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ABSTRACT 

Parkinson’s Tremor Detection in Patients Receiving Deep Brain Stimulation  

Using Apple Watch Accelerometer Data 

By  

Luis Felipe Martinez Sandoval 

 The work presented seeks to investigate and develop an algorithm capable of 

accurately detecting tremor in individuals with Parkinsons disease (PD) undergoing deep 

brain stimulation (DBS), which could be implemented into a closed loop system to help 

manage tremor in real time. Data used for the development and testing of this algorithm 

was collected from six patients using accelerometers from both an Apple Watch and a 

Medtronic Summit RC+S implantable pulse generator (IPG) during clinical trials. DBS 

intensity was adjusted across multiple levels to vary tremor severity. The developed 

algorithm aims to classify tremor during various physical activity states such as sitting, 

standing, walking, and texting. The developed algorithm relies on a frequency spectrum 

analysis of the streamed accelerometry data using a continuous wavelet transform and 

focuses on the 4-7 Hz frequency band and its harmonics. The performance of the 

algorithm was compared against the current gold standard for tremor detection in the PD 

research community, developed by Rune Labs, which provides an estimate of the degree 

of tremor in 1-minute windows. Ground truth on a higher time resolution was established 

using a combination of trial logs and visual inspection of the raw accelerometry data. 

Results during testing prove that the developed algorithm improves upon current PD 

tremor detection by increasing temporal resolution and can detect tremor during high 

activity state. 
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CHAPTER 1 

Motivation 

1.1 DBS Therapy and its Benefits 

Deep brain stimulation (DBS) is a neuromodulation therapy that is used to 

manage symptoms in individuals with neurological disorders that are accompanied by 

movement related symptoms [1]. One of the DBS’s primary uses is to help individuals 

with Parkinson’s disease (PD) manage their motor symptoms [2]. Some of the most 

common motor symptoms in individuals with PD include tremor, bradykinesia, muscle 

rigidity, impaired posture, and changes in speech [1] [3]. This is caused by degeneration 

in the basil ganglia brain structure but more specifically in the subthalamic nucleus and 

globus pallidus [2] [4]. This degeneration and loss of neurons cause dopamine levels to 

drop and movement related symptoms to present themselves [4].  There is no cure for PD 

but current treatments can manage symptoms. Dopamine replacement therapy is already 

in clinical use and typically administered through medications such as Levodopa, which 

is a compound that is converted to dopamine in the brain [5]. However, long term use of 

Levodopa can become less effective over time, can lead to unmanageable dyskinesia 

(abnormal postures and movements), and may contribute to symptoms such as cognitive 

impairment, depression, and restlessness when medication levels in the blood stream drop 

between doses [6][10]. Another option is medication like apomorphine, which directly 

stimulates dopamine receptors to mimic the effects of dopamine [7]. But like Levodopa, 

long term use of apomorphine can also lead to side effects such as nausea, injection site 

reactions, visual hallucinations, and worsening dyskinesia between doses [8] [9]. 

Managing PD symptoms with medication can also be inconsistent due to the 'wearing-off 
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effect', where the medication's effectiveness decreases as its levels in the bloodstream 

drop between doses [10]. Figure 1 shows the relationship between Parkinsons related 

symptoms and medication concentration in the blood stream. When these kinds of drug 

therapies become ineffective DBS may be recommended as an alternative treatment to 

individuals with PD to help manage their symptoms [11]. 

 
Figure 1. Relationship Between Medication Concentration in Blood Stream and 

Parkinsons Symptoms 
 

PD symptom management through DBS involves surgical intervention and 

requires electrodes to be implanted which deliver electrical impulses to specific areas of 

the brain. The procedure also requires implanting a pulse generator (IPG) under the skin, 

usually on the chest wall [12]. The IPG continuously delivers electrical impulses to the 

targeted brain structures typically the subthalamic nucleus and globus pallidus [13]. 

Targeting the subthalamic nucleus or the globus pallidus with electrical stimulation has 

shown to effectively reduce bradykinesia, rigidity, and tremor in individuals with 

Parkinson’s disease [14]. Unlike dopamine replacement therapy, which relies on 

increasing dopamine levels in the brain, DBS modifies neural signals and allows for a 

more consistent and personalized treatment option [15]. While DBS is primarily used to 
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treat neurological disorders and is FDA approved for managing Parkinson’s disease, 

essential tremor, and epilepsy, it has also shown promising results in treating conditions 

such as Tourette’s syndrome and treatment resistant depression in clinical trials [16] [17]. 

1.2 Current DBS Therapy Implementation 

 DBS therapy is applied to participants through dual bilaterally placed electrodes 

on the subthalamic nucleus and globus pallidus [18]. By applying electrical stimulation to 

these specific regions, DBS influences local field potential and modulates neural activity 

which in turn suppresses physical Parkinsons symptoms such as tremor and dyskinesia 

[18]. Biphasic pulses are applied to the implanted electrodes to maintain a safe charge 

balance between the electrodes and minimize risk to the tissue surrounding the electrodes 

[20]. The charge density present on the electrodes is designed to remain below 30
𝜇𝐶

𝑐𝑚2 by 

the manufacturer [21]. Figure 2 shows the general shape of the biphasic pulse.  

 
Figure 2. Biphasic Stimulation Pulse 

While there are over 42,000 combinations of amplitude, frequency, and pulse 

width for this device, the IPG must be programed by a physician to a prescribed set of 

parameters and cannot be dynamically adjusted as Parkinson’s symptoms present 

themselves [21]. This means that during a programming session it may appear the 



4 
 

individual has the optimal settings in place but if physical symptoms worsen or subside 

after the programming session the DBS cannot be adjusted to fit the individual’s current 

needs.  

While this type of therapy is revolutionary in managing Parkinsons symptoms, in 

its current implementation it is either on or off and does not have adaptive capabilities. 

Thus, the IPG needs occasional reprogramming, which is subjective, tedious, and has to 

be scheduled based on the physician’s availability.  Furthermore, applying DBS 

continuously with constant stimulation settings may be an inefficient use of energy at best 

and create unnecessary side effects at worst.  For this reason, a possible implementation 

of a closed loop system is being investigated.   

A recent study already demonstrated increased efficiency could be achieved while 

maintaining therapeutic efficacy by turning DBS on and off according to neural feedback 

[18]. Our long-term goal is to develop an adaptive DBS system that dynamically 

responds to physical Parkinson’s symptoms like tremor.  

Figure 3 shows the current open loop DBS implementation.  Medtronic developed 

a closed-loop DBS platform, the Summit RC+S implantable pulse generator (IPG), which 

has the capability to both stimulate the brain and acquire neural local field potentials as 

well as accelerometry data to potentially be used as feedback for closed-loop control.   

Clinical trials have demonstrated observe the efficacy of using the new Summit RC+S 

[18]. 
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Figure 3. Open Loop DBS Implementation 

 The Summit RC+S pulse generator operates similarly to the FDA approved 

Medtronic Intellis rechargeable implantable neural stimulator [19] but has the additional 

neurofeedback capabilities. Our investigation of developing a tremor detection algorithm 

that could be used in a closed-loop DBS therapy utilizes this Summit RC+S pulse 

generator and its capability to stream accelerometry data to a cloud server.  

1.3 Closed Loop DBS 

 Collaborators at Duke University have led clinical trials using the new Summit 

RC+S implantable pulse generator in Parkinson’s disease patients.  The RC+S offers new 

added functionality over the Medtronic Intellis neural stimulator, which is one of the 

FDA approved devices that is currently clinically in use. The new RC+S device offers 16 

channels which could be set as either inputs or outputs, which means that electrodes can 

be used to record neural activity or apply DBS. Another added feature of the Summit 

RC+S is that it has a built-in accelerometer which can be used to monitor an individual’s 

movement and potentially physical tremor episodes. The Summit RC+S also has 
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Bluetooth communication capabilities to transmit data to physicians and users [19]. With 

the device’s capabilities in mind, we will explore the viability of using the Summit RC+S 

built in accelerometer to detect tremor by developing a custom tremor detection 

algorithm. Also, since the Summit RC+S also has built in Bluetooth capabilities we will 

also explore the viability of using an Apple Watch alongside the Summit RC+S, since 

tremor usually presents itself in the extremities such as arms, hands, feet, and legs [22].  

 Figure 4 shows the closed loop configuration for which tremor detection relies on 

accelerometry provided by the Summit IPG. By using the Summit RC+S IPG, 

acceleration caused by an individual’s movement could be transmitted to an Apple Watch 

for processing through our tremor detection algorithm and detection results would be sent 

back to the Summit RC+S IPG. This would form a closed loop system where the Apple 

Watch provides constant feedback to the Summit RC+S IPG and indicates when the 

Summit RC+S IPG should apply DBS to suppress tremor. The tremor detection algorithm 

would detect key characteristics present in the accelerometry when tremor is present.  

  
Figure 4. Proposed Closed Loop DBS Scheme Using IPG Accelerometry 
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 A second closed loop configuration that could be implemented relies on using 

Apple Watch accelerometry as shown in Figure 5. In this second configuration an Apple 

Watch accelerometer is used to track hand movements. This configuration would depend 

on the detection algorithm being embedded in an iOS application specifically designed to 

analyze the accelerometry data. In this scheme, we would propose that the tremor 

detection is implemented in the Apple watch and tremor detection is transmitted to the 

Summit RC+S IPG via Bluetooth so that the Summit RC+S IPG would apply DBS as 

necessary.  This scheme would consume more power due to the need for Bluetooth 

transmission.  The integration of the accelerometer in the IPG in the first scheme would 

provide for a more efficient way to implement DBS using feedback from the integrated 

accelerometer and would also be more convenient for the user instead of the patient 

needing to wear an external device.  However, since tremor is typically more notable in 

the limbs when compared to the body and so we expect using accelerometry from the 

Apple Watch will produce more accurate detection [23].  

 
Figure 5. Proposed Closed Loop DBS Scheme Using Apple Watch Accelerometry 
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1.4 Thesis Objective Statement 

 In this thesis our efforts seek to develop and validate a novel algorithm for real-

time tremor detection in individuals with Parkinson’s disease undergoing deep brain 

stimulation using the Medtronic Summit RC+S implantable pulse generator. We will 

leverage accelerometry data from both a Medtronic Summit RC+S IPG and an Apple 

Watch to compare their viability in detecting tremor during various physical activity 

states including sitting, standing, walking, and texting. Furthermore, we will also 

compare the efficacy between both using short time Fourier transforms and continuous 

wavelet transforms as frequency analysis tools to detect tremor in the 4-7Hz range for 

both IPG and an Apple Watch accelerometry. This approach seeks to improve temporal 

resolution provided by the current gold standard established by StrivePD, which provides 

tremor percentage estimates over 1-minute windows, as well as improve StrivePD’s 

limitation when it comes to tremor detection during high activity states. The algorithm’s 

performance will be compared against StrivePD’s established tremor metric, with the 

goal of achieving comparable detection accuracy during low activity states, higher 

detection accuracy during high activity states, and overall higher temporal resolution for 

tremor detection. This work aims to lay the foundation for an adaptive closed-loop DBS 

system that dynamically adjusts DBS intensity in response to detected tremor. This will 

improve symptom management and potentially minimizing side effects of the long-term 

DBS exposure. 
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CHAPTER 2 

IPG and Apple Watch Accelerometry 

2.1 Experimental Protocol 

 Our Duke collaborators have designed and been conducting clinical trials to 

investigate the use of the Summit RC+S in closed-loop control of DBS and conduct a 

number of investigations into developing adaptive DBS algorithms.  All experimental 

methods used employed to conduct the research presented in this thesis were approved by 

the Duke University Internal Review Board. Six patient subjects with pharmaceutically 

refractive Parkinson’s disease (PD) received bilateral Summit RC+S DBS implants.  

Participants attend four types of post-operative visits after the Summit RC+S IPG has 

been implanted. The first kind is a clinical programming session where settings are 

adjusted to find the optimal setting for stimulation of the subthalamic nucleus and globus 

pallidus. The second are virtual home visits which are attended by study personnel to 

observe participants in their home environment through a video conference. During these 

sessions DBS settings can be adjusted using a Surface tablet as a control unit. The virtual 

sessions can also be conducted as unattended home visits where the study personnel 

collect data through the Surface tablet control unit but do not hold a video conference. 

During these unattended sessions, participants are asked to keep the data streaming on, so 

that data can be acquired continuously up to 24 hours a day. Data collected during this 

time is transmitted then transmitted to the study personnel and uploaded to the Box.com 

servers [18] [21].  These data can then be analyzed offline to develop feedback control 

algorithms and understand how different stimulation protocols are affecting subjects.  
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The fourth kind of post-op visit is a day-long, in-person visit at a medical facility. 

