes,
heating, ventilation, and air conditioning systems, electronic cooling, solar energy collection,
water desalination and energy-efficient building designs, among others [5–10]. In each of these
cases, natural convection governs fluid transport mechanisms in either steady-state or transient
conditions, which directly influence design considerations and operational performance critical
for climate modelling, weather prediction, thermal regulation and energy efficiency. This mode of
energy transfer is particularly important in enclosures, where the heat rate is regulated through
walls/boundaries, making it highly sensitive to specific geometric configurations, boundary
conditions and even thermal properties, all of which can shape the resulting convective patterns.

Extensive research has explored natural convection in enclosures using both analytical and
numerical methodologies to understand fundamental behaviour and to implement it in practical
applications. Though analytical studies have provided insights into the onset of convection,
stability mechanisms and boundary-layer development in simple geometries [11–16], numerical
simulations of the nonlinear incompressible fluid mechanics equations have been essential for
capturing complex flow dynamics in a variety of enclosure geometries, boundary conditions,
types of fluids and external forces such as magnetic fields or gravity modulation [3,9,10,17–25].
Despite the extensive body of work on natural convection in enclosures, the specific case of
inclined, slender, two-dimensional enclosures remains a challenging topic due to the complexity
resulting from the strong interplay not only between geometry and boundary conditions but also
with orientation relative to gravity, which often leads to intricate and unexpected flow patterns.
Previous studies on inclined enclosures with opposing isothermal walls, or rectangular cavities
with uniform heat flux boundary conditions, have shown that the interactions among geometrical
and operational parameters induce multiple steady states, bifurcations or symmetry-breaking
instabilities [26–37].

An analytical approach frequently used to study thermal natural convection in slender
enclosures relies on the assumption of unicellular convective motion, akin to a Hadley cell in
atmospheric circulation. This methodology allows the problem to be simplified by applying a
parallel-flow approximation to transform the governing partial differential equations (PDEs) into
ordinary differential equations (ODEs) [16,38,39]. Based on this framework, early investigations
by Vasseur et al. [40] examined the unicellular convective motion of a viscous fluid in an inclined
layer, later extending their analysis to a composite enclosure containing a very thin conductive
separation wall [41]. Additional research has further refined the parallel-flow approximation for
both porous [42–45] and non-porous media [46–48], offering valuable insights into the stability
and multiplicity of unicellular convective solutions in slender enclosures.

The present study considers uni- and multi-cellular thermal natural convection of air in an
inclined, slender, two-dimensional, rectangular enclosure, subjected to uniform heat flux along
the long sidewalls and adiabatic conditions at the short-end walls. The main focus is on the
existence of multiple steady states and the influence that inclination angle and aspect ratio have
on the thermal convection process in these systems. To this end, an integrated approach is adopted
by combining an analytical technique, based on the parallel-flow approximation that enables
closed-form solutions of the governing equations, with comprehensive numerical simulations to
visualize and quantify the fluid flow and heat transfer characteristics. The paper is organized
as follows: first, a brief description of the system and its mathematical formulation, in both
dimensional and non-dimensional forms, is presented. This is followed by an overview of the
numerical technique, including the computational domain and grid-independence tests. The
development of the analytical approach within the framework of the parallel-flow approximation
is then described and verified numerically. The two methods are subsequently applied to examine
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the effects of inclination angle and aspect ratio on the emergence of multiple steady states, for
which two specific cases are considered: (1) a fixed aspect ratio with varying inclination angles
and (2) a fixed inclination angle with different aspect ratios. Finally, the study provides a summary
of key findings, including a potential mechanism by which steady states evolve with aspect ratio,
and their implications for future research.

2. Problem description and mathematical formulation
We consider the fluid motion in a slender enclosure due to temperature-driven buoyancy forces.
The enclosure, schematically illustrated in figure 1, has a height H and a length L, is filled with
a Newtonian fluid and is inclined at an angle φ with respect to the horizontal. Energy exchanges
in the enclosure occur via a constant heat flux through its long walls, while its short walls are
adiabatic. For this system, the steady-state, incompressible equations for laminar flow, in the
context of natural convection, are given by

continuity
∂û
∂ x̂

+ ∂v̂

∂ ŷ
= 0, (2.1a)

x-momentum û
∂û
∂ x̂

+ v̂
∂û
∂ ŷ

= − 1
ρ

∂ p̂
∂ x̂

+ ν

(
∂2û
∂ x̂2 + ∂2û

∂ ŷ2

)
+ 1
ρ

f̂x (2.1b)

and y-momentum û
∂v̂

∂ x̂
+ v̂

∂v̂

∂ ŷ
= − 1

ρ

∂ p̂
∂ ŷ

+ ν

(
∂2v̂

∂ x̂2 + ∂2v̂

∂ ŷ2

)
+ 1
ρ

f̂y, (2.1c)

where û and v̂ are the fluid velocities in the x̂- and ŷ-directions, respectively, p̂ is pressure,
f̂x = f̂ sinφ and f̂y = f̂ cosφ are the corresponding buoyancy forces in the x̂- and ŷ-directions, and
ν is the fluid kinematic viscosity. The symbol (ˆ) indicates dimensional quantities. Using the
Boussinesq approximation, the fluid buoyant force is given as f̂ = ρĝβ(T̂ − T̂ref), where T̂ is its
temperature, ρ is its density at a reference temperature T̂ref, ĝ is the acceleration due to gravity
and β is the corresponding coefficient of thermal expansion. The energy equation is given as

û
∂T̂
∂ x̂

+ v̂
∂T̂
∂ ŷ

= α

(
∂2T̂
∂ x̂2 + ∂2T̂

∂ ŷ2

)
, (2.1d)

where α= k/ρcp is the fluid thermal diffusivity, k is the thermal conductivity and cp is its specific
heat.

The corresponding boundary conditions are defined, mathematically, as

short-end walls: x̂ = ±L
2

, −H
2

≤ ŷ ≤ H
2

, û = v̂ = 0,
∂T̂
∂ x̂

= 0 (2.2a)

and

long side walls: − L
2

≤ x̂ ≤ L
2

, ŷ = ±H
2

, û = v̂ = 0,
∂T̂
∂ ŷ

= − q̂
k

, (2.2b)

where q̂ is the heat influx/eflux per unit length.
By using a normalization defined as follows:

x = x̂
H

; y = ŷ
H

; u = û
α/H

; v = v̂

α/H
; p = p̂

ρα2/H2 ;

and

θ = T̂ − T̂ref

q̂H/k
; Pr = ν

α
; Ra = ĝβ q̂H4

ναk
,
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Figure 1. Natural convective flow in a slender cavity of aspect ratio A= L/H.

the non-dimensional versions of the set of equations (2.1a)–(2.1d) become

∂u
∂x

+ ∂v

∂y
= 0, (2.3a)

u
∂u
∂x

+ v
∂u
∂y

= −∂p
∂x

+ Pr

(
∂2u
∂x2 + ∂2u

∂y2

)
+ RaPr θ sinφ, (2.3b)

u
∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ Pr

(
∂2v

∂x2 + ∂2v

∂y2

)
+ RaPr θ cosφ (2.3c)

and u
∂θ

∂x
+ v

∂θ

∂y
= ∂2θ

∂x2 + ∂2θ

∂y2 . (2.3d)

Since this is a two-dimensional flow system, we can use the stream function ψ =ψ(x, y) and
the vorticity ω=ω(x, y), defined by

u = ∂ψ

∂y
; v = −∂ψ

∂x
; ω= ∂v

∂x
− ∂u
∂y

,

to reduce equations (2.3a)–(2.3c) to a Poisson equation:

∂2ψ

∂x2 + ∂2ψ

∂y2 + ω= 0 (2.4a)

and a single momentum transport equation,

∂ψ

∂y
∂ω

∂x
− ∂ψ

∂x
∂ω

∂y
= Pr

(
∂2ω

∂x2 + ∂2ω

∂y2

)
+ RaPr

(
∂θ

∂x
cosφ − ∂θ

∂y
sinφ

)
, (2.4b)

with the energy equation (2.3d) becoming

∂ψ

∂y
∂θ

∂x
− ∂ψ

∂x
∂θ

∂y
= ∂2θ

∂x2 + ∂2θ

∂y2 . (2.4c)

Equations (2.4a), (2.4b) and (2.4c) provide the expressions for the three unknowns ψ(x, y), ω(x, y)
and θ (x, y), respectively, with the boundary conditions being now defined as

short-end walls: x = ±A
2

, −1
2

≤ y ≤ 1
2

,
∂ψ

∂x
= ∂ψ

∂y
= 0,

∂θ

∂x
= 0 (2.5a)

and

long side walls: − A
2

≤ x ≤ A
2

, y = ±1
2

,
∂ψ

∂x
= ∂ψ

∂y
= 0,

∂θ

∂y
= −1, (2.5b)
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where A = L/H is the aspect ratio of the enclosure. It can be noted that the transformation

φ→ −φ, ψ → −ψ , θ → −θ , x → −x, y → −y,

neither alters the governing equations (2.4) nor the boundary conditions (equations (2.5)), and as
it will be shown in the next sections, from the corresponding results, this symmetry is evident and
consistent with the multiple physical scenarios of the problem.

