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Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Sample #1. Let R denote the set of real numbers, and let Q denote

the set of rational numbers.

Define f : R → R by

f(x) =

1 if x ∈ Q

0 if x /∈ Q

Prove that for all a ∈ R, we have that f is not continuous at x = a.

Proof. By contradiction. Suppose f is continuous at x = a. Then for

any ϵ > 0, there exists δ > 0 such that

|f(x)− f(a)| < ϵ

whenever

|x− a| < δ.

Choose ϵ0 = 1. If a ∈ Q, then there exists x ∈ R \Q such that

|x− a| < δ

by the density of the irrational numbers. Thus we have

|f(x)− f(a)| = 1 ≥ ϵ0.

It follows that f is not continuous at x = a. An analogous argument

works in the case that a is irrational. □

Sample #2. Use the definition of limits to show that

lim
n→∞

1

(n+ 1)2
= 0.
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Proof. Let ϵ > 0. We must find N ∈ N such that∣∣∣∣ 1

(n+ 1)2
− 0

∣∣∣∣ < ϵ

whenever n ≥ N . Observe that this is equivalent to

1

(n+ 1)2
< ϵ.

To find N , observe that the Archimedean property of the reals tells us

that for ϵ > 0, there exists N ∈ N such that

1

ϵ
< N.

Next, we observe that for n ∈ N, we have

n < n+ 1 < (n+ 1)2.

Thus, whenever n ≥ N , we will have

1

ϵ
< (n+ 1)2,

which we may rewrite as

1

(n+ 1)2
< ϵ.

It follows that
1

(n+ 1)2
→ 0.

□

Sample #3. Let {xn} and {yn} be bounded sequences in R. Show

that

lim inf(xn + yn) ≥ lim inf xn + lim inf yn.

Proof. Because {xn} and {yn} are bounded sequences, so is {xn + yn},
so all the lim infs here exist.
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Let L = lim inf(xn + yn). Let Lx = lim inf xn and Ly = lim inf yn. We

will show that L ≥ Lx + Ly.

Let ϵ > 0. Then there exists Mx ∈ N such that if n ≥ Mx, then

xn ≥ Lx− 1
2
ϵ. Similarly, there exists My ∈ N such that if n ≥ My, then

yn ≥ Ly − 1
2
ϵ.

Let M = max{Mx,My}. It follows that if n ≥ M , then

xn + yn ≥ (Lx −
1

2
ϵ) + (Ly −

1

2
ϵ) = Lx + Ly − ϵ.

Because ϵ was arbitrary, it follows that L ≥ Lx + Ly. □

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

Sample #4. Show that the function

f(x) =

1 if x ∈ Q

0 otherwise

is not Riemann integrable on [0, 1].

Proof. It suffices to show that f is not Darboux integrable on [0, 1]. For

this, it suffices to find ϵ0 such that for any partition {xi}ni=0 of [0, 1],

the upper and lower Darboux sums satisfy

S − s ≥ ϵ0.

Let {xi}ni=0 be an arbitrary partition of [0, 1], so that

0 = x0 < x1 < · · · < xn−1 < xn = 1.
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Recall that the rational numbers are dense in R. Thus, for any pair

xi−1, xi, there exists a rational number ri with

xi−1 < ri < xi.

Since ri is rational, we have f(ri) = 1.

In the same way, the irrational numbers are also dense in R. Thus, for
any pair xi−1, xi, there exists an irrational number qi with

xi−1 < qi < xi.

Since qi is irrational, we have f(qi) = 0.

Next, we observe that

mi = inf
xi−1≤x≤xi

f(x) ≤ 0,

Mi = sup
xi−1≤x≤xi

f(x) ≥ 1.

From this, you should be able to check that

S =
n∑

i=1

Mi(xi − xi−1) ≥ 1,

s =
n∑

i=1

mi(xi − xi−1) ≤ 0.

Thus S − s ≥ 1. If we now choose ϵ0 =
1
2
, it follows that

S − s ≥ ϵ0

for any partition. The desired result follows. □

Sample #5. Let µ∗ be Lebesgue outer measure on R. Show that

µ∗(Q) = 0.

Proof. Since Q is countable, we may write

Q = {x1, x2, x3, x4, . . .}.
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Now let ϵ > 0, and let In be the interval

In =
(
xn −

ϵ

2n+1
, xn +

ϵ

2n+1

)
Then for each n ∈ N, we will have

xn ∈ In,

so that

Q ⊂
∞⋃
n=1

In.

Note that the length of this interval is

ℓ (In) =
ϵ

2n+1
−
(
− ϵ

2n+1

)
=

ϵ

2n
,

which implies that

m∗(Q) <
∞∑
n=1

ℓ(In)

=
∞∑
n=1

ϵ

2n

= ϵ.

Since ϵ > 0 was arbitrary, it follows that m∗(Q) = 0. □

Sample #6. Consider the measure space (R,B, µ), where B is the

Borel σ-algebra, and µ is Lebesgue measure. For b,m ∈ R, let f : R →
R be the linear function f(x) = mx+ b. Show that f is measurable.

Proof. First, if m = 0, then f is a constant function, which is measur-

able. So we assume from here on out that m ̸= 0.

By definition, f is measurable if, for any α > 0, the set

{x ∈ R : f(x) > α}

is measurable. But this holds for any x which satisfies

mx+ b > α.



7

From here, we must consider 2 different cases.

Case 1: m > 0. This case, the inequality above will be satisfied for

all x satisfying

x >
α− b

m
,

which is the interval
(
α−b
m

,∞
)
, which is a Borel set.

Case 2: m < 0. In this case, the inequality above will be satisfied for

all x satisfying

x <
α− b

m
,

which is the interval
(
−∞, α−b

m

)
, which is a Borel set.

Thus, in either case, the set {x ∈ R : f(x) > α} is measurable, so that

f is measurable. □

Sample #7. Let µ be the measure defined on the power set of R given

by

µ(A) =

1 if 0 ∈ A,

0 otherwise.

If ϕ : R → R is a simple function, show that∫
R
ϕ dµ = ϕ(0).

Proof. By definition, if ϕ is a simple function, there exist constants

a1, . . . , an and disjoint sets A1, . . . , An ∈ P(R) such that

R =
n⋃

i=1

Ai

and

ϕ(x) =
n∑

i=1

aiχAi
.
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Moreover, by definition, we have∫
ϕ dµ =

n∑
i=1

aiµ(Ai).

Since the Ai are disjoint, there is a unique j ∈ {1, . . . , n} such that

0 ∈ Aj. Thus, the sum above reduces to∫
ϕ dµ = ajµ(Aj) = aj.

To complete the proof, we observe that

ϕ(0) =
n∑

i=1

aiχAi
(0)

= ajχAj
(0)

= aj.

This completes the proof. □