These begin about six months after the Summit RC+S IPG has been implanted and the 

DBS settings have been optimized. The data collected during these visits is what was 

used for the development of our tremor detection algorithm. Figure 6 shows the data 

collection pipeline for the data used in the development our tremor detection algorithm 

[18] [21].  

 
Figure 6. Data Collection Pipeline for Current Investigation 

These day long visits occur on a monthly basis and multiple sessions are held on 

the same day, typically ranging from two to three sessions. Both Apple Watch and IPG 

accelerometry data is collected during these sessions. Each session of accelerometry data 

collection consists of 30 seconds of sitting, followed by 30 seconds of standing, then 30 

seconds of walking, next is 30 seconds of sitting, and finally 30 seconds of texting. The 

order and time of execution of these motor activities is identical for each trial. The 

difference is that between trials the DBS intensity is lowered from 100% of the 

participants prescribed setting down to 80%, 60%, or 40% [18] [21]. Our tremor 

detection algorithm was developed using approximately 100 recorded sessions from five 
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participants in the trials.  One of the six participants was unable to carry out the monthly 

in-clinic sessions.  

Data collection and transfers from both the Apple Watch and Summit RC+S 

follow HIPPA compliant guidelines during all postop visits. In the case of the Apple 

Watch, the StrivePD application is used to anonymize the participants’ personal health 

information and will be further discussed in section 2.2; Summit RC+S data collection is 

further discussed in section 2.3 [18] [21]. 

2.2 Apple Watch Hardware and Data Acquisition 

 The Apple Watch used during the clinical trial by participants was a typical Apple 

Watch that could be purchased on the consumer market. To collect the accelerometry data 

the Apple Watch’s built in tri-axial accelerometer was used, the Apple Watch 

accelerometer axis orientation is shown in Figure 7 [27].  

 
Figure 7. Apple Watch Accelerometer Axes 

To collect the accelerometry data a custom application was created by Rune Labs 

called StrivePD and is available on the Apple AppStore. Transmission of the data from 

the Apple Watch to an iPhone is handled by the Apple security protocol and is encrypted 

before being streamed to the participant’s iPhone [24]. Data transfer from the iPhone to 

the Rune Labs servers is handled by the StrivePD application and removes personal 
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identifiable health information before transmission to the Rune Labs servers. The 

StrivePD application also collects relevant patient-entered information such as 

medication, symptoms, and side effects [28]. The accelerometry data collected by the 

StrivePD application is the data used in the development of the tremor detection 

algorithm presented in this thesis. 

 To access the collected Apple Watch accelerometry data a script was developed 

using Python (Appendix A). This script utilizes the Rune Labs API to access the data 

after obtaining an access token. The raw Apple Watch accelerometry data available from 

Rune Labs is sampled at 50Hz and is stored using a Unix timestamp, also called Epoch 

time. Unix time refers to how much time has passed since January 1, 1970, 00:00:00 

UTC [25]. The time stamps are formatted as follows: seconds.milliseconds. The Duke 

University research team provided timestamps for trial sessions and participants activity 

states, which were used to retrieve relevant data and synchronize the Apple Watch data 

with the IPG data using the Rune Labs API [26].  

2.3 IPG Hardware and Data Acquisition  

 As previously mentioned, the Summit RC+S IPG has the added capability of 

recording and streaming accelerometry data when compared to the current Medtronic 

Intellis implanted neural stimulator.  The Summit RC+S acquires and streams local field 

potentials and neural activity, along with accelerometry data from its built-in 

accelerometer [18]. For the development of our detection algorithm, we only focused on 

the streamed accelerometry data.  Figure 8 shows the accelerometer axis orientation for 

the Summit RC+S IPG [19].  
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Figure 8. IPG Accelerometer Axes 
 Accelerometry data used in the development of our tremor detection algorithm 

was collected during day long research visits at a designated facility. Accelerometry data 

was collected using varying levels of DBS intensity, namely 100%, 80%, 60%, or 40% of 

the individuals DBS prescribed settings. These variations in DBS intensity evoke varying 

levels of tremor during different activity states since they are below the prescribed levels.  

 Data streamed by the Summit RC+S IPG is collected by the research staff and 

cleared of any personal identifiable before it is uploaded to a Box.com server where it can 

be accessed by individuals with the appropriate credentials. Accelerometry data generated 

by the Summit RC+S IPG however does not have a time stamp for each individual 

sample. Instead, the accelerometry data is stored in batches of 8 samples and is 

transmitted with a time stamp of when the whole 8 sample packet was generated. The 

time stamps given are also in Unix time like the Apple Watch data but is formatted as 

millisecond passed since January 1, 1970, 00:00:00 UTC [25]. To assign timestamps to 

individual samples within each packet, the time difference between sequential packet 
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timestamps was calculated. This difference is then divided by 8 to interpolate timestamps 

for each sample within the packet. 

2.4 Clinical Trial Participant Pool 

 The participant pool for the clinical trials consists of 5 individuals with a range of 

Parkinsons related symptoms and prescribed DBS settings.  Qualitative clinical 

assessments performed before the study will allow us to verify the accuracy of our tremor 

detection algorithm.  We performed tremor detection on the data naïve to any clinical 

assessments; after performing tremor detection, we compared our results with the clinical 

assessments.  Thus, here we describe the participants’ symptoms and clinical observations 

of symptoms and amount and severity of tremor.  Two participants (P1 and P2) 

experience dyskinesia as their dominant Parkinson’s symptom and overall do not 

experience tremor even when the prescribed DBS intensity is reduced. For this reason, 

accelerometry data collected from P1 and P2 at the highest DBS intensity will be used to 

establish baseline accelerometry recordings without tremor.  

 Participant 3 (P3) experiences tremor as one of their dominant Parkinson’s 

symptoms and experiences tremor during all physical states observed in the clinical trials. 

P3 also experiences varying levels of tremor where symptoms become more severe as 

DBS intensity is decreased. Participant 4 (P4) generally experiences tremor during the 

sitting, standing, and fine motor movement portions of the clinical trials. P4 typically 

does not exhibit tremor symptoms during physical activity. Participant 5 (P5) also 

experiences tremor during all physical activity stated but generally less during physical 

activity. Table 1 lists the 5 mentioned participants and their dominant Parkinsons 
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symptom. DBS intensity during the clinical trials varies as 100%, 80%, 60%, or 40% 

depending on the trial and are percentages of the participants prescribed DBS intensity. 

Table 1. Participant Number and Dominant Parkinsons Symptom 
Participant Number Dominant Parkinsons Symptom 

P1 (AC27) Dyskinesia 
P2 (E395) Dyskinesia 

P3 (RZCH) Tremor 
P4 (NU5U) Tremor 
P5 (6KOZ) Tremor 

 
2.5 DBS Intensity and Tremor Severity 

 By varying the level of DBS intensity as a percentage of the participants 

prescribed DBS settings, different levels of tremor intensity could be elicited during the 

clinical trials [21]. Tremor can be observed visually in the accelerometry signals with 

careful examination.  Figure 9 and Figure 10 demonstrates the Apple Watch and IPG 

accelerometry data collected from P3 during clinical trials and DBS intensity set to 100% 

of the prescribed levels. As expected, the acceleration recorded during periods of sitting, 

standing, and texting are relatively flat for both the Apple Watch and IPG recordings. 

This means that the participants’ hands and torso are not moving during these periods as 

expected since they are not moving and have DBS at its prescribed setting. Furthermore, 

during walking large clean regular oscillations at a low frequency of the walking gait can 

be observed. 
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Figure 9. Apple Watch Accelerometry (P3, 100% DBS)  
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Figure 10. IPG Accelerometry (P3, 100% DBS) 

By reducing the DBS intensity to 60% of the prescribed levels we can see in the 

Apple Watch accelerometry shown in Figure 11 that there is much more movement 

detected during the sitting, standing, and texting physical states since these portions of 

the recordings are no longer as flat as the recordings shown in Figure 9. While we don’t 

see these significant difference when comparing the IPG accelerometry, Figure 10 and 

Figure 12, it would be expected considering tremor is most notable in the extremities. 



18 
 

This would suggest that DBS was indeed suppressing PD symptoms, and reducing DBS 

settings does in fact allow physical Parkinson’s symptoms to reemerge.  

 
 Figure 11. Apple Watch Accelerometry (P3, 60% DBS)   
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Figure 12. IPG Accelerometry (P3, 60% DBS) 

When the DBS intensity is further reduced to 40% of the prescribed levels for P3 

we can more effectively see the relationship DBS intensity has to physical Parkinson’s 

symptoms and the accelerometry data recorded as shown in Figure 13 and Figure 14. 

When DBS intensity is reduced to 40%, we get much more movement when compared to 

100% DBS intensity. In a further section we will discuss and show how this increase in 

acceleration is in fact tremor and what has been done to detect it using the developed 

detection algorithm. It should also be noted that the examples given in this section of 



20 
 

DBS intensity and acceleration recordings were taken during clinical trials occurring on 

the same day and in quick succession of one another.  

 
Figure 13. Apple Watch Accelerometry (P3, 40% DBS) 
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Figure 14. IPG Accelerometry (P3, 40% DBS) 
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CHAPTER 3 

Tremor Detection Algorithm 

3.1 Tremor Frequency Band 

 Our detection algorithm leverages our knowledge of spectral characteristics of 

tremor in PD.  As outlined by Dongning Su in her work [29] characterizing tremor in 

individuals with Parkinson’s disease and Multiple System Atrophy, individuals with 

Parkinson’s disease who experience resting and postural tremor exhibit spectral peaks in 

the 4–7 Hz range in accelerometry data. Additionally, a frequency analysis revealed the 

presence of harmonics in 75% of cases [29]. In fact, other studies have also concluded 

that Parkinson’s tremor occurs around the 4-7 Hz range and the frequency spectrum of 

the accelerometry includes harmonics of the tremor’s fundamental frequency [30] [31] 

[32]. In general, Figure 15 shows an illustration of what we expect to see in a frequency 

spectrum analysis of our accelerometry data if tremor is present. As previously described 

if tremor is present there should be a major peak in the acceleration frequency spectrum 

within the tremor band, 4-7Hz, and smaller peaks at the tremor’s fundamental frequency 

harmonics. Harmonics of the tremors fundamental frequency are defined as n multiples 

of first major peaks frequency.  
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Figure 15. Example of Expected Frequency Spectrum When Tremor is Present 

 

3.2 Frequency Analysis Methods 

 To perform the necessary frequency spectrum analysis on both the Apple Watch 

and IPG accelerometry data we explored two methods which are widely used for signal 

processing:  Short Time Fourier Transforms (STFT) [33] [34] and Continuous Wavelet 

Transforms (CWT) [35] [36] [37] both implemented using the built-in MATLAB 

functions (stft and cwt).  

The STFT was carried out with 1.5-second Hamming windows and 70% overlap 

with a frequency resolution of 0.39 Hz (or 65 frequency points).  The Hamming window 

was selected over the rectangular window to reduce the amount of spectral leakage 

observed and measured in the signal’s spectrogram [38]. A duration of 1.5 second 

windows was selected to give the spectrogram a fair balance of temporal resolution, 

making it easier to localize when tremor is occurring along the time axis. In MATLAB a 

Hamming window is defined with the following function [39]. 
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𝑤(𝑛) = 0.54 − 0.46 cos (2𝜋
𝑛

𝑁
) , 0 ≤ 𝑛 ≤ 𝑁 

As mentioned, the window that is being used is a Hamming window due to its 

ability to reduce spectral leakage when compared to a rectangular window and could be 

seen in Figure 16. The frequency response of the Hamming window is shown in Figure 

17. 

 
Figure 16. Hamming Window Used for STFT 
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Figure 17. Hamming Window Frequency Response 

An overlap of 70% was selected to further increase the temporal resolution of the 

STFT. We then computed the power in the 4-7Hz spectral band.  With these parameters 

set, the estimate of spectral power in the accelerometry signal was updated roughly every 

0.45 seconds. Figure 18 provides a visual representation of what this windowing process 

looks like in the time domain across the accelerometry data we are analyzing.  

 

Figure 18. Short Time Fourier Transform Windowing 

To perform the STFT, the typical function used is shown below. In MATLAB this 

is implemented using the stft function and is solved algorithmically [33] [34]. 
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𝑆(𝑡, 𝑓) = ∫ 𝑥(𝜏)𝑤(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏
∞

−∞

 

 While this formulation represents the STFT in continuous time we are dealing 

with discrete signals and a more accurate formulation would be as follows [34]. 