The complete stream function and temperature fields can be obtained by solving the governing
equations (2.4a)–(2.4c) and boundary conditions (2.5a) and (2.5b). Here, we explore their solution
both numerically and analytically (by considering a parallel-flow approximation).

3. Numerical technique and grid independence
The two-dimensional set of equations (2.4) was discretized on a rectangular computational
domain using finite difference approximations. Since typical iterative solutions of the elliptic
equations, particularly those for the linear momentum and energy, are computationally
expensive, equations (2.4b) and (2.4c) are modified by adding a transient term on the left-
hand side to enable a marching solution via the method of false transient [49]. The spatial
coordinates were discretized using central differences on a uniform grid, whereas a forward
difference approximation was used for the transient terms. Integration of equations (2.4b) and
(2.4c) is performed using an explicit solution algorithm with a time step of �t = 1 × 10−5, which
is sufficiently small to ensure stable results (although other methods, e.g. the alternating direction
implicit procedure, could also be used to reduce even more the CPU times for the calculations).
The Poisson equation, equation (2.4a), was solved using the successive overrelaxation technique.
The stream function, temperature and vorticity fields are integrated until a steady state is reached,
and convergence in the iterative procedure is achieved to within 10−3%.

To ensure that the results are independent of the mesh size, a series of tests were carried out
by employing coarser and finer grids for different values of aspect ratio A, Rayleigh number Ra
and Prandtl number Pr. Assessment of the grid size on the results is carried out by evaluating
the stream function at the centre of the enclosure, i.e. ψc =ψ(0, 0), which is used to characterize
the intensity of the convective motion, and the local Nusselt number at the x = 0 section (central
vertical line), for characterizing the convective heat transfer, defined [31] as

Nu = q̂H

k�T̂
= 1
�θ

, (3.1)

where �T̂ = T̂(0, −H/2) − T̂(0, H/2) is the wall-to-wall temperature difference, and �θ =
θ (0, −1/2) − θ (0, 1/2) is its non-dimensional form.

A typical example of these convergence tests is listed in table 1 for A ∈ [3, 20], Ra ∈ [5 ×
104, 2.5 × 105], φ = 0◦ (which provides the strongest buoyant forces on the fluid) and Pr = 0.72.
Although additional tests were performed for Ra ∈ [103, 104], the results are not included in the
table since, regardless of the value of A, they converge to the same values of ψc and Nu, for all
mesh sizes considered. Note that the negative values of ψc, in the table, are associated with a
clockwise rotation of the flow at the centre of the enclosure, whereas the positive ones correspond
to its counterclockwise rotation, both of which are possible, as illustrated qualitatively in figure
2, in terms of the streamlines and isotherms for the sample case of A = 3, with Ra = 5 × 104 and
φ = 0◦. Such symmetry in the fluid rotations reflects an inherent physical property of the system,
which can be perceived by an observer either standing in front or behind the enclosure. Thus,
from table 1, it can be observed that for A = 3, Ra = 5 × 104 and Ra = 105, the coarser grid of
136 × 34 is sufficient to achieve accurate results. However, as A and/or Ra increase, as expected,
smaller grids are necessary. For instance, for A = 10 and Ra = {5 × 104, 105}, a grid size of 204 × 51
is now required. Finally, for A = 20, and the same values of Ra as before, only the finest mesh of
272 × 68 is sufficiently accurate. Note that for Ra = 2.5 × 105, only the smallest grid size provides
the required accuracy, independently of the value of A. From these tests, it was determined that
a grid of 272 × 68, which provides a mesh size of �x = 0.07 and �y = 0.015, is sufficient and
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Figure 2. (a,c) Streamlines and (b,d) isotherms for A= 3, Ra= 5 × 104 andφ = 0◦. In left-hand figures, counterclockwise
flow (yellow/green; lighter colour represents higher value) and clockwise flow (blue; darker colour represents higher value). In
right-hand figures, lighter colour represents a higher temperature, while darker colour represents a lower temperature.

Table 1. Grid-independence tests for different aspect ratios A,φ = 0◦ and Rayleigh numbers Ra.

grid size 136 × 34 204 × 51 272 × 68

ψc Nu ψc Nu ψc Nu

A= 3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 × 104 −11.26 4.15 −11.21 4.11 −11.17 4.10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ra 105 14.48 4.85 14.51 4.80 14.50 4.78
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 × 105 27.52 4.01 −31.23 5.08 −29.01 3.67
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 10
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 × 104 −8.82 3.27 −9.20 3.84 −11.99 4.18
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ra 105 17.52 3.27 −18.39 3.51 −17.64 3.52
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 × 105 30.33 3.06 28.13 4.13 −29.56 3.63
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A= 20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5 × 104 −10.86 4.17 10.66 4.08 10.95 4.09
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ra 105 −14.11 5.02 14.52 4.84 17.80 3.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.5 × 105 26.28 4.62 21.37 5.94 −19.86 5.47
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

therefore adopted in this investigation. To further verify grid independence of the numerical
solution, we performed an additional simulation using an even finer mesh of 340 × 85. The results
showed that, under the specified conditions, full convergence was achieved, with variations in Nu
remaining, in general, below 3%.

4. Approximate analytical approach
Although numerical solutions provide a detailed account of the field quantities, like velocity
and temperature, analytical solutions enable general analyses and can supplement the numerical
information by, for instance, providing guidance onto which values of the parameters should be
considered for the simulations.

(a) Mathematical model
For slender enclosures, i.e. those with large A, the flow in the central part of the cavity can be
assumed to be parallel, such that u = u(y) and v = 0. This assumption is in agreement with the
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results reported by Bejan & Tien [38], Vasseaur et al. [40,41], Sen et al. [42] and Lamsaadi et al.
[47], among others, for this and other similar systems, all of them in the context of unicellular
convection patterns. Here, we follow these earlier works for the development of the mathematical
formulation.

Given that the total flow rate at any x-section of the enclosure is zero, i.e.

0 =
∫ 1/2

−1/2

∂ψ

∂y
dy

=ψ |y=1/2 − ψ |y=−1/2,

it can be seen that the walls of the cavity are a streamline, and we can arbitrarily take ψ = 0 at
y = ±1/2. Similarly, the energy flux integral at any x-section is given as

∫ 1/2

−1/2

(
∂ψ

∂y
θ − ∂θ

∂x

)
dy = 0, (4.1)

since the total heat transported across any transversal section is also zero.
Let us take

ψ =ψ(y) and θ = Cx + η(y), (4.2)

where C is an unknown real constant—corresponding to the temperature gradient in the x-
direction—with η being the variation of temperature in the y-direction. The governing equations
(2.4) are transformed into the following set of ODEs:

d4ψ

dy4 + Ra sinφ
dη
dy

= Ra C cosφ (4.3a)

and
d2η

dy2 − C
dψ
dy

= 0, (4.3b)

which are independent of the Prandtl number Pr.
The total order of the differential equation set, i.e. equations (4.3), plus the constant C in them

provides a total of seven constants to be determined. There are also seven conditions, namely, the
integral relation, equation (4.1), rewritten as

∫ 1/2

−1/2

(
[Cx + η(y)]

dψ
dy

− C
)

dy = 0, (4.4)

four boundary conditions for ψ ,

y = ±1
2

, ψ = 0,
∂ψ

∂y
= 0 (4.5)

and two for η as
∂η

∂y
= −1 at x, y = ±1

2
. (4.6)

Note that since the two boundary conditions for η are equivalent, only one can be used, and an
additional condition is—therefore—needed. Thus, by taking into account the symmetry of the
problem, the following condition:

η= 0 at x = 0, y = 0 (4.7)

can be used to supplement equation (4.6) and compute the final constant in the mathematical
model.

(b) Analytical solution for arbitrary inclination angle
There are two special cases that will be considered in a separate manner, namely, C sinφ > 0
and C sinφ < 0. The corresponding final solutions are provided next and, in some detail, in
appendix A.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 S

ep
te

m
be

r 
20

25
 



8

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250253

..........................................................

(i) Natural solution, C sinφ > 0

This case corresponds to having C and sinφ, either both positive or both negative. In the former
case (C> 0, φ > 0), the x = A/2 end is hotter and motion is counterclockwise, while in the latter
(C< 0, φ < 0), the x = −A/2 end is hotter and motion is clockwise. In either case, the motion is the
one that would result from rest and a conductive temperature field. Here, this will be referred to
as the natural solution since the fluid rises as its temperature increases.

The solution to equation (4.3a), with boundary conditions (equation (4.5)), is

ψ(y) = −PB

2e

[
(1 − ε)

{
sin

e
2

sinh
e
2

− sin ey sinh ey
}

+ (1 + ε)
{

cos
e
2

cosh
e
2

− cos ey cosh ey
}]

,

(4.8)
where PB is unknown at this point, and

e =
(

Ra C
4

sinφ
)1/4

and ε = cot
e
2

tanh
e
2

. (4.9)

On the other hand, the solution to equation (4.3b) with conditions equations (4.6) and (4.7) is

η(y) = CPB

2e2 {sin ey cosh ey + ε cos ey sinh ey} + Cy cotφ, (4.10)

with the parameter PB being

PB = − 2e(1 + C cotφ)
C{(1 + ε) cos(e/2) cosh(e/2) + (1 − ε) sin(e/2) sinh(e/2)} . (4.11)

Finally, to obtain an equation for the constant C, condition equation (4.4) is used to give

CP2
B

16e3 [(ε2 + 2ε − 1) cos e sinh e + (−ε2 + 2ε + 1) sin e cosh e] − εCP2
B

4e2

+ CPB cotφ
2e

[
(1 − ε) sin

e
2

sinh
e
2

+ (1 + ε) cos
e
2

cosh
e
2

]

− CPB cotφ
e2

[
ε cos

e
2

sinh
e
2

+ sin
e
2

cosh
e
2

]
− C = 0. (4.12)

The resulting transcendental equations (4.9), (4.11) and (4.12) have to be simultaneously solved
for the unknowns e, PB and C. This is done numerically using a Newton–Raphson scheme and,
since it is always possible to find real values of the constants for any Ra and φ, the stream function
and temperature fields are then known from equations (4.8) and (4.10).

(ii) Antinatural solution, C sinφ < 0

This scenario, on the other hand, will be the antinatural solution since the fluid falls as its
temperature increases. This solution, although not immediately intuitive, has been observed
experimentally in several systems, including natural convection loops [33]. In such a case, C
and sinφ have opposite signs. For positive inclinations (φ ≥ 0), the motion is clockwise and the
x = −A/2 end is hotter. For negative inclinations (φ < 0), the motion is counterclockwise and the
x = A/2 end is hotter. In either case, this motion—whether experimentally or numerically—cannot
start from rest conditions with a conductive temperature field. In fact, it is opposite in direction
to the natural motion illustrated in §4b(i).

The stream function, from equation (4.3a), with conditions equation (4.5), is now given by

ψ(y) = PD

b

[
β

(
cos by − cos

b
2

)
+
(

cosh by − cosh
b
2

)]
, (4.13)

where the parameters b and β are, respectively, given by

b = (−Ra C sinφ)1/4 and β = sinh(b/2)
sin(b/2)

. (4.14)
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From equation (4.3b), along with conditions equations (4.6) and (4.7), we get

η(y) = CPD

b2 (β sin by + sinh by) + Cy cotφ, (4.15)

where the parameter PD is given by

PD = − b(1 + C cotφ)
C(β cos(b/2) + cosh(b/2))

. (4.16)

The energy flux integral condition equation (4.1) then provides the equation for C as

CPD
2

2b3 (β2 sin b + sinh b) − CPD
2

2b2 (β2 + 1) + CPD cotφ
b

(
β cos

b
2

+ cosh
b
2

)

− 2CPD cotφ
b2

(
β sin

b
2

+ sinh
b
2

)
− C = 0. (4.17)

Again, a Newton–Raphson method is used to obtain the numerical values of C with which the
stream function and temperature fields can be determined. Two sets of constants are obtained for
a given Ra and φ. However, they are real only in a narrow range of angles around zero, for which
antinatural steady states exist.

(c) Numerical verification tests
Since the analytical solutions above are valid for a substantially large aspect ratio A (i.e. A � 1),
and the parallel-flow approximation is applicable only for the central part of the enclosure, a test
is required to determine the smallest value of the aspect ratio for which the large-A approximation
is close enough to the numerical solutions. To this end, we consider two special systems: a
horizontal enclosure (φ = 0) heated from below and a vertical cavity (φ = 90◦) heated from the
side, both of which are subsets of the general case of the inclined enclosure herein studied. For
these systems, both their mathematical model—which reduces from equations (4.3a) and (4.3b)—
and their corresponding analytical solutions are detailed in appendix A. Here, we discuss their
results.

The corresponding results are presented in figures 3 and 4 for inclination angles φ = 0 and
φ = 90◦, respectively, in terms of the stream function at the centre of the cavity ψc and the
local Nusselt number at the vertical centreline across the long walls, Nu, being defined by
equation (3.1). Two values of the Rayleigh number, namely, Ra = 1 × 104 and Ra = 5 × 104, and
several enclosures with different aspect ratio A were considered. In both figures, the values
computed from the numerical data, in the range of A ∈ [0.25, 10], are illustrated as symbols,
whereas those corresponding to the analytical solutions—from equation (A 13) for φ = 0 and
equations (A 17) and (A 19) for φ = 90◦, in appendix A—are shown for A ∈ [1, 10] as continuous
horizontal lines. It is important to note that though the results are shown for Pr = 0.72, which
corresponds to air, little difference was found for other Pr numbers for values outside the A ∈ [1, 2]
range.

From the figures, it can be observed that the results from the approximate analytical approach
for both ψc and Nu, in the two sample cases, are close to those of the numerical simulations for an
aspect ratio as small as A = 2, with those for A ≥ 4 being—essentially—indistinguishable. This is
further corroborated in figure 5, which shows the error in the approximation from the analytical
model and the corresponding convergence of its results to those obtained numerically. From the
figure, it can be seen that in the case of a cavity with an inclination angle φ = 0, if the aspect ratio is
small, e.g. A = 2, the associated error from the analytical model for ψc and Nu are 8.3% and 3.6%,
respectively, for Ra = 1 × 104 (with corresponding errors of 0.6% and 13.6% for Ra = 5 × 104). On
the other hand, if the enclosure has an aspect ratio of A = 4, the associated errors are bounded
to only 0.5% and 2%, respectively, regardless of the Ra number. Similar trends are observed for
cases in which the inclination angle is φ = 90◦, but with even smaller errors. This indicates that
the analytical approach may be applicable even in cases where the value of the aspect ratio A is
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Figure 3. Analytical versus numerical values ofψc andNu for different values ofA,φ = 0◦ and Pr = 0.72. (•): Ra= 1 × 104;
(�): Ra= 5 × 104.

Figure 4. Analytical versus numerical values ofψc and Nu for different values of A, φ = 90◦ and Pr = 0.72. (•): Ra= 1 ×
104; (�): Ra= 5 × 104.

not sufficiently large as to be considered a ‘large-A approximation’. In that case, of course, there
will be an approximation error from the analytical model associated with the aspect ratio of the
enclosure to be analysed.