𝑆[𝑚, 𝑘] = ∑ 𝑥[𝑛]𝑤[𝑛 − 𝑚]

𝑁−1

𝑛=0

𝑒− 
𝑗2𝜋𝑘𝑛

𝑁  

 In both the continuous and discrete STFT 𝑥(𝜏) and 𝑥[𝑛] represent the signal and 

𝑤(𝜏 − 𝑡) and 𝑤[𝑛 − 𝑚] represent the window being used while 𝑒−𝑗2𝜋𝑓𝜏 and 𝑒− 
𝑗2𝜋𝑘𝑛

𝑁  are 

the basis function in their respective domains.  

 In MATLAB the cwt function was used to calculate the CWT for our 

accelerometry data and calculates the wavelet transform using the following function 

[35]. 

𝐶𝑊𝑇(𝑡, 𝑠) =
1

𝑠
∫ 𝑥(𝜏)𝜓∗ (

𝜏 − 𝑡

𝑠
) 𝑑𝜏

∞

−∞

 

 Here 𝑥(𝜏) is the input signal, 𝜓(𝜏) is the mother wavelet used for the transform 

but in our case a Morse wavelet was selected and is shown as 𝜓∗ (
𝜏−𝑡

𝑠
) since we will be 

using the complex conjugate of various shifted and scaled versions of the mother wavelet 

as the filter bank. The Morse mother wavelet is defined in the frequency domain by the 

following function [40]. 

Ψ𝑃,𝛾(𝜔) = 𝑈(𝜔)𝑎𝑃,𝛾𝜔
𝑃2

𝛾 𝑒−𝜔𝛾 

𝑃2 = 𝛽𝛾 

 In Ψ𝑃,𝛾(𝜔), 𝑈(𝜔) represents a unit step function also known as a Heavyside step 

function, 𝑎𝑃,𝛾 is the normalization constant defined by MATLAB’s L1 normalization, 𝑃2 
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is equal to the time bandwidth product where 𝛾 characterizes the wavelets symmetry and 

𝛽 characterizes the wavelets compactness [40]. For the Morse wavelet filter bank, a time 

bandwidth of 60 was selected. Using these parameters for the Morse mother wavelet and 

shifting and rescaling it we get the filter bank shown on Figure 19 in the frequency 

domain. Ultimately, the CWT will convolve this filter bank with our accelerometry data 

and should provide us with a scalogram showing us the power content of our signal at 

different frequencies. 

 
Figure 19. Wavelet Transform Filter Bank 

3.3 Accelerometry Frequency Spectrum 

To compare and analyze the frequency localization capabilities of the STFT and 

CWT previously mentioned we can perform both frequency spectrum analyses on the 

Apple Watch and IPG accelerometry. Figure 20 shows the data collected from P4 with a 

DBS intensity of 60%. From the trial logs provided we know that this participant 

experienced tremor during the sitting and standing portion of the trial. With this 
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information in mind, we expect frequency spectrum peaks in the 4-7Hz range during the 

sitting and standing portions of the trial. 

 
Figure 20. Apple Watch and IPG Accelerometry (P4, 60% DBS) 

 An STFT and CWT were applied to the three accelerometry axes of the Apple 

Watch and IPG. For each transform, the results were combined by calculating the 𝐿2 

norm across the axes using the following approach. 

𝑊𝐿2
= √|𝑊𝑥|2 + |𝑊𝑦|

2
+ |𝑊𝑧|2   

 𝑊𝑥, 𝑊𝑦, and 𝑊𝑧 are the results of the CWT for each accelerometry axis. After 

taking the 𝐿2 norm of the CWT results across all three accelerometry axis the power was 

calculated on a decibel scale by using the following calculation.  

𝑊𝐿2,𝑑𝐵 = 20𝑙𝑜𝑔10(𝑊𝐿2
) 

 However, since we are comparing different frequency analysis techniques and 

different devices to collect the accelerometry data we will normalize 𝑊𝐿2,𝑑𝐵 using the 

formulation shown below to compare peak prominence on the same scale. This process 

will normalize the dB scale to values between 0 and 1.  

𝑊𝐿2,𝑑𝐵,𝑛𝑜𝑟𝑚 =
𝑊𝐿2,𝑑𝐵 − 𝑊𝐿2,𝑑𝐵(𝑚𝑖𝑛)

𝑊𝐿2,𝑑𝐵(𝑚𝑎𝑥) − 𝑊𝐿2,𝑑𝐵(𝑚𝑖𝑛)
 



29 
 

Figure 21 shows the normalized power in P4’s IPG accelerometry data using both 

STFT and CWT. Analyzing the normalized spectrogram and scalogram of the IPG 

accelerometry we can see that the normalized CWT scalogram appears to provide more 

distinct markers of power concentration across all frequency bands. However, there is no 

clear distinction of periods where tremor is present even though we know that there 

should be tremor during the sitting and standing phases of this trial. Periods in which we 

expect tremor to be present are outlined in red on Figure 21. 

 
Figure 21. IPG, STFT vs CWT (P4, 60% DBS) 

 Now if we observe the spectrogram and the scalogram of the Apple Watch 

accelerometry, Figure 22, we can see there appears to be markers of power concentration 

within the tremor frequency band, 4-7 Hz. Initial observations would suggest that the 

Apple Watch is more effective at capturing tremor than the IPG. Furthermore, Figure 22 

would also suggest that using a CWT is more effective at capturing and localizing the 

frequency spectrum of the collected data. 
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Figure 22. Apple Watch, STFT vs CWT (P4, 60% DBS) 

 Examining a time slice where tremor is present during standing in both the STFT 

spectrogram and CWT scalogram, Figure 23, we observe that the CWT scalogram offers 

better frequency localization due to its more distinct peak between the 4-7Hz range. In 

general, it appears peaks have a greater prominence and width when using a CWT 

compared to an STFT. 

 
Figure 23. STFT vs Wavelet Frequency Spectrum at 60 Seconds (P4, 60% DBS) 

 Taking another time slice, Figure 24, shows a moment where P4 is sitting and 

experiencing tremor. We once again see the CWT scalogram provides a much more 

distinct peak between the 4-7Hz frequency band and the peak itself has a more regular 

shape when compared to a time slice taken from the STFT spectrogram at the same point 

in time. When using peak detection using an STFT may even present issues since there 
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are 2 peaks in the 4-7Hz range when compared to the CWT which almost appears to just 

have one peak with a greater width and prominence.  

 
Figure 24. STFT vs Wavelet Frequency Spectrum at 164 Seconds (P4, 60% DBS) 

Next, we selected a trial in which the logs indicate there was a slight tremor while 

standing. This is done to determine whether a STFT or CWT provides better frequency 

localization for the 4-7Hz band during slight tremor for both Apple Watch or IPG 

accelerometry. Figure 25 shows the accelerometry for both the IPG and Apple Watch 

collected from P3 while DBS was set to 60% of the prescribed levels.  

 

Figure 25. Apple Watch and IPG Accelerometry (P3, 60% DBS) 

 By conducting a visual inspection of the IPG STFT spectrogram and CWT 

scalogram we can once again determine that while there is some concentration of power 
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within the 4-7Hz band during the expected tremor period there it does not appear to be 

significant.  

 
Figure 26. IPG, STFT vs CWT (P3, 60% DBS) 

 Moving over to the Apple Watch accelerometry collected during this trial we can 

immediately tell there are much more significant markers that tremor did occur during the 

time frame indicated by the trial logs, Figure 27. With a simple visual inspection of the 

region outlined in red, we can see that there is a significant amount of power 

concentration within the 4-7Hz frequency band in the Apple Watch accelerometry 

compared to the IPG accelerometry. Focusing on the Apple Watch accelerometry we can 

further determine that the CWT did a better job of localizing peaks within the frequency 

band of interest when compared to the STFT.  

 
Figure 27. Apple Watch, STFT vs CWT (P3, 60% DBS) 



33 
 

 By taking a closer look at one of the time slices where the P3 experienced tremor, 

Figure 28, we once again see the CWT provides a more distinct peak within the 4-7Hz 

band with a high peak width and prominence unlike the STFT slice and overall contains 

more power relative to the rest of the frequency spectrum.  

 
Figure 28. STFT vs Wavelet, Tremor at 45 Seconds (P3, 60% DBS) 

 Since we know P3 did not experience tremor in the rest of the trial we can also 

analyze a time slice where they should not be experiencing tremor to see what kind of 

characteristics the frequency spectrum has during these periods. Figure 29 shows a time 

slice from both the STFT spectrogram and the CWT scalogram previously shown in 

Figure 27 while P3 was sitting with no tremor. As expected, there are no significant peaks 

within the 4-7Hz frequency band and it generally holds a lower baseline at around 0.4 for 

both STFT and CWT.  
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Figure 29. STFT vs Wavelet, No Tremor at 120 Seconds (P3, 60% DBS) 

3.4 Presence of Harmonics  

 Finding peaks in the 4-7 Hz frequency band could be effective using Apple Watch 

accelerometry with CWT, but high-activity periods like walking can mask lower 

frequencies since walking shows high concentration in the 0.8-5 Hz range [41]. This 

interference would make it more difficult to identify significant peaks within the 4-7 Hz 

band. For this reason, we can leverage the fact that there are harmonics of the tremor’s 

fundamental frequency also present to detect tremor during high activity states. 

 Figure 30, shows the IPG spectrogram and scalogram for a trial where P5 

experienced tremor throughout the trial including while walking. If we look at the IPG 

accelerometry, Figure 30, there is no significant presence of harmonics while walking in 

the portion boxed in red. We would expect there to be concentrations of power at 

harmonics of the 4-7Hz frequency band if the STFT or CWT did pick up tremor. 

Observations were made across different participants and trial sessions, with consistently 

similar results. For this reason, we will no longer consider the IPG accelerometry as a 

viable means of detecting tremor during states of resting, high activity, or fine motor 

movements.  
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Figure 30. IPG, STFT vs CWT (P5, 60% DBS) 

 Contrary to the IPG accelerometry we can see the Apple Watch does a much 

better job at detecting periods where tremor is present. But more importantly the Apple 

Watch accelerometry also has the presence of harmonics while P5 is walking, this 

biomarker can be used to detect tremor during high activity states and is highlighted in 

red on Figure 31.  

 
Figure 31. IPG and Apple Watch, STFT vs Wavelet (P5, 60% DBS) 

 If we take a time slice during the walking stage of the trial, Figure 32, we can see 

there are in fact harmonics present when tremor is present. Furthermore, we can also see 

that unlike the STFT using a CWT provides a frequency spectrum with higher peaks, and 

larger widths and prominences within the 4-7Hz frequency range and the associated 

harmonics.  
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Figure 32. STFT vs Wavelet, Harmonics at 100 Seconds (P5, 60% DBS) 

 Taking a closer look at another time slice from both the STFT and CWT during 

sitting with tremor, we again see that when using a CWT, the tremors fundamental 

frequency and its harmonics are better defined. Ultimately, having more consistently 

shaped and prominent peaks allows the detection algorithm to identify spikes within the 

frequency spectrum more reliably. 

 
Figure 33. STFT vs Wavelet, Harmonics at 137 Seconds (P5, 60% DBS) 

3.5 Thresholding 

 When determining what thresholds to set for tremor classification it first had to be 

determined how sensitive the detection algorithm would be to varying intensities of 

tremor. For this we consulted with the tremor severity results provided by StrivePD, the 

application used to collect and store the Apple Watch meta data. While StrivePD does 
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provide us with tremor intensity classifications ranging from “none” to “strong” it 

provides this as a percentage over a sixty second window and would not be suitable for 

our closed loop application since we seek to detect tremor at a much finer scale. For us to 

be able to implement a closed loop system we require tremor to be detected in real time 

not post hoc. To determine what thresholds to use, a side-by-side comparison was done 

with the results available on StrivePD for 60 second windows and it was found and that 

the power content present within the 4-7Hz frequency range is around -40dB for slight 

tremor, mild tremor contained about -34dB of power, moderate tremor was about -25dB, 

and strong tremor was more than -10dB of power. But considering our goal is to classify 

all levels of tremor in general as tremor, a threshold of -40dB was set to detect all levels 

of tremor ranging from slight up to strong. It should also be again noted that all plots past 

and presented in this thesis show the power content of the frequency spectrum as 

normalized values to facilitate comparisons between STFT, CWT, and between Apple 

Watch and IPG accelerometry. Table 2 summarizes the applied thresholds and their 

corresponding tremor intensity. Tremor displacement at different tremor intensities were 

provided by the Rune Labs API [26]. 