5. Multiplicity of solutions
From a mathematical point of view, the governing equations (2.4a)–(2.4c) may have a unique
solution as an initial value problem. However, when the equations are associated with a
boundary-value problem—the slender inclined cavity being a perfect example of it—multiple
steady states are then possible. This is shown in the next sections for two different scenarios: (1)
the case of an enclosure of constant aspect ratio A and varying inclination angle φ, and (2) a set of
enclosures of different aspect ratio A, with a single inclination angle φ.

(a) Enclosure of fixed aspect ratio A and varying inclination angleφ
The enclosure considered for this analysis has an aspect ratio A = 4, which is sufficiently large
to enable using the approximate analytical model of §4, and its solutions, along with the results
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Figure 5. Approximation error of the analytical approach for ψc and Nu, as a function of A. Solid symbols: φ = 0◦; Open
symbols:φ = 90◦. (− • −,− ◦ −): Ra= 1 × 104; (· − � − ·, · − � − ·): Ra= 5 × 104.

from the numerical method described in §3. The inclination angles are in the range of −180◦ <
φ < 180◦, while the set of Rayleigh numbers considered, on the other hand, is confined to the
range Ra ∈ [720, 1 × 105]. The corresponding results from both techniques are presented in terms
of the stream function at the centre ψc and the Nusselt number Nu, supplemented by detailed
accounts of the numerically obtained streamlines and temperature fields inside the enclosure.
Here, positive values of ψc represent counterclockwise rotations, while a negative value of ψc is
associated with a clockwise motion of the flow, both at the centre of the enclosure.

Figure 6a,b presents the values of ψc and Nu, respectively, as functions of φ for different
values of Ra. In both figures, continuous (and broken) lines illustrate analytical solutions, whereas
the numerical data are displayed as symbols. Besides the excellent correspondence between the
analytical and numerical results, from the figures, it can be observed that only one steady state
exists for each inclination angle in the ranges −180◦ <φ <−φ∗ and φ∗ <φ < 180◦, whereas three
different steady states are possible in the −φ∗ <φ <φ∗ range. Here, φ∗ varies from φ∗ = 0◦ when
Ra ≤ 720 to a maximum value of φ∗ = 38.3◦ for Ra = 1 × 104 (with specific values of φ∗ = 25.5◦
for Ra = 1 × 105 and φ∗ = 33.5◦ for Ra = 5 × 104). On looking closer, both figures clearly illustrate
the symmetry of the problem and its corresponding governing equations, as noted in §2 and 3.
From figure 6a, the stream function is symmetric with respect to the origin of the ψc − φ plane
(the first and third quadrants showing natural flows, while the second and fourth quadrants
illustrate the antinatural flows), whereas the Nusselt number, in figure 6b, shows a mirror image
in relation to the vertical line φ = 0 of the Nu − φ plane. In any case, from a physical perspective,
the observed symmetry is an inherent property of the system, as previously noted, and can be
perceived by an observer standing either in front of or behind the enclosure. However, regardless
of the position of the observer, there are two possible values of the streamfunction at the centre
of the enclosure ψc, corresponding to the two possible orientations of circulation—clockwise
or counterclockwise—further illustrating the symmetric nature of the flow and temperature
fields. It is to note that a similar type of behaviour has been predicted numerically [32,37] and
experimentally observed [27] for flow in natural convection loops and in other related problems
[40,42]. Further analysis of figure 6a shows that at Ra = Racr = 720, which is the critical value of the
Rayleigh number for this system, the ψc(φ) curve is single valued for all inclination angles except
the origin, at which a point of inflexion—where the curve is tangent to the φ = 0◦ axis—arises. For
Ra>Racr, the profile of ψc(φ) becomes convoluted and the curve multi-valued, with the existence
of three different steady states for inclinations in the range −φ∗ <φ <φ∗, as indicated above. A
similar situation is also shown in figure 6b, for the Nu(φ) curves, which become multi-valued for
Ra ≥ Racr, with a maximum value of Nu occurring at inclination angles between zero and 90◦.
From the figure, it can be noticed that for a given inclination angle φ, for small values of Ra, the
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Figure 6. Numerical and analytical values ofψc and Nu as functions of φ. Solid symbols correspond to numerical solutions;
lines correspond to analytical solutions. (•): Ra= 720; (�): Ra= 5 × 103; (�): Ra= 1 × 104; (�): Ra= 5 × 104; (�):
Ra= 1 × 105. Broken lines are for unstable solutions.

Nusselt number is Nu = 1, since the temperature field is dominated by conduction; however, Nu
increases substantially for larger values of Ra, as the temperature field becomes dominated by
convection.

Stability characteristics of the steady states for both ψc and Nu can be deduced from the
numerical information. The numerical method, it must be recalled, is based on integration in
time and, as a consequence, the steady states—shown as symbols in the figures—thus obtained
from it correspond to linearly stable states. The analytical approximation, on the other hand,
applies equally to stable as well as unstable solutions. This is illustrated in figure 6a,b, which
show that for some values of Ra, above Racr, part of the outer branch of ψc and Nu, covering
both natural and antinatural states, is stable. At a large enough Ra number, however, the entire
branch becomes unstable. The inner antinatural branch, shown in both figures by broken lines,
is unconditionally unstable, as numerical solutions could not be obtained for any point on this
branch. As indicated above, this feature has also been observed, and reported, in other similar
natural convection systems [32,33,37,40,42].

Further analysis of the multiplicity of steady states and their stability is carried out by
observing figure 7a,b, which illustrate the values of ψc and Nu as functions of Ra, in the range of
Ra ∈ [0, 5 × 103], for inclination angles φ = 0◦, 5◦, 10◦ and 20◦, all well within the aforementioned
[−φ∗,φ∗] range. As before, in both figures, analytical solutions are shown by lines, with the
unstable part of the antinatural branch being displayed by broken lines, while the numerical
confirmation of the stable solutions is specified by symbols. In figure 7a, for positive inclination
angles (φ > 0), natural circulation is indicated by a positive ψc (upper half of the figure), whereas
the antinatural motion is represented by a negative value of ψc (lower half of the figure). In
contrast, for the Nu − Ra plot in figure 7b, the region of natural circulation extends to the left of
the φ = 0 curve, while the antinatural circulation comprises the area to the right of it. Importantly,
in the case of negative inclination angles (φ < 0), the sign of ψc in figure 7a will change; however,
in agreement with the results of figure 6b, the values of the Nusselt number in figure 7b remain
positive. For φ = 0◦, which corresponds to the horizontal enclosure, figure 7a shows that there
is no motion possible up to the critical Rayleigh number, Racr = 720, at which a bifurcation
into two symmetrical counter-rotating convection states occurs. This gradual increase of the Ra
number from zero would be equivalent to a heating process starting from a purely conductive
temperature profile and rest conditions of the fluid; if Ra<Racr, only one steady state exists but—
independently of inclination angle φ—when Ra ≥ Racr, multiple states are possible. For φ > 0◦, the
bifurcation diagram for ψc (and its related layout for Nu in figure 7b) changes considerably for
any inclination angle. Thus, following the work of Sen et al. [42], we use the critical Rayleigh
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Figure 7. Numerical and analytical values ofψc and Nu as functions of Ra. Solid symbols correspond to numerical solutions;
lines correspond toanalytical solutions. (•):φ = 0◦; (�):φ = 5◦; (�):φ = 10◦; (�):φ = 20◦. Broken lines are for unstable
solutions.

number for the inclined enclosure Raφ , defined as the smallest value of Rayleigh number at
which multiple steady states appear for an inclined cavity (φ > 0), and notice in both figures
that though the natural state exists for φ > 0 (and φ < φ∗), the antinatural state appears only if
Ra>Raφ . Furthermore, as expected, the value of Raφ increases with increasing inclination angle
φ; e.g. Raφ = 1135 for φ = 5◦, Raφ = 1535 for φ = 10◦ and Raφ = 2715 for φ = 20◦. Finally, from
figure 7b, it can be seen that, as anticipated, the antinatural states have a lower value of Nu than
the corresponding natural states for the same inclination.