Table 2. Tremor Displacement and Intensity 
Tremor Intensity Tremor Displacement Power Content (dB) 

Thresholds 
Slight Less than 0.1 cm -40dB to -34dB 
Mild Between 0.1 cm and 0.6 cm -34dB to -25dB 

Moderate Between 0.6 cm and 2.2 cm -25dB to -10dB 
Strong Greater than 2.2 cm More than -10dB 
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CHAPTER 4 

Tremor Characterization and Detection 

4.1 Tremor Intensity and DBS Settings 

 While developing the tremor detection algorithm, accelerometry from P1 and P2 

was used to establish a baseline of different activity states while tremor is not present 

since these two individuals do not present tremor as their leading Parkinsons symptom. 

Trial logs were provided by clinical professionals present during the trials which describe 

if Parkinson’s symptoms were observed during the session. The baselines shown in 

Figure 34 are a good generalization of the Apple Watch accelerometry collected from P1 

and P2 and account for DBS settings at 60% and 40% of prescribed DBS intensity. 

Sections from these two trials will be used to compare activity states with and without 

tremor.  

 
Figure 34. Apple Watch Tremor Detection Baseline (P1, 60% DBS) & (P2, 40% DBS) 

 Figure 35, shows some general results given by the tremor detection algorithm. 

Periods plotted in red are moments in which tremor was detected, and blue is no tremor. 

The detection algorithm results presented for P3 and P4 in Figure 35 show the 
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performance of the algorithm for sessions where DBS intensity is lowered from its 

prescribed settings in individuals with tremor as one of their leading Parkinson’s 

symptom’s. From the trial logs we also know that there was tremor present during these 

sessions and show much more activity when compared to the baseline shown in Figure 

34. 

 
Figure 35. Apple Watch Tremor Detection (P4, 60% DBS) & (P3, 40% DBS) 

 The accelerometry presented in Figure 36 aims to further show the relationship 

between DBS intensity and tremor symptoms since DBS for P3 was reduced to 60% of 

its prescribed settings for the session shown. Accelerometry from P5 is also shown to 

give a representation of accelerometry in all the participants of the clinical trials and how 

tremor manifests when DBS settings are lowered. By analyzing accelerometry from all 

individuals who participated in these clinical trials we aim to show that the developed 

detection algorithm is not just tailored to one individual but can be applied to a wide 

range of individuals. Sessions shown in Figure 36 are also known to have had tremor 

present based on the clinical trial logs. 
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Figure 36. Apple Watch Tremor Detection (P3, 60% DBS) & (P5, 60% DBS) 

To further test the performance of the developed detection algorithm we will also 

analyze its performance in trials where there was slight tremor was present as described 

by the trial logs. Figure 37 shows instances where P3 and P5 experienced slight tremor. 

These trials along with the others mentioned in this section demonstrate in general the 

detection algorithms versatility in detecting tremor across a wide range of tremor 

intensities and physical activities. 

 

Figure 37. Apple Watch Tremor Detection (P3, 60% DBS) & (P5, 100% DBS) 
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4.2 Tremor During Sitting 

 Focusing on specific activity state, we will demonstrate typical recordings of 

Apple Watch accelerometry while sitting with no tremor. A 7 seconds period is shown in 

Figure 38. The segment shown is between 11 and 18 seconds into the trial and 

corresponds to the segments boxed in red. As demonstrated in the scalogram there are no 

notable concentration of power in the 4-7Hz frequency band, boxed in red. Also, for the 

accelerometry time segment shown for sitting with no tremor there appears to be no 

significant 4-7Hz oscillations. P1 in this trial also had their DBS settings set to 60% and 

was noted as not having tremor at any point during the trial by physicians present during 

the trial. 

 
Figure 38. Sitting Without Tremor (P1, 60% DBS) 
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 To verify our observations in the scalogram and accelerometry, Figure 39 shows 

the frequency spectrum at 15 seconds into the trial. As seen, there are no significant peaks 

in the 4-7 Hz range, and most of the frequency band's power content remains below a 

normalized value of 0.4. 

 
Figure 39. Sitting With No Tremor, Frequency Spectrum at 15 seconds (P1, 60% DBS) 

 Similarly, we can take a 7 second segment from P2’s accelerometry during a 

period of sitting with no tremor to analyze the data’s frequency and time characteristics. 

Figure 40 shows the selected segment and is boxed in red. From a visual inspection of 

P2’s scalogram there does not appear to be significant spectral peaks within the 4-7Hz 

range in the boxed section. Taking a closer look at the time plots of the signal it remains 

relatively flat throughout the period of interest. Also, in the trial logs there was no tremor 

present throughout the trial and P2 has their DBS settings at 40% of the prescribed 

settings.  
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Figure 40. Sitting With No Tremor (P2, 40% DBS) 

 Performing a closer inspection of the frequency spectrum at 125 seconds we can 

verify there are no peaks within the 4-7HZ frequency range and most frequency band's 

power content remains at or below a normalized value of 0.4 on Figure 41. These results 

are expected considering there was no tremor detected and the trial logs provided by 

physicians that were present agree with our results.  
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Figure 41. Sitting With No Tremor, Frequency Spectrum at 125 Seconds (P2, 40% DBS) 

 Moving onto trial data from P5, we analyzed periods where tremor was known to 

be present while sitting. The results for data fed into our detection algorithm are shown in 

Figure 42. Here, we will focus on analyzing the results for periods of tremor during 

sitting and comparing them to the baseline previously established using P1 and P2. From 

a visual inspection we can see that the boxed regions on the scalogram in Figure 42 does 

appear to show concentrations of power in the 4-7Hz frequency band. Taking a look at 

the accelerometry time plots we can also see that there is a significant amount of 

accelerometry data that was plotted in red, indicating tremor, during the sitting portion of 

the trial. Furthermore, a closer examination of two periods, one between 3 to 10 seconds 

and another between 134 to 141 seconds into the trial reveal oscillations in the 4-7Hz 

range. These oscillations were accurately detected by our algorithm, confirming the 

presence of tremor. These results agree with the information provided by the clinical trial 

logs. 
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Figure 42. Sitting With Tremor (P5, 60% DBS) 

 Analyzing the frequency spectrum characteristics at 8 seconds into the trial, 

Figure 43, we also see that there is a peak present in the 4-7Hz range. However, we again 

see that using a CWT we get a more distinct and prominent peak which facilitates peak 

detection. Alternatively, the STFT frequency spectrum at 8 seconds provides a less 

pronounce and more irregularly shaped peak in the 4-7Hz range.  
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Figure 43. Sitting With Tremor, Frequency Spectrum at 8 Seconds (P5, 60% DBS) 

 Also, taking a closer look at 137 seconds into the trial, Figure 44, we see the 

frequency spectrum provided by the CWT also provides more distinct peaks in the 4-7Hz 

range and its harmonics when compared to using an STFT. While the STFT appears to 

show additional peaks between the tremor’s fundamental frequency and harmonics these 

additional peaks could lead to less reliability in the tremor detection algorithm and 

missed detection if they are pronounced enough.  

 
Figure 44. Sitting with Tremor, Frequency Spectrum at 137 Seconds (P5, 60% DBS) 

 Feeding accelerometry data collected from P4 while their DBS settings were set 

to 60% allows us to see how well the detection algorithm performs using a different 

participant’s Apple Watch accelerometry data. In the accelerometry time plot shown in 

Figure 45, detected tremor is plotted in red and moments with no tremor are plotted in 
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blue. Two periods of interest where P4 was sitting are boxed in black and red. Zooming 

into these 7 second segments between 17 to 24 and 160 to 167 seconds into the trial we 

can clearly see 4-7Hz oscillations in the accelerometry data. Also, via a visual inspection 

it appears there are spectral peaks in the 4-7Hz frequency bands as indicated by bright 

yellow on the CWT scalogram also shown in Figure 45. Corresponding time segments 

are boxed in red and black. Clinical logs for this trial also indicate there was tremor 

during these periods. 

 
Figure 45. Sitting With Tremor (P4, 60% DBS) 

 A closer analysis of the frequency spectrum at 19 seconds into the trial, shown in 

Figure 46, allows us to directly compare the results produced by the STFT and CWT. The 
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CWT shows to be more effective for peak detection in the 4 to 7 Hz range, as even small 

irregularly shaped peaks appear more prominently within the tremor frequency band. 

 
Figure 46. Sitting With Tremor, Frequency Spectrum at 19 Seconds (P4, 60 % DSB) 

 Similarly, if we take a look at the frequency spectrum at 164 seconds into the trial, 

Figure 47, we can see that the CWT generally does a better job of smoothing out peaks 

and makes them more distinguishable and thus more reliably to detected. Tremor during 

these periods were also verified to be present based on clinical trial logs provided from 

the study. 

 
Figure 47. Sitting With Tremor, Frequency Spectrum at 164 Seconds (P4, 60% DBS) 
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4.3 Tremor During Standing 

 Like the previously analyzed physical activity state, we must first establish a 

baseline of the Apple Watch accelerometry characteristics while the participants are 

standing using recordings from P1 and P2. Figure 48 presents some baseline 

accelerometry recordings of P1 while they are standing with no tremor. Similar to before, 

a combination of trial logs, visual inspection, and peaks in the frequency spectrum’s 4-

7Hz frequency band was used to determine if tremor was correctly detected.  

For the first set of accelerometry used to establish a baseline of standing without 

tremor, P1 had their DBS settings set to 60%. As shown in Figure 48, the accelerometry 

remains relatively flat with minimal movement across all three axes in the selected 7 

second segment. This is expected, since the participants would be standing with their 

arms at rest by their sides. Also, the CWT scalogram doesn’t present any significant 

spikes in the 4-7Hz range as shown in Figure 48 and boxed in red. The detection 

algorithm also did not detect any tremor during standing as the accelerometry was plotted 

in blue, no tremor. 
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Figure 48. Standing With No Tremor (P1, 60% DBS)  

With the Apple Watch accelerometry in Figure 48 showing in general a steady 

level while P1 is standing, the spectral measurements in Figure 49 behave as expected, 

showing little power concentration across all frequency bands. 
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Figure 49. Standing No Tremor, Frequency Spectrum at 55 Seconds (P1, 60% DBS) 

Running the detection algorithm on accelerometry data collected from P2 while 

DBS is set to 40%, and focusing on a period where P2 is standing we see similar results 

as P1 as shown in Figure 50. Observing the characteristics of the CWT scalogram and 

accelerometry while P2 is standing over a 7 second period we see the accelerometry time 

plots appear relatively flat and the CWT scalogram does not show significant power 

concentration in the 4-7Hz range, boxed in red. Again, on the accelerometry time plots, 

blue indicates that no tremor was detected. We also know from the provided clinical trial 

logs that tremor was not present during this session.  
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Figure 50. Standing With No Tremor (P2, 40% DBS) 

 A closer look at the spectral composition of the accelerometry while P2 is 

standing with no tremor at 50 seconds, shown in Figure 51, it shows similarities to P1. 

There is little power spread throughout all the frequency bands and generally stays under 

a normalized value of 0.5.  
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Figure 51. Standing No Tremor, Frequency Spectrum at 50 Seconds (P2, 40% DBS) 

 Now that a baseline has been established of what standing with no tremor should 

look like in the time and frequency domain, we can analyze how well the detection 

algorithm performed while P4 is standing with tremor. The data set we will look at had 

P4 with DBS settings at 60% of their prescribed DBS intensity, Figure 52. Again, data 

plotted in red indicate moments where tremor was detected by the algorithm and blue 

indicated moments where there is no tremor. Analyzing the CWT scalogram period 

outlined in red, there are is a clear concentration of power in the 4-7 Hz range. Also, 

taking a closer look at a 7 second segment on the accelerometry time plot between 57 and 

64 seconds, we can see that in fact there were oscillations in the Apple Watch 

accelerometry data in the 4-7 Hz. From the clinical trial logs we also know in fact there 

was tremor during this period. A visual inspection suggests that the detection algorithm 

effectively identifies tremor while standing, as it correctly marks this portion in red. 
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Figure 52. Standing With Tremor (P4, 60% DBS) 

 Comparing the CWT used for peak detection in our detection algorithm to the 

STFT at 60 seconds into the trial, Figure 53 shows that frequency peaks within the 4-7 

Hz band are better defined and more pronounced with the CWT. We can also see that the 

normalized power content of the frequency spectrum sits at a higher level when 

compared to the baseline from P1 and P2. 
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Figure 53. Standing With Tremor, Frequency Spectrum at 60 Seconds (P4, 60% DBS) 

Using the detection algorithm on a set of data where P3 exhibited a slight tremor 

while standing, as indicated by the trial logs, produces the results shown in Figure 54. 