Numerically, any inclination would bias the convective solution, starting from rest flow
conditions and purely conductive temperature profiles, towards the natural state. The antinatural
state can be reached only through initial conditions different from rest and exists only if Ra>Raφ .
In such a case, the antinatural convective circulations are obtained by starting the calculations
with the natural solution and then modifying the inclination gradually; i.e. the natural state of the
previous angle is first used as a starting point in the computation, with the inclination angle being
slightly adjusted to obtain the antinatural state. If the change of angle is sufficiently small, there is
no change in the direction of the circulation patterns. This sequence is exemplified in the context
of unicellular convection [40] in figure 8, for an enclosure of aspect ratio A = 3 and Ra = 5 × 104,
where streamlines and the corresponding isotherms are illustrated for inclination angles φ = 5◦,
φ = 0◦ and φ = −5◦. From the figure, it can be noticed that, in all cases shown, by choosing
appropriate initial conditions at the start of the computation, a single counterclockwise circulation
of the fluid (as evident from the way the isotherms are curved) is obtained. In the figure, the top
row figures for φ = 5◦ (figure 8a,b) are realized by starting from fluid at rest and a conductive
temperature field; these are then used as initial states for the middle row figures illustrating the
results for φ = 0◦ (figure 8c,d), which in turn are the initial conditions for the numerical results
of the bottom row figures for φ = −5◦ (figure 8e,f). Further inspection of the inclination angle
φ = −5◦ demonstrates that if the computations are started from rest conditions and conductive
isotherms, then a set of clockwise unicellular circulation patterns, displayed in figure 9, develops.
When these results are compared to the counterclockwise circulation cells of figure 8, which are
obtained under identical spatial boundary conditions but different initial conditions, it is clear
that not only multiplicity of steady solutions are possible but also the clockwise circulation of the
fluid inside the cavity with inclination angle φ = −5◦ is the natural state. A similar conclusion can
be reached for the case of φ = 0◦, by contrasting the unicellular convection patterns of figure 8, to
the tricellular circulation structures of figure 2, which correspond to the antinatural and natural
states, respectively. Note that although the same qualitative results could have been obtained with
a value of A = 4, using an enclosure of aspect ratio A = 3 enables direct comparison between the
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..........................................................Figure 8. Natural convectionwith unicellular counterclockwise flow. (a,c,e) Streamlines and (b,d,f) isotherms for A= 3, Ra=
5 × 104 and three inclination angles. Top row: φ = 5◦, with initial conditions of quiescent flow and conductive temperature
field. Middle row: φ = 0◦, and bottom row: φ = −5◦, both use initial conditions taken from the natural solution at the
previous angle with a slight angle adjustment.

Figure 9. Natural convection with unicellular clockwise flow. (a) Streamlines and (b) isotherms for A= 3, Ra= 5 × 104 and
φ = −5◦, with initial conditions of quiescent flow and conductive temperature field.

numerical results of figure 8 to those of figure 2, all of which were obtained with the same spatial
boundary conditions.

The two special cases of a horizontal (φ = 0◦) and a vertical slender enclosure (φ = 90◦), briefly
discussed in §4c, are especially interesting. As noticed earlier from figures 6 and 7, the situation
for φ = 0◦ is the simplest for small Ra numbers, since below the critical Ra<Racr = 720, the only
stable solution is a conduction temperature field with the fluid at rest. The value Racr = 720, at
which the onset of convection occurs, is found to agree with the results of the linear stability
theory, predicting a supercritical pitchfork bifurcation. For Ra>Racr, there are three solutions,
including an unstable one at rest, and two stable symmetrical clockwise and counterclockwise
solutions at the centre of the enclosure [12]. As noted before, for inclinations φ 	= 0◦, in particular
φ = 90◦, since the action of gravity is perpendicular to that of the heat flux, it is more difficult
to show multiplicity of steady states, since the solutions are then not symmetric. However, upon
calculating ψc and Nu, both numerically and using the equation models equations (A 7a) and
(A 7b) for φ = 0◦, and equations (A 14a) and (A 14b) for φ = 90◦, in the range of Rayleigh numbers
Ra ∈ [100, 106], some general features can be identified. The corresponding results are shown as
symbols and continuous lines, respectively, in figure 10, with figure 10a,b illustrating the values
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Figure 10. Analytical and numerical values ofψc(Ra) andNu(Ra) forφ = 0◦ andφ = 90◦. Symbols correspond to numerical
data with A= 4 and Pr = 0.72. Lines are for analytical solutions. (�):φ = 0◦; (�):φ = 90◦.

of ψc and Nu as functions of the Rayleigh number. From the figures, we find that, as expected,
for a given Ra, the strength of the fluid motion is larger for the horizontal enclosure since the
strongest buoyancy force occurs at the inclination angle φ = 0◦. The exception to this trend occurs
in the range Ra<Racr = 720, since motion of the fluid exists for φ = 90◦, but not for φ = 0◦. In
the case of the Nusselt number Nu, the situation is slightly different since its values for φ = 0◦
are only larger than those of φ = 90◦ in the range 103 <Ra< 104. As noticed before, for φ = 0◦
and Ra<Racr, there is pure conduction, while in the case of the vertical cavity, the heat transfer
is dominated by convection. For large values of the Rayleigh number, for φ = 0◦, the values of
ψc increase as Ra1/2, while those for φ = 90◦, increase at the lower rate of Ra1/10. On the other
hand, for φ = 0◦, the Nusselt number reaches an asymptotic value of Nu = 3.333, with both the
analytical and numerical results presented here closely matching those reported in previous
studies [40,41,46,47]. In contrast, for φ = 90◦, Nu increases with Rayleigh number following a
Ra2/9 scaling, which corresponds well with the boundary-layer analysis by Kimura & Bejan [31],
who proposed the correlation Nu = 0.3402Ra2/9.

(b) Enclosure of different aspect ratios A and fixed inclination angleφ
For the analysis in this section, which is completely based on numerical computations of the
model equations (2.4) and the boundary conditions equations (2.5), we consider a set of horizontal
enclosures with aspect ratios in the range of 3 ≤ A ≤ 20, with a fluid of Prandtl number Pr = 0.72
(air), and for a single value of Rayleigh number, Ra = 5 × 104, which is well above Racr. Note
that we have selected the horizontal layout (for which inclination angle is φ = 0◦), since the fluid
in this configuration sustains the strongest buoyancy forces, and the system offers the largest
set of steady states. As before, the solutions are presented both in terms of the value of the
stream function at the centre of the enclosure ψc, and the Nusselt number Nu, across a vertical
line, at x = 0, joining the two horizontal walls, being reinforced by comprehensive descriptions
of the numerical data in terms of streamlines and temperature fields inside the enclosure, and
by information on the number of developing convection structures Ncells, in each system. The
analysis, which is divided into two parts, is first centred on the numerical results when the
aspect ratio is increased from A = 3 to A = 20, whereas the second focuses on the solutions when
decreasing A, from A = 20 to A = 3. For all the numerical simulations, the boundary conditions
are those of equations (2.5). However, with the exception of the first computer run—for both
A = 3 when increasing A, and A = 20 for the path of decreasing A—for which the set of initial
conditions used is that of a conduction temperature field with the fluid being at rest, for all other
runs, the numerical solutions of the previous value of A are used as the initial conditions for the

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 S

ep
te

m
be

r 
20

25
 



16

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250253

..........................................................

Figure 11. Numerical results of Ncells,ψc and Nu forφ = 0◦ and Ra= 5 × 104, over the range of A ∈ [3, 20]. Open symbols
are for increasing A; filled symbols are for decreasing A. Black and red symbols represent solutions with a slightly positive
angle, while blue and magenta indicate a slightly negative angle. The increasing-A and decreasing-A curves have been shifted
horizontally by+5% and−5%, respectively, for clarity.

computations in an enclosure of the subsequent value of the aspect ratio. This procedure enables
finding whether the steady-state solutions for a system with one value of the aspect ratio remain
stable for a layout with another value.

Figure 11a–c shows, respectively, the values of Ncells, ψc and Nu, as functions of the aspect
ratio A, in the range A ∈ [3, 20], for Ra = 5 × 104. In these three figures, open symbols correspond
to the results obtained when A increases, while filled symbols represent those in which the
path followed is that of decreasing A. For the stream function at the centre of the cavity ψc,
positive values correspond to a counterclockwise rotation of the flow, whereas the negative
ones are associated with clockwise rotations. As discussed earlier, the symmetry of the problem
implies the existence of two equivalent, physically valid steady-state solutions for the flow
and temperature fields, corresponding to opposite directions of circulation. These symmetric
scenarios are obtained, numerically, by introducing a very small perturbation to the inclination
angle φ, either slightly positive or slightly negative; i.e. φ = 0◦ = +(10−12)◦ or φ = 0◦ = −(10−12)◦,
respectively. This perturbation determines the orientation of the resulting circulation and selects
one of the two symmetric steady states. To illustrate this, solutions for the slightly positive angle
are shown in the figures in black and red, while those for the slightly negative angle are shown
in blue and magenta. This symmetry is further confirmed by the values of ψc, which display a
mirror image about the abscissa (ψc = 0) of the ψc versus A plane of figure 11b. Finally, the same

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 S

ep
te

m
be

r 
20

25
 



17

royalsocietypublishing.org/journal/rspa
Proc.R.Soc.A481:20250253

..........................................................

Figure 12. Convection cells for different values of A andφ = 0◦. From top to bottom: A= 3, A= 6, A= 10, A= 12, A= 14,
A= 15. Path of increasing A. Counterclockwise flow (yellow/green; lighter colour represents higher value) and clockwise flow
(blue; darker colour represents higher value).

results are qualitatively illustrated in terms of the fluid streamlines and isotherms across the entire
system, respectively, for specific values of the aspect ratio A, in figures 12–15.

From figure 11a–c, it is possible to observe that the two paths of increasing- versus decreasing-
A, for φ = 0◦, are different. By starting with an enclosure of aspect ratio A = 3, figure 11a shows
that three convection cells have developed (cf. figures 2, 12 and 13). As A increases systematically
from A = 3 to A = 14, the number of convection patterns in the corresponding enclosures remains
constant. However, as the aspect ratio reaches A = 15, the three-cell circulation coalesces into a
single layout, which remains stable for enclosures with values of the aspect ratio in the range of
15 ≤ A ≤ 20. Conversely, by starting with an enclosure of aspect ratio A = 20, the computations
generate a solution with 21 convection cells (cf. figures 14 and 15). As the aspect ratio decreases
consistently from A = 20 to a value of A = 17, the number of convection patterns decreases,
progressively, in an exponential-like fashion to a value of Ncells = 3, which remains present for
enclosures with aspect ratios ranging from A = 17 to A = 14. For the aspect ratio of A = 13,
seemingly a transition point, only two convection structures are generated, and further decrease
in A, from A = 12 to A = 3, brings about only a single circulation cell. The fact that the two paths
provide different results is somehow expected since the final number of circulation patterns in
each path taken is a function not only of the geometrical parameter A, of the enclosure, but also
of the initial conditions used in each computation.

On the other hand, from figure 11b, showing ψc versus A, it is seen that, in the case of
increasing A, for 3 ≤ A ≤ 12, the absolute value of the stream function |ψc| changes in a decreasing-
increasing-decreasing manner, in the range |ψc| ∈ [9.7, 12.9]. However, as the aspect ratio increases
from A = 13 to A = 20, the stream function converges to |ψc| = 12.9, with insignificant variations.
When the path is that of decreasing A, the figure displays a completely different trend. For
instance, as A decreases from A = 20 to A = 18, a considerable change in the value of ψc, of
approximately 24 units, is observed. In fact, the actual values of ψc, at A = 18, clearly show
a complete reversal in the circulation of the flow at the centre of the enclosure, either from
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Figure 13. Convection cells for different values of A andφ = 0◦. From top to bottom: A= 3, A= 6, A= 10, A= 12, A= 14,
A= 15. Path of increasing A. Lighter colour represents higher value; darker colour represents lower value.

Figure 14. Convection cells for different values ofAandφ = 0◦. Fromtop tobottom:A= 20,A= 19,A= 18,A= 17,A= 14,
A= 12. Path of decreasing A. Counterclockwise flow (yellow/green; lighter colour represents higher value) and clockwise flow
(blue; darker colour represents higher value).
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Figure 15. Convection cells for different values ofA andφ = 0◦. From top tobottom:A= 20,A= 19,A= 18,A= 17,A= 14,
A= 12. Path of decreasing A. Lighter colour represents higher value; darker colour represents lower value.

counterclockwise to clockwise rotation, or vice versa, from that occurring at both A = 19 and
A = 20. As the aspect ratio is sequentially decreased from A = 18 to A = 3, the stream function
remains at an average value of ψc = ±12.95, with very small variations. Similar tendencies can
be observed in figure 11c for the Nusselt number Nu, at the vertical centreline of the enclosure,
which varies substantially for 3 ≤ A ≤ 12, for increasing-A, and 16 ≤ A ≤ 20, for decreasing-A,
respectively, then slowly converging to a single value of Nu = 3.23, averaged over the range
Nu ∈ [3.15, 3.3], for all remaining values of A, along the two paths.

Further attention to figure 11a–c enables identifying relative agreement between the number of
convection cells Ncells, developed for each enclosure, and the variability of both ψc and Nu. From
figure 11b,c, for instance, it can be noticed that, regardless of the path taken for A, if Ncells = 1, then
both ψc and Nu are relatively constant (at values around 12.9 and 3.23, respectively). However,
regardless of A, wide variations in both ψc and Nu are seen for Ncells > 1, the exception being the
range 12 ≤ A ≤ 16, which seems to constitute a set of transition points. Finally, it is important to
note that though the information in the figures provides a good idea of the convective behaviour
of the fluid inside the set of enclosures considered, it does not completely describe it since,
regardless of the number of circulation patterns present, the trend in the Nusselt number Nu,
which roughly follows that of the stream function ψc, for most values of A in the domain differs
substantially within the transition range mentioned above. Thus, additional information, on the
number of circulation cells Ncells and their relative size, seem to also play a role. This is discussed
further below.

A qualitative account of the numerical solutions discussed above is provided in terms of
both streamlines and isotherms in figures 12–15 to illustrate the evolution in the number of
circulation structures and their relative size, using enclosures of specific aspect ratios. Figures
12 and 13 show the data for A = {3, 6, 10, 12, 14, 15}, for the path of increasing A, while figures 14
and 15 illustrate the results for A = {20, 19, 18, 17, 14, 12}, for the path of decreasing A. Though not
included here, results for other values of aspect ratio A and Rayleigh number Ra have shown
similar qualitative behaviour. Note that in the case of the streamlines displayed in figures 12
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and 14, lighter colour represents a higher positive value, while darker colour represents a higher
negative value. In addition, positive values of ψ are indicative of counterclockwise flow, while
negative ones represent clockwise circulation. On the other hand, for the isotherms shown in
figures 13 and 15, lighter colour represents a higher value of temperature, while darker colour
represents a lower temperature. Furthermore, although the figures are not up to scale, their
information still gives a good sense of the dynamics of the convection patterns as functions of
the aspect ratio. Finally, the symmetry of the problem, as discussed earlier in detail, is further
demonstrated in figures 12–15, for both the streamlines and isotherms. These results correspond
to the two symmetric steady-state solutions associated with opposite directions of circulation,
obtained through independent computations using slight positive or negative perturbations
of the inclination angle φ = 0. For clarity and consistency, figures 12a–15a present one of the
symmetric solutions, while figures 12b–15b show the other. Since the two solutions are physically
equivalent, the discussion will focus on the results corresponding to the configuration shown in
figures 12a–15a.