Similar to P4, P3’s accelerometry also demonstrates a power concentration in the CWT 

scalogram’s 4-7 Hz frequency band when a slight tremor present while standing. In 

Figure 54 tremor that was detected by the algorithm is plotted in red and no tremor is 

plotted in blue on the accelerometry time plot. Making a visual inspection at a finer scale, 

we can see in Figure 54 that the selected 7 second period does present oscillations in the 

accelerometry between 4-7 Hz while standing. This gives us confidence that the 

thresholds set for peak detection are accurate, even for detecting slight tremors. We can 

also confirm that there was tremor during this period by consulting with the clinical logs 

provided by the study. 
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Figure 54. Standing With Tremor (P3, 60% DBS)  

 Conducting an analysis of the frequency spectrum at 45 seconds into the trial, 

Figure 55, we again see that by using a CWT we get better defined and a more 

pronounced peak in the 4-7Hz range while tremor is present. If we look at the STFT of 

the signal at the same period we see that while the frequency spectrum does present a 

peak within the 4-7Hz range its width, prominence, and height is smaller when compared 

to the peak present in in the CWT.  



57 
 

 
Figure 55. Standing With Tremor, Frequency Spectrum at 45 Seconds (P3, 60% DBS) 

4.4 Tremor During Physical Activity 

 To establish a baseline for the Apple Watch accelerometry during physical activity  

P2’s trial data will be used while they are walking. Figure 56 shows the results after 

passing the data through the tremor detection algorithm. While we do see a large power 

concentration within the 4-7Hz tremor frequency band and in the 8-14Hz frequency band 

there was no tremor detected while P2 was walking. As noted in the 7 second period 

presented in Figure 56 the signal is plotted in blue, no tremor detected. While we do see 

there is a lot of activity on the time plot when P2 is walking if we analyze the CWT 

scalogram there doesn’t appear to be any spectral peaks in the 4-7Hz tremor frequency 

band or in the 8-14Hz harmonics frequency band. We also know from the clinical logs 

that P2 did not experience tremor while walking.  
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Figure 56. Walking With No Tremor (P2, 40% DBS) 

 Taking a time slice from the CWT scalogram at 85 seconds when P2 is walking, 

Figure 57, we see that walking appears as elevated power levels across all frequencies in 

the frequency spectrum but no peaks in the 4-7Hz band. Something else to note is that 

between the 0-3Hz band we also see much more power present when compared to the 

baselines established for sitting and standing without tremor. This large power 

concentration we observe in the 0-3Hz range is again a key marker used to determine 

whether a participant is currently in an active physical state [41].  



59 
 

 
Figure 57. Walking With No Tremor, Frequency Spectrum at 85 Seconds (P2, 40% DBS) 

 After establishing the frequency and time characteristics of the Apple Watch 

accelerometry while walking, the detection algorithm could be tested on a set of data 

where tremor is present while walking. Figure 58 presents the performance of the 

detection algorithm using accelerometry from P3 while their DBS settings are set to 60% 

and focuses on a portion while P3 was walking. One key result to note is that half of the 

walking period in the trial has no tremor in the first half and tremor in the second half.  If 

we focus on the time plot between 90-94 seconds, we notice that the detection algorithm 

plotted the accelerometry in blue, no tremor, and very closely resembles the baseline 

previously established by P2. Alternatively, if we observe the results between 94-98 

seconds on the time plot, we see that the accelerometry was plotted in red, tremor. If we 

visually inspect the CWT scalogram during this period, we see that there appears to be 

peaks in both the 4-7Hz band and its harmonic between 8-14Hz.  
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Figure 58. Walking With and Without Tremor (P3, 60% DBS)  

 Taking a close look at a time slice of the CWT spectrogram at 90 seconds, 

walking with no tremor, it resembles the baseline provided by P2. Figure 59 shows an 

elevated power concentration across all frequency bands which again is a characteristic of 

the participant in an activity state without tremor.  
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Figure 59. Walking With No Tremor, Frequency Spectrum at 90 Seconds (P3, 60% DBS) 

 Contrary to Figure 59, if we inspect Figure 60 which shows both frequency 

spectrums using STFT and CWT, we see that both present peaks in the 4-7Hz frequency 

band and its harmonics. However, again we see the CWT provides frequency spectrum 

peaks with a greater height, width, and prominence. Due to this characteristic, using a 

CWT proved to be more effective for peak detection during physical activity states as 

well.  

 
Figure 60. Walking With Tremor, Frequency Spectrum at 95 Seconds (P3, 60% DBS) 

 Running the detection algorithm on the Apple Watch accelerometry on another set 

of data from a participant who also experienced tremor while walking provides the results 

shown in Figure 61. Observing the CWT scalogram we see that there appears to be a 

concentration of power within the 4-7Hz band and its associated harmonic frequencies in 
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the portion boxed in black. The detection algorithm plotted periods with tremor in red 

and periods with no tremor in blue. Tremor was verified to be present using the trial logs 

provided. Also, if we zoom into a 7 second period where tremor was detected while 

walking, outline in black on Figure 61, we again see there appears to be 4-7Hz 

oscillations in the accelerometry data and it looks similar to the previous results given for 

P3.  

 
Figure 61. Walking With Tremor (P5, 60% DBS) 

 Making a closer observation of the STFT and CWT at 100 seconds into the trial, 

Figure 62, we see peaks in the 4-7Hz range and also in the harmonics while there is 

tremor when walking. But we also notice that the peaks that are present are better defined 

when using the CWT.  
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Figure 62. Walking With Tremor, Frequency Spectrum at 100 Seconds (P5, 60% DBS) 

4.5 Tremor During Fine Motor Movement 

 To demonstrate the typical frequency and time accelerometry characteristics we 

will show a baseline recording of P1 while they are texting and their DBS settings are at 

60%. Figure 63 shows the detection results and CWT scalogram for P1. A time period 

which effectively characterizes the accelerometry in the time and frequency domain 

during fine motor movement is shown in Figure 63 and boxed in red. If we zoom into the 

boxed portion between 162-169 seconds into the trial, we see the accelerometry has 

oscillatory movement, but it does not appear to oscillate at 4-7 Hz as we see with tremor. 

It should also be noted that the detection algorithm plotted the texting period as blue, no 

tremor. The trial logs also agree with these results considering no tremor was noted 

throughout the trial. 
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Figure 63. Texting With No Tremor (P1, 60% DBS)  

 The frequency spectrum shown in Figure 64 shows that the normalized power in 

the frequency spectrum sits around and slightly above 0.4 during periods of fine motor 

movement. This is a bit higher than the level we saw when the participants were sitting or 

standing but still uniform. However, the power level exhibited while P1 was texting is 

still lower than what was observed when they were walking. In general, this uniform 

distribution in the frequency spectrum suggests that fine motor movements such as 

texting come across as just random noise in the accelerometry since there are no distinct 

peaks present. 
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Figure 64. Texting No Tremor, Frequency Spectrum at 165 Seconds (P1, 60% DBS) 

 Another period of fine motor movement is demonstrated in Figure 65 and is 

boxed in red. Here we once again see that while P2 is texting the Apple Watch 

accelerometry manifests itself in the time plots as a noisy signal and in the CWT 

spectrogram we don’t see any significant concentrations of power in the 4-7Hz frequency 

band. It should also be noted that detection algorithm did not detect periods of tremor 

during texting and agrees with the trial logs provided.  
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Figure 65. Texting With No Tremor (P2, 40% DBS)  

 During the 168-174 second period of the trial we can analyze the frequency 

spectrum at 171 seconds taken from both the signals STFT and CWT and find that again 

there appears to be a near constant power level present across the entire frequency 

spectrum, Figure 66. This leads us to believe that as long as fine motor movement is 

random like texting we can expect not to have peaks present that could lead to missed or 

inaccurate tremor detection. 
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Figure 66. Texting No Tremor, Frequency Spectrum at 171 Seconds (P2, 40% DBS) 

 By passing another set of the Apple Watch accelerometry through our detection 

algorithm for a trial in which we know P3 experienced tremor during the fine motor 

movement we can generate the results shown on Figure 67. Instances without tremor are 

plotted in blue and instances with tremor are in red. Focusing on the results boxed in 

black on Figure 67 we see that there are regular oscillations in the 4-7Hz range unlike the 

baseline previously established using P1 and P2 accelerometry. It should also be noted 

that the algorithm detected tremor, as indicated by the red plotting in the accelerometry 

time plot, while the 4-7 Hz oscillations were present. The trial logs also agree with these 

results and indicate there was slight tremor present.  
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Figure 67. Texting With Tremor (P3, 60% DBS)  

 Taking a closer look at the frequency spectrum at 173 seconds we see that in fact 

there is a peak present in the 4-7Hz range in both the CWT and STFT, Figure 68. 

However, we again see how using a CWT produces a wider and more prominent peak in 

the 4-7Hz range. The increased peak definition when using CWT facilitates and improves 

tremor detection when compared to using an STFT. 
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Figure 68. Texting With Tremor, Frequency Spectrum at 173 Seconds (P3, 60% DBS) 

 Testing the detection algorithm on another set of accelerometry data from P3 and 

with further decreased DBS settings of 40% we get the results presented in Figure 69. In 

this trial we also notice that the tremor is more prominent than when DBS was set to 60% 

in the previous example. Periods in Figure 69 which are plotted in red correspond to 

tremor detection and data plotted in blue is no tremor detected. Making a closer 

observation of the accelerometry time plot, the period boxed in black in Figure 69 shows 

that 4-7 Hz oscillations are indeed present in the accelerometry data. These oscillations 

also appear to have a larger amplitude than the accelerometry when P3 had their DBS set 

to 60%. We also know from the clinical logs that tremor was in fact present during 

texting for this trial. 
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Figure 69. Texting With Tremor (P3, 40% DBS) 

 Making an observation of the frequency spectrum at 175 seconds, Figure 70, we 

find there are peaks present in the 4-7Hz range for both the STFT and CWT at this time 

point. However, we do see that in the CWT we get a better defined peak in the 4-7Hz 

range which help us with peak detection in our detection algorithm.  
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Figure 70. Texting With Tremor, Frequency Spectrum at 175 Seconds (P3, 40% DBS) 

4.6 Posture Transitions 

 For posture transitions we look for high concentrations of power across all 

frequency bands which indicate the participant is either standing up or sitting down. In 

Figure 71 we see in the boxed areas what transitions should look like in the spectrogram 

and scalogram. We also know from the trial logs the boxed areas are where the participant 

transitioned from sitting to standing or from standing to sitting. 

 
Figure 71. STFT and Wavelet Transform Posture Transition (P3, 60% DBS)  

Making a closer observation of the frequency spectrum shown in Figure 72 we 

can see that there are elevated power levels across all frequency bands during transition 

periods. For transitions we can see there are no peaks in the 4-7Hz frequency band but by 

integrating and thresholding the power content across all frequency bands at each 
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individual time interval we can determine when the participant is transitioning from 

sitting to standing or standing to sitting.  

 
Figure 72. Posture Transition, Frequency Spectrum at 35 Seconds (P3, 60% DBS) 

CHAPTER 5 

Tremor Detection Algorithm Versus StrivePD 

We can now compare our results to the tremor metric developed by RuneLabs and 

implemented through the StrivePD application. It should also be mentioned StrivePD is 

currently the industry standard for tremor detection and tremor severity ratings. To 

retrieve the tremor metric data from StrivePD to compare our results it must be 

downloaded using the RuneLabs API, the code used to download and access the tremor 

severity metric data could be found in Appendix B for reference.  

 While the StrivePD metric provides valuable insight into the participant's tremor 

severity, it does so over a 60 second period and as post processing measuring the 

percentage of time tremor was present within that window. Even though this is valuable 

information for physicians seeking to evaluate the participants tremor progression and 

severity while undergoing DBS it does not help with tremor detection in real time with a 

high temporal resolution so it could be implemented in a closed loop system. With a 

CWT we would be able to provide both, tremor detection in real time and with a much 
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finer temporal resolution when compared to the 60 second window provided by 

StrivePD. 

 If we want to effectively compare the accuracy of our tremor detection algorithm 

to the one available from StrivePD, a similar metric had to be created. To do this, the total 

time tremor was detected using our detection algorithm was calculated as a percentage 

over the same 60 second window as StrivePD. For comparing results, the detection 

algorithm's sensitivity was set to detect tremor as small as “slight” tremor, with a 

threshold of -40 dB at the peaks in the tremor frequency band.  