Let us first focus on the evolution of the circulation cells for the path of increasing A, for
which figures 12a–13a show that, starting from rest and a conductive thermal field, an enclosure
with A = 3 develops three convection cells of roughly equal size—two rotating counterclockwise
and one clockwise at the centre. The isotherms closely follow this pattern, revealing that the
temperature distribution includes two plume-like structures at the merging lines of the convective
fluid rotations. Importantly, as expected for φ = 0, the circulation structures are symmetric for
the streamlines and anti-symmetric for the isotherms, with respect to the vertical centreline of
the enclosure. As the aspect ratio increases from A = 3 to A = 14, the number of cells remains
unchanged, consistent with the results of figure 11a, but their sizes evolve. For instance, from
A = 3 to A = 6, the central cell shrinks while the side cells enlarge. However, with further increases
in A to 10, 12 and 14, the trend reverses—the middle cell grows and merges with the outer cells,
eventually forming a single structure for A ∈ [15, 20]. Additional calculations (not shown here
but to be reported elsewhere) highlight key observations. First, although the initial reduction in
the central convective cell at A = 6 accounts for less than 20% of its original size, its subsequent
growth exceeds this reduction by 33%, and then follows it with an exponential trend in size until
a single circulation fills the entire enclosure. Second, the isotherms reflect these changes, as the
plumes gradually shift away from the centreline and weaken with increasing A, and by A = 14,
they disappear, producing a nearly stratified temperature field. This transition corresponds to
variations in ψc and Nu, as shown in figure 11b,c, for 3 ≤ A ≤ 14. Finally, the merging of the
central and side convection cells occurs in the manner discussed above because the central flow
circulation is stronger and more stable, since it is sustained by the circulation of the side cells,
whereas the side convective patterns weaken due to shear stresses at the walls, which slow
down the flow until it is overtaken by the dominant central circulation. The single convective
cell observed for 15 ≤ A ≤ 20 appears to be a highly stable steady-state condition, as indicated by
the constant values of ψc and Nu, in figure 11b,c.

Now the focus is on the evolution of the circulation cells for the path of decreasing A, for
which figures 14a–15a portray a completely different story. Beginning from rest and a conduction
thermal field, the enclosure of A = 20 develops 21 convection cells (cf. figures 11a and 14a),
resembling the well-known Rayleigh–Benard convection patterns. Approximately half of these
cells, which are of similar size, except for the two pairs near the sidewalls, rotate counterclockwise,
while the others rotate clockwise. As before, the isotherms in figure 15a clearly illustrate the
temperature distribution, revealing 20 plume-like structures along the merging lines of adjacent
convection patterns. In addition, the circulation structures are symmetric for the streamlines and
anti-symmetric for the isotherms with respect to the vertical centreline of the enclosure. When
the aspect ratio decreases to A = 19, a coalescence process begins, reducing the number of cells
to Ncells = 11. This reduction occurs as the two outermost cells merge into larger structures,
while the adjacent set of five cells also combine into a single circulation. In addition, the central
convection patterns remain unchanged. At A = 18, the number of fluid rotations further decreases
to Ncells = 5 due to the fact that not only do the five central cells emerge into a single structure
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but also the adjacent rotation patterns expand and progressively merge into the outer cells,
which disappear entirely by A = 17, leaving only three circulation structures. Between A = 17 and
A = 14, these three flow rotations persist but undergo continuous size adjustments; the central cell
enlarges, while the side cells shrink, ultimately coalescing into a single structure for A ∈ [3, 12].
The temperature field reflects these changes, with isothermal plumes decreasing in number while
expanding in size. Eventually, only two plumes remain and shift away from the centreline,
weakening as A decreases. By A = 12, the initially complex isothermal structures have decayed
into a stable, stratified temperature field.

It is important to note that, as previously discussed, the flow circulation structures farther
from the lateral walls and closer to the centre of the enclosure exhibit greater strength and
stability compared to those near the sidewalls. This directly influences the number and size of the
convection cells as the aspect ratio decreases. For instance, figure 14a illustrates that for enclosures
with aspect ratios ranging from A = 17 to A = 3, the stronger central flow circulation eventually
overtakes the weaker adjacent outer flow rotations and expands until it fills the entire enclosure.
The strength of this central convection cell is corroborated by the results of figure 11b,c, which
show approximately constant values for both ψc and Nu. However, the isotherms of figure 15a,
for A = 17, indicate that the energy transfer remains in progress, as the two plumes are still
positioned very close to each other. From A = 20 to A = 19, A = 18 and finally to A = 17, the
same mechanism governs the coalescence of the two outermost cells, which merge into a larger
structure. In each case, the stronger convective rotation eventually overtakes the weaker one,
a behaviour evident in the way the newly formed convection structure adopts the rotational
direction of the dominant cell. According to the figures, for A = 19, the resulting circulation closest
to the wall rotates clockwise. At A = 18, this convection cell initially shrinks and then transitions
into a counterclockwise rotation at A = 17. A similar pattern occurs in the circulation structures
adjacent to those near the wall, with the added effect that the number of cells rotating in one
direction exceeds those rotating in the opposite direction. This imbalance facilitates the merging
process in favour of the stronger circulation patterns. For A = 19, a set of three counter-rotating
and two co-rotating cells present at A = 20 merge into a single larger counter-rotating circulation.
Similarly, at A = 18, the central co-rotating fluid circulation results from the coalescence of a set
of four co-rotating and three counter-rotating cells, including the one at the centre of the cavity,
originally present at A = 19. These observations help explain the drastic variations in both ψc and
Nu, in figure 11b,c, for A = {20, 19, 18, 17}, as previously discussed.

6. Concluding remarks
Thermal natural convection in enclosures plays a fundamental role in a broad range of
engineering and environmental applications, and a complete knowledge of its underlying fluid
transport mechanisms is necessary since they have significant influence on design considerations
and the operational performance of related devices and equipment. Over the past six decades,
extensive research has been conducted to develop an understanding about the complex
features of natural convection in these systems using analytical and numerical techniques
for various geometries, including the inclined, slender, rectangular design. Despite significant
advancements, most studies on slender enclosures have focused on unicellular convective
motion, providing valuable insights into the multiplicity and stability of the corresponding
solutions. However, strong interplay among geometry, boundary conditions and inclination
angle, in these configurations, introduces significant complexity, often giving rise to intricate and
unexpected flow patterns.

In the present work, we have considered the analysis of the fluid flow and heat transfer
characteristics of thermal natural convection, of air, in slender, inclined enclosures, with emphasis
on the existence of uni- and multi-cellular steady states. By implementing an integrated approach
based on the traditional parallel-flow approximation, along with comprehensive finite difference
simulations of the two-dimensional governing equations, the influence of inclination angle and
aspect ratio on the emergence of multiple solutions, and the transitions between different flow
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regimes, has been examined in detail, for inclination angles in the range −180◦ <φ < 180◦, aspect
ratios in 3 ≤ A ≤ 20 and Rayleigh numbers in the range 720 ≤ Ra ≤ 105.

Using the procedure, along with the concepts of stream function at the centre of the enclosure
ψc and the Nusselt number Nu at the vertical centreline, supplemented by detailed accounts of
the flow and temperature fields, the results indicate that multiple steady states, either unicellular
and/or multi-cellular, are possible within specific inclination angles, aspect ratios and Rayleigh
numbers above the critical. From a mathematical perspective, these results highlight the nonlinear
nature not only of the incompressible fluid mechanics equations but also of the natural convection
process itself and demonstrates the crucial role of the initial conditions in determining the
final state of the system. In addition, the inherent symmetry of the governing equations is
demonstrated by the resulting values ofψc and Nu, and the flow and temperature patterns, which,
from a physical perspective, represent two symmetric, physically valid steady-state solutions
corresponding to opposite directions of circulation. This symmetry is an intrinsic property of the
system and is entirely independent of the position of an observer standing either in front of or
behind the enclosure.

The results for an enclosure of fixed aspect ratio (in the present case, A = 4) and varying
inclination angle φ confirm what other investigations have reported in the past for this and
similar systems; i.e. that for Rayleigh numbers above the critical value, multiple steady states
exist within a specific range of φ around the horizontal configuration, whereas outside this range,
only one steady-state solution—corresponding to unicellular circulation—is possible. However,
for a horizontal configuration, depending on the initial conditions, the present results show
that either unicellular or multi-cellular circulations, of which the three-cellular solution is the
natural condition, is possible. It is to note that this natural versus antinatural motion/condition
is referred in this way depending on whether the steady-state solution is obtained by starting—
respectively—from a conduction temperature field with the fluid being at rest or not. On the other
hand, for a horizontal enclosure (φ = 0) and varying aspect ratio A, with a Rayleigh number well
above the critical value, the results from this analysis demonstrate that two distinct pathways are
possible, revealing significant differences in the steady-state solutions, which depend not only
on the enclosure geometry but also on the initial conditions. The results demonstrate that, along
the path of increasing A, an initial three-cell convection structure collapses into a single large
circulation. Conversely, for the path of decreasing A, a system starting with a solution with 21
convection cells, progressively coalesce into larger structures, eventually stabilizing into a single
convective circulation. The observed differences between the two paths highlight the existence of
hysteresis, where the final convection pattern depends on the sequence of changes in the aspect
ratio rather than exclusively on the geometric configuration.

Furthermore, the solutions presented here demonstrate that, regardless of the path taken for
aspect ratio, the values of ψc and Nu correlate strongly with the number of resulting convection
cells and their relative size, with significant fluctuations occurring during transitions between
different circulation patterns. The qualitative analysis of streamlines and isotherms further
confirms that the dominant convection structure results from the competition between stronger
central cells and weaker peripheral ones, ultimately determining the stability of the flow. Finally,
the fact that both unicellular and multi-cellular solutions were reached using a time marching
technique is numerical evidence of the linear stability of the results. Thus, whenever linearly
stable multiple steady states are possible, the final solution is determined uniquely by the initial
conditions. If the basin of attraction of any linearly stable steady-state solution is sufficiently large,
then the initial conditions leading to it can then be found, and this will be pursued and reported
in the future.
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Appendix A

(a) Natural solution (C sinφ > 0)
Integration of equation (4.3a) gives rise to

ψ(y) = c1 cos ey cosh ey + c2 cos ey sinh ey + c3 sin ey cosh ey

+ c4 sin ey sinh ey + 1 + C cotφ
C

, (A 1)

and, by using the boundary conditions equations (4.5), the above constants become

c1 = − (1 + C cotφ)(sin(e/2) cosh(e/2) + cos(e/2) sinh(e/2))
C(sin(e/2) cos(e/2) + sinh(e/2) cosh(e/2))

, c2 = 0 (A 2a)

and

c3 = 0, c4 =
(

sin(e/2) cosh(e/2) − cos(e/2) sinh(e/2)
sin(e/2) cosh(e/2) + cos(e/2) sinh(e/2)

)
c1. (A 2b)

The final solution is then given by equation (4.8) of §4b(i). Using a similar process, integration of
equation (4.3b) leads to

η(y) = C
∫
ψ(y) dy + c5y + c6. (A 3)

By applying conditions equation (4.6) and (4.7), the constants become c5 = −1 and c6 = 0. The final
solution for η(y) is equation (4.10) of §4b(i).

(b) Antinatural solution (C sinφ < 0)
For the case in which C sinφ ≤ 0, integration of equation (4.3a) gives rise to

ψ(y) = c1 cos by + c2 sin by + c3 cosh by + c4 sinh by + 1 + C cotφ
C

. (A 4)

By using the same boundary conditions equation (4.5), as in the previous case, the above constants
become

c1 = − (1 + C cotφ)(sinh(b/2))
C(sin(b/2) cosh(b/2) + cos(b/2) sinh(b/2))

, c2 = 0 (A 5a)

and

c3 = sin(b/2)
sinh(b/2)

c1, c4 = 0, (A 5b)

with the final solution being now equation (4.13) of §4b(ii). As in the previous section, integration
of equation (4.3b) leads to

η(y) = C
∫
ψ(y) dy + c5y + c6, (A 6)

where by applying conditions equation (4.6) and (4.7), the constants obtain the values c5 = −1 and
c6 = 0. Again, the final solution of η(y) is equation (4.15) of §4b(ii).
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(c) Horizontal enclosure (φ = 0)
In this specific case, the model equations (4.3d) and (4.3b), along with the boundary conditions,
reduce to

d4ψ

dy4 = RaC; ψ(±1/2) = 0;
dψ
dy

(±1/2) = 0; (A 7a)

and
d2η

dy2 − C
dψ
dy

= 0; η(0) = 0;
dη
dy

∣∣∣∣
1/2

= −1. (A 7b)

The solutions are now simple polynomials, given as

ψ(y) = RaC
y4

24
+ c1

y3

6
+ c2

y2

2
+ c3y + c4 (A 8)

and

η(y) = RaC2

24

(
y5

5
− y3

6

)
+ c5y + c6, (A 9)

with the following values for the constants:

c1 = 0; c2 = −RaC
24

; c3 = 0; c4 = RaC
384

; c5 = RaC2

384
− 1; c6 = 0.

From these, the final solutions are

ψ(y) = RaC
24

(
y4 − y2

2
+ 1

16

)
(A 10)

and

η(y) = RaC2

24

(
y5

5
− y3

6
+ 1

16

)
− y. (A 11)

By substituting equations (A 10) and (A 11) into condition equation (4.4), we obtain the
equation for C, from which the constant C can be written explicitly as

C = 0 or C = ± 6
Ra

√
14(Ra − 720), (A 12)

thus leading to explicit expressions for both ψc and Nu:

ψc = RaC
384

and Nu = 720
720 − RaC2 . (A 13)

(d) Vertical cavity (φ = 90◦)
In the case of φ = 90◦, equations (4.3a) and (4.3b), along with the boundary conditions
equations (4.5), (4.6) and (4.7), reduce to

d4ψ

dy4 + Ra
dη
dy

= 0; ψ(±1/2) = 0;
dψ
dy

(±1/2) = 0 (A 14a)

and
d2η

dy2 − C
dψ
dy

= 0; η(0) = 0;
dη
dy

∣∣∣∣
1/2

= −1, (A 14b)

for which the general solution for ψ is

ψ(y) = c1 cos ey cosh ey + c2 cos ey sinh ey + c3 sin ey cosh ey + c4 sin ey sinh ey. (A 15)

By using the above boundary conditions, the constants become

c1 = − (sin(e/2) cosh(e/2) + cos(e/2) sinh(e/2))
C(sin(e/2) cos(e/2) + sinh(e/2) cosh(e/2))

, c2 = 0 (A 16a)
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and

c3 = 0, c4 =
(

sin(e/2) cosh(e/2) − cos(e/2) sinh(e/2)
sin(e/2) cosh(e/2) + cos(e/2) sinh(e/2)

)
c1, (A 16b)

thus leading to the final solution for ψ(y) as

ψ(y) = −PB

2e

[
(1 − ε)

{
sin

e
2

sinh
e
2

− sin ey sinh ey
}

+ (1 + ε)
{

cos
e
2

cosh
e
2

− cos ey cosh ey
}]

. (A 17)

Following the processes outlined in the previous sections of this appendix, the solution to the
energy equation and the boundary conditions of equations (A 14d) and (A 14b) is

η(y) = C
∫
ψ(y)dy + c5y + c6, (A 18)

with c5 = −1 and c6 = 0. The final expression for η(y) is

η(y) = CPB

2e2 {sin ey cosh ey + ε cos ey sinh ey}. (A 19)

In the aforementioned solutions, the constants e, ε and PB are, respectively,

e =
(

Ra C
4

)1/4
; ε = cot

e
2

tanh
e
2

(A 20a)

and

PB = − 2e
C{(1 + ε) cos(e/2) cosh(e/2) + (1 − ε) sin(e/2) sinh(e/2)} . (A 20b)

Again, an equation for the constant C is given by the condition equation (4.4) as

CP2
B

16e3

[
(ε2 + 2ε − 1) cos e sinh e + (−ε2 + 2ε + 1) sin e cosh e

]
− εCP2

B
4e2 − C = 0. (A 21)

The transcendental equations (A 20d), (A 20b) and (A 21) have to be simultaneously solved again
for the unknowns e, PB and C, using the Newton–Raphson scheme. It is always possible to find
real values of the constants for any Ra and φ. The stream function and temperature fields are then
known from equations (A 17) and (A 19).
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