Figure 73 shows one trial that was compared using the StrivePD metric in which 

there was no tremor present. In this trial P3 had their DBS settings at 100% of the 

prescribed intensity. Also, in Figure 73 we can see that the StrivePD tremor metric data is 

plotted in blue and the tremor that was detected using our detection algorithm is plotted 

in a dashed red line. As expected from the clinical logs there was no tremor present in this 

trial. This also helps verify that our detection algorithm thresholds are correctly set and 

will not detect small erroneous peaks as tremor.  
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Figure 73. Tremor Detection Comparison (P3, 100% DBS) 

 By comparing the results for another trial in which there was a slight tremor 

present as indicated by trial logs we get the results shown in Figure 74 and the exact 

percentages along with the percent difference are presented in Table 3. The “Interval 

Number” column in Table 3 indicates which 60 second window is being compared 

moving from left to right.  

 



75 
 

 
Figure 74. Tremor Detection Comparison, (P3, 60% DBS) 

 Percent difference for Interval 2 on Table 3 was noted as N/A due to the typical 

equation used to calculate percentage difference is undefined when the theoretical 

percentage is 0%:  

Table 3. Tremor Metric Comparison (P3, 60% DBS) 

 

In this trial we see that the thresholds for detecting tremor worked well and gave 

us only 0.23% difference from the StrivePD percentage of tremor over the same 60 

second time interval. While percent difference could not be calculated for Interval 2 due 

to the previously mentioned issue, we can note that there was only a 1.2% absolute 

difference from the StrivePD value of 0%. This proves that our developed algorithm 

Interval Number StrivePD Tremor 
Percentage 

Detection Algorithm 
Tremor Percentage 

Percent 
Difference 

Interval 1 43.3% 43.4% 0.23% 
Interval 2 0% 1.2% N/A 
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provides a high degree of accuracy when slight tremor is present, comparable to the 

industry standard given by StrivePD. 

Figure 75 shows the same tremor detection for this trial, but now includes tremor 

detection at a higher temporal resolution, which was used to compare our results over 60 

second intervals. The main advantage to using our detection algorithm is the possibility 

of using it to detect tremor in real time and apply DBS to individuals with Parkinsons as 

it is needed instead of always having DBS on.  

 
Figure 75. Tremor Detection With Higher Temporal Resolution (P3, 60% DBS) 

 Comparing the results of another trial in which P3 had DBS settings at 60% of 

their prescribed levels we get the results shown in Figure 76. Again, we see in the first 60 

second interval provided by StrivePD our detection algorithm provides nearly the same 

tremor percentage and has a percent difference of 2.9% as shown in Table 4. However, 
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we do see during the second interval the percent difference jumps to 220.8% when we 

compare our tremor percentage within the second time interval versus the StrivePD 

tremor percentage.  

 
Figure 76. Improved Tremor Detection During High Activity (P3, 60% DBS) 

Table 4. Improved Tremor Detection During High Activity (P3, 60% DBS) 
Interval Number StrivePD Tremor 

Percentage 
Detection Algorithm  
Tremor Percentage 

Percent Difference 

Interval 1 62.5% 60.7% 2.9% 
Interval 2 17.3% 55.5% 220.8% 

   

While this may appear high, if we make a closer observation on Figure 76 we can 

find the section which is causing our detection to disagree with the tremor metric data 

provided by StrivePD. As it turns out StrivePD classifies periods with high activity as 

“unknown” and does not detect tremor within these periods. In short, activities such as 

walking, posture changes, or any other periods where there is a significant acceleration in 



78 
 

the data cause StivePD to disregarded the data no matter if tremor is present or not. This 

issue with StrivePD, the industry standard for Parkinson’s tremor detection, is one of its 

major shortcomings. It would also appear that in Figure 76 at around the 94 second mark 

the general shape of the accelerometry changes during walking from slow rhythmic 

oscillatory movement resembling a walking gait to 4-7Hz oscillatory acceleration when 

tremor became present. After further discussion with the lead researcher and consulting 

with the trial logs it was concluded that in fact our developed detection algorithm 

correctly classified tremor while P3 was walking and provides valuable detection 

functionality to existing methods.  

 To further verify if walking with tremor was classified as “unknow” by StrivePD 

and ultimately removed from the total tremor percentage we can remove the detected 

tremor while the participant was walking and compare the results. Figure 77 shows our 

results with the detected tremor while walking removed. Table 5 shows the percent 

difference of our tremor detection results versus the StrivePD tremor severity metric data.  
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Figure 77. Removing High Activity Tremor Detection (P3, 60% DBS) 

Table 5. Tremor Detection Comparison, No High Activity Tremor (P3, 60% DBS) 

Interval Number StrivePD Tremor 
Percentage 

Detection Algorithm 
Tremor Percentage 

Percent 
Difference 

Interval 1 62.5% 60.7% 2.9% 

Interval 2 17.3% 18.9% 9.2% 

 
 We can see by removing the tremor detection while walking, Interval 2 resembles 

the StrivePD tremor metric data much closer and has a 9.2% difference. While 9.2% 

difference may seem high if we compare the time tremor was present, StrivePD indicates 

there was 10.38 seconds of tremor present in Interval 2 and our detection algorithm 

detected 11.34 seconds of tremor leading to a difference of only 0.96 seconds over a 60 

second period. But with these results we can confirm that StrivePD does in fact disregard 

periods with a high level of activity and does not account for tremor during high activity 

periods. Figure 78 shows tremor detection at a higher temporal resolution for this trial. 
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Figure 78. Tremor Detection With Higher Temporal Resolution (P3, 60% DBS) 

 Comparing the detection results for another trial where there was a high degree of 

tremor present throughout the trial, we get the results shown in Figure 79 and the tremor 

percentage metric on Table 6.  

 
Figure 79. Improved Tremor Detection During High Activity (P3, 40% DBS) 
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Table 6. Improved Tremor Detection During High Activity (P3, 40% DBS) 
Interval Number StrivePD Tremor 

Percentage 
Detection Algorithm 
Tremor Percentage 

Percent 
Difference 

Interval 1 87.5% 90.9% 3.8% 
Interval 2 26.0% 74.6% 186.9% 
Interval 3 82.6% 82.3% 0.3% 

 

We once again notice that the tremor percentage detected by our algorithm is very 

high when compared to the StrivePD value during Interval 2. Interval 2 is also the same 

interval in which P3 was walking. So, it could be inferred that StrivePD actually marked 

this entire period as “unknown” since it is a high activity state. Making a closer 

observation on Figure 79 over a 10 second period between 83-93 seconds into the trial we 

see that along the accelerometry z-axis the accelerometry does not look like the typical 

accelerometry that would be expected as established by our baseline shown in Figure 56. 

We see 4-7Hz oscillatory acceleration, which is an indicator of tremor. Furthermore, after 

consulting with the clinical logs and the lead investigator of the project we confirmed that 

in fact there was tremor present during walking.  

 To verify whether or not this period with high activity was classified as 

“unknown” by StrivePD we can remove it from our tremor percentage calculation and we 

get the results shown in Figure 80 and Table 7.  
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Figure 80. Removing High Activity Tremor Detection (P3, 40% DBS) 

Table 7. Tremor Detection Comparison, No High Activity Tremor (P3, 40% DBS) 
Interval Number StrivePD Tremor 

Percentage 
Detection Algorithm 
Tremor Percentage  

Percent 
Difference 

Interval 1 87.5% 78.4% 2.9% 
Interval 2 26.0% 25.0% 3.8% 
Interval 3 82.6% 82.3% 0.3% 
 

Over all, if we look at the tremor percentage over time shown in Figure 80 we can 

see that all three 60 second intervals match up well to what was given by StrivePD. 

Checking the percent difference of our detection algorithm versus StrivePD we see on 

Table 7 that Interval 1 improves from 3.8% to 2.9%. Interval 2 sees the largest 

improvement going from a percent difference of 186.9% down to 3.8%. This once again 

demonstrated that the StrivePD detection method does in fact remove high activity states 

from its tremor percentage calculation. Interval 3 does not see any change in its percent 

difference and stays at 0.3%. We do believe this added functionality provides meaningful 
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improvement to the industry standard detection methods. Figure 81shows the developed 

algorithms tremor detection at a higher temporal resolution. 

 
Figure 81. Tremor Detection With Higher Temporal Resolution (P3, 40% DBS) 

CHAPTER 6  

Summary of Results 

After comparing our results against the tremor metric provided by StrivePD we 

can determine that with our developed detection algorithm we are able to detect tremor 

during high activity states such as walking, and maintaining accurate tremor detection 

during low activity states like sitting, standing, and fine motor movements. Also, 

considering our established thresholds are based on the physical displacement caused by 

tremor we can be more confident that these thresholds will not change much if at all in 

the future even if more participant were added to the study. Through our analysis of the 

accelerometry data we were also able to show that using Apple Watch accelerometry 
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enables us to detect tremor more effectively when compared to the IPG since tremor is 

usually more notable in the extremities. Furthermore, we also showed the added 

frequency localization capabilities offered by using a Wavelet Transform over using a 

Short Time Fourier Transform. Using a Continuous Wavelet Transform allowed us to 

more effectively distinguish peaks not only in the tremor frequency band but harmonics 

that are present when an individual is experiencing tremor while walking. Throughout the 

development of this tremor detection algorithm methods for how to retrieve, process, and 

sync the IPG and Apple Watch accelerometry were also established as it is relevant to this 

ongoing investigation and will continue to be used.  

CHAPTER 7 

Further Applications of Detection Algorithm 

 While the developed tremor detection algorithm has proven it provides 

improvements to existing methods originally developed by StrivePD, these improvements 

are planned to be used in combination with IPG accelerometry data. The Apple Watch 

accelerometry is able to provide us with valuable information when an individual is 

experiencing tremor and if they are in a high or low activity state but it is not able to 

provide insight of whether an individual is sitting, standing, or walking. For this reason, 

different methods have been explored for how IPG accelerometry data could be used to 

better detect postural states. Initial results and analysis have indicated that IPG 

accelerometry does in fact provide better postural state detection. With further 

development of the IPG algorithm we should be able to provide a complete and accurate 

detection of six distinguishable states: sitting with tremor, sitting without tremor, walking 

with tremor, walking without tremor, standing with tremor, and standing without tremor.  



85 
 

 With development of the IPG postural state algorithm and integration with the 

already developed tremor detection algorithm we will be able to fully implement a closed 

loop system able to detect and manage tremor symptoms in real time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



86 
 

REFERENCES 

[1]   Halpern, C., Hurtig, H., Jaggi, J., Grossman, M., Won, M., & Baltuch, G. (2007). 

Deep brain stimulation in neurologic disorders. Parkinsonism & Related 

Disorders, 13(1), 1–16. https://doi.org/10.1016/j.parkreldis.2006.03.001 

[2]   Hariz, M., & Blomstedt, P. (2022). Deep brain stimulation for Parkinson’s 

disease. Journal of Internal Medicine, 292(5), 764–778. 

https://doi.org/10.1111/joim.13541  

[3]   Johnson, M. D., Zhang, J., Ghosh, D., McIntyre, C. C., & Vitek, J. L. (2012). Neural 

targets for relieving parkinsonian rigidity and bradykinesia with pallidal deep brain 

stimulation. Journal of Neurophysiology, 108(2), 567–577. 

https://doi.org/10.1152/jn.00039.2012  

[4]   Obeso, J. A., Marin, C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temiño, B., Mena-

Segovia, J., Rodríguez, M., & Olanow, C. W. (2009). The basal ganglia in 

Parkinson’s disease: Current concepts and unexplained observations. Annals of 

Neurology, 64(S2), S30–S46. https://doi.org/10.1002/ana.21481  

[5]   Krack, P., Batir, A., Van Blercom, N., Chabardes, S., Fraix, V., Ardouin, C., Koudsie, 

A., Limousin, P. D., Benazzouz, A., LeBas, J. F., Benabid, A.-L., & Pollak, P. (2003). 

Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced 

parkinson’s disease. New England Journal of Medicine, 349(20), 1925–1934. 

https://doi.org/10.1056/NEJMoa035275  

[6]   Sethi, K. (2008). Levodopa unresponsive symptoms in Parkinson disease: L -Dopa 

Unresponsive Symptoms in PD. Movement Disorders, 23(S3), S521–S533. 

https://doi.org/10.1002/mds.22049  



87 
 

[7]   Jenner, P., & Katzenschlager, R. (2016). Apomorphine—Pharmacological properties 

and clinical trials in Parkinson’s disease. Parkinsonism & Related Disorders, 33, 

S13–S21. https://doi.org/10.1016/j.parkreldis.2016.12.003 

[8]   Antonini, A., & Nitu, B. (2018). Apomorphine and levodopa infusion for motor 

fluctuations and dyskinesia in advanced Parkinson disease. Journal of Neural 

Transmission, 125, 1131-1135. https://doi.org/10.1007/s00702-018-1906-0 

[9]   Poewe, W., & Wenning, G. K. (2000). Apomorphine: An underutilized therapy for 

Parkinson’s disease. Movement Disorders, 15(5), 789–794. 

https://doi.org/10.1002/1531-8257(200009)15:5<789::AID-MDS1005>3.0.CO;2-H  

[10]  Antonini, A., Martinez‐Martin, P., Chaudhuri, R. K., Merello, M., Hauser, R., 

Katzenschlager, R., Odin, P., Stacy, M., Stocchi, F., Poewe, W., Rascol, O., Sampaio, 

C., Schrag, A., Stebbins, G. T., & Goetz, C. G. (2011). Wearing‐off scales in 

Parkinson’s disease: Critique and recommendations. Movement Disorders, 26(12), 

2169–2175. https://doi.org/10.1002/mds.23875 

[11]  Weiss, D., Volkmann, J., Fasano, A., Kühn, A., Krack, P., & Deuschl, G. (2021). 

Changing Gears – DBS For Dopaminergic Desensitization in Parkinson’s 

Disease? Annals of Neurology, 90(5), 699–710. https://doi.org/10.1002/ana.26164  

[12]  Sarica, C., Iorio-Morin, C., Aguirre-Padilla, D. H., Najjar, A., Paff, M., Fomenko, 

A., Yamamoto, K., Zemmar, A., Lipsman, N., Ibrahim, G. M., Hamani, C., Hodaie, 

M., Lozano, A. M., Munhoz, R. P., Fasano, A., & Kalia, S. K. (2021). Implantable 

pulse generators for deep brain stimulation: Challenges, complications, and 

strategies for practicality and longevity. Frontiers in Human Neuroscience, 15, 

708481. https://doi.org/10.3389/fnhum.2021.708481  



88 
 

[13]  Dostrovsky, J. O., & Lozano, A. M. (2002). Mechanisms of deep brain 

stimulation. Movement disorders: official journal of the Movement Disorder 

Society, 17(S3), S63-S68. https://doi.org/10.1002/mds.10143 

[14]  Herrington, T. M., Cheng, J. J., & Eskandar, E. N. (2016). Mechanisms of deep 

brain stimulation. Journal of neurophysiology, 115(1), 19-38. 

https://doi.org/10.1152/jn.00281.2015 

[15]  Mishima, T., Fujioka, S., Morishita, T., Inoue, T., & Tsuboi, Y. (2021). Personalized 

medicine in Parkinson’s disease: new options for advanced treatments. Journal of 

personalized medicine, 11(7), 650. https://doi.org/10.3390/jpm11070650 

[16]  Savica, R., Stead, M., Mack, K. J., Lee, K. H., & Klassen, B. T. (2012, January). 

Deep brain stimulation in tourette syndrome: a description of 3 patients with 

excellent outcome. In Mayo Clinic Proceedings (Vol. 87, No. 1, pp. 59-62). 

Elsevier. https://doi.org/10.1016/j.mayocp.2011.08.005 

[17]  Kennedy, S. H., Giacobbe, P., Rizvi, S. J., Placenza, F. M., Nishikawa, Y., Mayberg, 

H. S., & Lozano, A. M. (2011). Deep brain stimulation for treatment-resistant 

depression: follow-up after 3 to 6 years. American Journal of Psychiatry, 168(5), 

502-510. https://doi.org/10.1176/appi.ajp.2010.10081187 

[18]  Schmidt, S. L., Chowdhury, A. H., Mitchell, K. T., Peters, J. J., Gao, Q., Lee, H. J., 

... & Turner, D. A. (2024). At home adaptive dual target deep brain stimulation in 

Parkinson’s disease with proportional control. Brain, 147(3), 911-922. 

https://doi.org/10.1093/brain/awad429 

[19]  Medtronic. (2019). Research Development Kit 4NR013 (Rev B). Medtronic. 



89 
 

[20]  Scheiner, A., Mortimer, J. T., & Roessmann, U. (1990). Imbalanced biphasic 

electrical stimulation: muscle tissue damage. Annals of biomedical 

engineering, 18(4), 407-425. 

[21]  Turner, D., Perry, B., Peters, J. (2020). An Integrated Biomarker Approach to 

Personalized, Adaptive Deep Brain Stimulation in Parkinson Disease (Institutional 

Review Board application, Duke University Health System)  

[22]  Smaga, S. (2003). Tremor. American family physician, 68(8), 1545-1552. 

[23]  Pasquini, J., Ceravolo, R., Qamhawi, Z., Lee, J. Y., Deuschl, G., Brooks, D. J., ... & 

Pavese, N. (2018). Progression of tremor in early stages of Parkinson’s disease: a 

clinical and neuroimaging study. Brain, 141(3), 811-821. 

https://doi.org/10.1093/brain/awx376 

[24]  Apple. (2024). Apple Platform Security (December 2024). Apple.  

[25]  Unix time stamp—Epoch converter. (n.d.). Retrieved March 19, 2025, from 

https://www.unixtimestamp.com/?ref=ad-tech-explained 

[26]  rune-labs (2020), examples, Github repository: https://github.com/rune-labs/runeq-

python/tree/main/examples 

[27]  Getting raw accelerometer events. (n.d.). Apple Developer Documentation. 

Retrieved March 19, 2025, from 

https://docs.developer.apple.com/documentation/coremotion/getting-raw-

accelerometer-events 

[28] Rune Labs, Inc. (2024). Privacy Notice. Retrieved March 19, 2025, from 

https://runelabs.io/privacy-notice 



90 
 

[29]  Su, D., Yang, S., Hu, W., Wang, D., Kou, W., Liu, Z., Wang, X., Wang, Y., Ma, H., 

Sui, Y., Zhou, J., Pan, H., & Feng, T. (2020). The characteristics of tremor motion 

help identify parkinson’s disease and multiple system atrophy. Frontiers in 

Neurology, 11, 540. https://doi.org/10.3389/fneur.2020.00540  

[30]  Deuschl, G., Raethjen, J., Baron, R., Lindemann, M., Wilms, H., & Krack, P. 

(2000). The pathophysiology of parkinsonian tremor: A review. Journal of 

Neurology, 247(S5), V33–V48. https://doi.org/10.1007/PL00007781 

[31]  Zhou, Y., Jenkins, M. E., Naish, M. D., & Trejos, A. L. (2016). The measurement 

and analysis of Parkinsonian hand tremor. 2016 IEEE-EMBS International 

Conference on Biomedical and Health Informatics (BHI), 414–417. 

https://doi.org/10.1109/BHI.2016.7455922 

[32]  Taheri, B., Case, D., & Richer, E. (2014). Robust controller for tremor suppression 

at musculoskeletal level in human wrist. IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, 22(2), 379–388. 

https://doi.org/10.1109/TNSRE.2013.2295034 

[33]  The MathWorks Inc. (2024). stft, Natick, Massachusetts: The MathWorks Inc. 

https://www.mathworks.com/help/signal/ref/stft.html 

[34]  Semmlow, J., & Griffel, B. (2014). Bio Signal and Medical Image Processing 

(Third Edition). CRC Press, 193-195 

[35]  Semmlow, J., & Griffel, B. (2014). Bio Signal and Medical Image Processing 

(Third Edition). CRC Press, 217-222 

[36]  The MathWorks Inc. (2024). cwt, Natick, Massachusetts: The MathWorks Inc. 

https://www.mathworks.com/help/wavelet/ref/cwt.html 



91 
 

[37]  Akansu, A. N., Serdijn, W. A., & Selesnick, I. W. (2010). Emerging applications of 

wavelets: A review. Physical Communication, 3(1), 1–18. 

https://doi.org/10.1016/j.phycom.2009.07.001 

[38]  Huang, G., Meng, J., Zhang, D., & Zhu, X. (2011). Window function for eeg power 

density estimation and its application in ssvep based bcis. In S. Jeschke, H. Liu, & 

D. Schilberg (Eds.), Intelligent Robotics and Applications (Vol. 7102, pp. 135–144). 

Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-25489-5_14 

[39]  The MathWorks Inc. (2024). hamming, Natick, Massachusetts: The MathWorks Inc. 

https://www.mathworks.com/help/signal/ref/hamming.html 

[40]  The MathWorks Inc. (2024). Morse Wavelets, Natick, Massachusetts: The 

MathWorks Inc. https://www.mathworks.com/help/wavelet/ug/morse-wavelets.html 

[41]  Bouten, C. V. C., Koekkoek, K. T. M., Verduin, M., Kodde, R., & Janssen, J. D. 

(1997). A triaxial accelerometer and portable data processing unit for the 

assessment of daily physical activity. IEEE Transactions on Biomedical 

Engineering, 44(3), 136–147. https://doi.org/10.1109/10.554760 

 

 

 

 

 

 

 

 



92 
 

APPENDIX A 

 The following Python script was written to retrieve the Apple Watch accelerometry 

data from the RuneLabs API.  

Initializing libraries and access token 

 

Verify system login 

 

Extract Apple Watch data 
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Plot extracted data to verify 
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Store extracted data  
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APPENDIX B 

 The following Python script was written to retrieve the Apple Watch tremor metric 

data from the RuneLabs API. 

Initializing libraries and access token 

 

Verify system login 

 

Extract tremor severity data and plot 
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Eliminate errors, NaN’s, and convert time stamps to Unix time  

 

Store tremor metric data 
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APPENDIX C 

 The following MATLAB script was developed to perform the frequency spectrum 

analysis and detect tremor present in the IPG and Apple Watch accelerometry data. 

Load IPG data 
clear all; 

clc; 

close all; 

 

rng('default') 

 

[filename_IPG, pathname] = uigetfile('*.xlsx', 'Time-Stamp data'); 

path(path,pathname); 

filename_IPG 

time_stamp_data = readtable([pathname filename_IPG]); 

 

state_data = string(time_stamp_data.State); 

date_data = string(time_stamp_data.Time); 

 

idx_accel = find(contains(date_data,"Accel_") == 1); 

fn = date_data(idx_accel)'; 

[indx,tf] = listdlg('PromptString',{'Select an Accel_# that correlate to .json 

file'},'SelectionMode','single','ListString',fn); 

fn(indx) 

[filename_IPG, pathname] = uigetfile('*.json', 'Json File correlated to your 

Time Stamp File',pathname); 

 

data=jsondecode(fileread([pathname filename_IPG])); 

 

Plot raw IPG data 
x_samples_struct=cell2mat({data.XSamples}); 

x_samples=reshape(x_samples_struct,1,[]); 

y_samples_struct=cell2mat({data.YSamples}); 

y_samples=reshape(y_samples_struct,1,[]); 

z_samples_struct=cell2mat({data.ZSamples}); 

z_samples=reshape(z_samples_struct,1,[]); 

[rows,columns]=size(x_samples_struct); 

% create time vector for accelerometer data 

time_struct=cell2mat({data.PacketGenTime}); 

 

magnitude=sqrt(x_samples.^2+y_samples.^2+z_samples.^2); 

 

total_time_ipg=(time_struct(end)-time_struct(1))/1000; 

 

IPG_fs=length(time_struct)/total_time_ipg; 

 

time=[0:length(magnitude)-1]/(IPG_fs*rows); 

 

figure 

subplot(3,1,1); 

plot(time, x_samples); 

set(gca,'FontSize',18) 
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title('IPG Acceleration X-Axis','FontSize',18) 

ylabel('a_x(G)','FontSize',18) 

hold on 

 

subplot(3,1,2); 

plot(time, y_samples); 

set(gca,'FontSize',18) 

title('IPG Acceleration Y-Axis','FontSize',18) 

ylabel('a_y(G)','FontSize',18) 

hold on 

 

subplot(3,1,3); 

plot(time, z_samples); 

set(gca,'FontSize',18) 

title('IPG Acceleration Z-Axis','FontSize',18) 

ylabel('a_z(G)','FontSize',18) 

hold on 

 

 

accel3axes_IPG = [x_samples; y_samples; z_samples]; 

 

Find motor task times 
searching_motor = true; 

imotor = 0; 

idx_motor = idx_accel(indx) + 1; 

motor_find = 0; 

while searching_motor == true 

    str_int = string(imotor); 

    mot_str = "Motor#" + str_int; 

    motor_find = find(mot_str == state_data); 

    if null(motor_find) == 1 

        searching_motor = false; 

    else 

        motor_task_start(imotor+1) = idx_motor; 

    end 

    imotor = imotor + 1; 

    idx_motor = idx_motor + 2; 

end 

 

Define the dates and times we want to label 
time_stamps={}; 

for idx = 1:length(motor_task_start) 

    date = datetime(date_data(motor_task_start(idx)), 'InputFormat', 'dd-MMM-

yyyy HH:mm:ss','TimeZone','America/New_York'); 

    % Convert timesptamp to unix format 

    unix_time = posixtime(date); 

    unix_time_1 = unix_time*1000; 

    [num,index]=min(abs(time_struct-unix_time_1)); 

    for i = 1:3 

        subplot(3,1,i) 

        plot(time((index)*rows), accel3axes_IPG(i, 

(index)*rows),'r*',LineWidth=1.5) 

        time_stamp(1,i)= time((index)*rows); 
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        time_stamp(2,i)= accel3axes_IPG(i, (index)*rows); 

    end 

    time_stamps{idx}=time_stamp; 

end 

 

IPG STFT 
IPGaccel=accel3axes_IPG'; 

IPGfs=IPG_fs*rows; 

tConvIPG = time; 

channels = 3; 

IPGaccel(isnan(IPGaccel))=0; 

twin = 1.5; 

e = nextpow2(twin*IPGfs); 

Nfft = 2^e; 

LwinSTFT = round(twin*IPGfs); 

hwin = hanning(LwinSTFT); 

Noverlap = round(0.7*LwinSTFT); 

 

IPG_results = []; 

IPG_tremor_abs = []; 

IPG_all_abs= []; 

 

figure 

for j = 1:channels 

    subplot(channels,1,j) 

    [IPG_stft_synced, FIPG_synced, IPG_time] = stft(IPGaccel(:,j),IPGfs, 

'Window', hwin, 'FFTLength', Nfft, 'OverlapLength', Noverlap); 

    df = mean(diff(FIPG_synced)); 

    start = sum(FIPG_synced<2); 

    imagesc((1:(length(IPGaccel(:,j))/IPGfs)-1), 

FIPG_synced(start:end),abs(IPG_stft_synced(start:end,:))); 

    set(gca,'FontSize',18) 

    title('-Axis','FontSize',18) 

    xlabel('Time (Seconds)','FontSize',18) 

    ylabel('Frequency (Hz)','FontSize',18); 

    colorbar; 

    cb = colorbar; 

    cb.Label.String = 'Magnitude'; 

    cb.Label.FontSize = 18; 

    set(gca, 'YDir', 'normal') 

    IPG.stft{j} = IPG_stft_synced; 

 

    tremor_band=find(FIPG_synced >= 4 & FIPG_synced <= 7); 

    

IPG_tremor_abs=[IPG_tremor_abs;abs(IPG_stft_synced(tremor_band(1):tremor_band(e

nd),:))/LwinSTFT]; 

    IPG_all_abs=[IPG_all_abs;abs(IPG_stft_synced)]; 

end 

 

[s_1,n]=size(FIPG_synced); 

[n,s_2]=size(IPG_all_abs); 

 

IPG_all_mag=[]; 

for j=1:s_1 

    for k=1:s_2 

    IPG_all_mag(j,k) = sqrt((IPG_all_abs(j,k)).^2+(IPG_all_abs(s_1+j,k)).^2 + 

(IPG_all_abs(2*s_1+j,k)).^2 ); 

    end 
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end 

 

Plot IPG accelerometry with time stamps 
figure 

subplot(3,1,1); 

plot(time, x_samples); 

set(gca,'FontSize',18) 

title('IPG Acceleration X-Axis','FontSize',18) 

ylabel('a_x(G)','FontSize',18) 

hold on 

 

subplot(3,1,2); 

plot(time, y_samples); 

set(gca,'FontSize',18) 

title('IPG Acceleration Y-Axis','FontSize',18) 

ylabel('a_y(G)','FontSize',18) 

hold on 

 

subplot(3,1,3); 

plot(time, z_samples); 

set(gca,'FontSize',18) 

title('IPG Acceleration Z-Axis','FontSize',18) 

ylabel('a_z(G)','FontSize',18) 

hold on 

 

for k=1:m 

    for i=1:3 

        subplot(3,1,i) 

        plot(time_stamps{k}(1,i),time_stamps{k}(2,i),'r*',LineWidth= 3); 

    end 

end 

 

Load Apple Watch data 
[filename_apple, pathname] = uigetfile('*.csv', 'Select Apple Data'); 

apple_data = readmatrix([pathname filename_apple]); 

 

times=apple_data(:,1); 

a_x_samples=apple_data(:,2); 

a_y_samples=apple_data(:,3); 

a_z_samples=apple_data(:,4); 

 

Sync Apple Watch data with IPG data 
ipg_begining=time_struct(1); 

ipg_end=time_struct(end); 

i=0; 

detected_begin=1; 

detected_end=1; 

 

while detected_begin>=0 

    i=i+1; 

    apple_index_1=i; 

    detected_begin=ipg_begining-times(i)*1000; 
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end 

while detected_end>=0 

    i=i+1; 

    apple_index_2=i; 

    detected_end=ipg_end-times(i)*1000; 

end 

apple_unix=times(apple_index_1:apple_index_2); 

 

Plot raw Apple Watch data 
fs=1/mean(diff(apple_unix)); 

synced_time=[0:length(apple_unix)-1]/fs; 

figure 

subplot(3,1,1); 

plot(synced_time, a_x_samples(apple_index_1:apple_index_2)); 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration X-Axis','FontSize',18) 

ylabel('a_x(G)','FontSize',18) 

hold on 

 

subplot(3,1,2); 

plot(synced_time, a_y_samples(apple_index_1:apple_index_2)); 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration Y-Axis','FontSize',18) 

ylabel('a_y(G)','FontSize',18) 

hold on 

 

subplot(3,1,3); 

plot(synced_time, a_z_samples(apple_index_1:apple_index_2)); 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration Z-Axis','FontSize',18) 

ylabel('a_z(G)','FontSize',18) 

hold on 

 

accel3axes_apple = [a_x_samples(apple_index_1:apple_index_2)'; 

a_y_samples(apple_index_1:apple_index_2)'; 

a_z_samples(apple_index_1:apple_index_2)']; 

 

time_stamps_apple={}; 

 

for idx = 1:length(motor_task_start) 

    date = datetime(date_data(motor_task_start(idx)), 'InputFormat', 'dd-MMM-

yyyy HH:mm:ss','TimeZone','America/New_York'); 

    % Convert timesptamp to unix format 

    unix_time_1 = posixtime(date); 

    [num,index]=min(abs(apple_unix-unix_time_1)); 

    for i = 1:3 

        subplot(3,1,i) 

        plot(synced_time(index), accel3axes_apple(i,index),'r*',LineWidth=1.5) 

        time_stamp_apple(1,i)= synced_time(index); 

        time_stamp_apple(2,i)= accel3axes_apple(i, index); 

    end 

    time_stamps_apple{idx}=time_stamp_apple; 

end 
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Perform Apple Watch STFT and store results 
Appleaccel=accel3axes_apple'; 

tConvApple = synced_time; 

channels = size(Appleaccel,2); 

Appleaccel(isnan(Appleaccel))=0; 

twin = 1.5; 

e = nextpow2(twin*fs); % changes nfft value acccording to time window 

Nfft = 2^e; 

LwinSTFT = round(twin*fs); 

hwin = hanning(LwinSTFT); 

Noverlap = round(0.7*LwinSTFT); 

 

Apple_results = []; 

Apple_tremor_abs = []; 

Apple_all_abs= []; 

 

figure 

for j = 1:channels 

    subplot(channels,1,j) 

    [Apple_stft_synced, Apple_synced, Apple_time] = stft(Appleaccel(:,j),fs, 

'Window', hwin, 'FFTLength', Nfft, 'OverlapLength', Noverlap); 

    df = mean(diff(Apple_synced)); 

    start = sum(Apple_synced<2); 

    imagesc((1:(length(Appleaccel(:,j))/fs)-1), Apple_synced(start:end), 

abs(Apple_stft_synced(start:end,:))); 

    set(gca,'FontSize',18) 

    title('-Axis','FontSize',18) 

    xlabel('Time (Seconds)','FontSize',18) 

    ylabel('Frequency (Hz)','FontSize',18); 

    colorbar; 

    cb = colorbar; 

    cb.Label.String = 'Magnitude'; 

    cb.Label.FontSize = 18; 

    set(gca, 'YDir', 'normal') 

 

    tremor_band=find(Apple_synced >= 4 & Apple_synced <= 8); 

    

Apple_tremor_abs=[Apple_tremor_abs;abs(Apple_stft_synced(tremor_band(1):tremor_

band(end),:))]; 

    Apple_all_abs=[Apple_all_abs;abs(Apple_stft_synced)]; 

end 

 

[s_1,n]=size(Apple_synced); 

[n,s_2]=size(Apple_all_abs); 

Apple_all_mag=[]; 

for j=1:s_1 

    for k=1:s_2 

    Apple_all_mag(j,k) = 

sqrt((Apple_all_abs(j,k)).^2+(Apple_all_abs(s_1+j,k)).^2 + 

(Apple_all_abs(2*s_1+j,k)).^2 ); 

    end 

end 
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Plot hamming window in time domain 
win_t=(1:length(hwin))/fs; 

figure 

plot(win_t,hwin) 

set(gca,'FontSize',18) 

xlabel('Time (Seconds)','FontSize',18); 

ylabel('Amplitude','FontSize',18); 

title('Hamming Window Used in Short Time Fourier Transform ','FontSize',18); 

 

Plot frequency response of hamming window 
[H, f_win] = freqz(hwin, 1, 1024,fs); 

figure 

plot(f_win, abs(H)); 

set(gca,'FontSize',18) 

xlabel('Frequency (\times\pi rad/sample)','FontSize',18); 

ylabel('Magnitude','FontSize',18); 

set(gca,'YScale','log') 

title('Frequency Response of Hamming Window'); 

grid on; 

 

Plot tremor band and first two harmonics for IPG and Apple Watch accelerometry 
power_stamp_apple=[]; 

power_stamp_ipg=[]; 

tremor_band_titles={'3-7 Hz', '7-11 Hz', '13-18 Hz'}; 

tremor_bands=[3 7 7 11 13 18]; 

 

for k= 1:m 

    [number,apple_stamp]=min(abs(Apple_time-time_stamps_apple{k}(1,1))); 

    power_stamp_apple=[power_stamp_apple;apple_stamp]; 

    [number,ipg_stamp]=min(abs(IPG_time-time_stamps{k}(1,1))); 

    power_stamp_ipg=[power_stamp_ipg;ipg_stamp]; 

end 

harmonic_mag_results_apple=[]; 

harmonic_mag_results=[]; 

 

% IPG 

figure 

for k=1:length(tremor_bands)/2 

    harmonic_tremor_abs=[]; 

    harmonic_tremor_band=find(FIPG_synced >=tremor_bands(k*2-1) & FIPG_synced 

<=tremor_bands(k*2)); 

    

harmonic_tremor_abs=IPG_all_mag(harmonic_tremor_band(1):harmonic_tremor_band(en

d),:); 

    dist = trapz(harmonic_tremor_abs); 

    df = mean(diff(FIPG_synced)); 

    BW = FIPG_synced(harmonic_tremor_band(end))-

FIPG_synced(harmonic_tremor_band(1)); 
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    harmonic_mag_results= [harmonic_mag_results;10*log10(dist.*df/BW)]; 

    subplot(length(tremor_bands)/2,1,k) 

    plot(IPG_time,harmonic_mag_results(k,:)) 

    title(['IPG ' tremor_band_titles{k}]) 

    ylabel('Integral Power (dB)') 

    xlabel('Time (seconds)') 

    hold on 

    for j=1:m 

        subplot(length(tremor_bands)/2,1,k) 

        

plot(IPG_time(power_stamp_ipg(j)),harmonic_mag_results(k,power_stamp_ipg(j)),'r

*',LineWidth=1.5) 

    end 

end 

% IPG harmonics envelopes 

figure 

for k=1:length(tremor_bands)/2 

    w=round(5*length(IPG_time)/IPG_time(end)); 

    ones_m=ones(1,w); 

    

harmonic_envelope=conv(harmonic_mag_results(k,:),ones_m,'same')/length(ones_m); 

    subplot(length(tremor_bands)/2,1,k) 

    plot(IPG_time,harmonic_envelope) 

    title(['IPG Power Envelope' tremor_band_titles{k}]) 

    ylabel('Integral Power (dB)') 

    xlabel('Time (seconds)') 

    hold on 

        for j=1:m 

            subplot(length(tremor_bands)/2,1,k) 

            

plot(IPG_time(power_stamp_ipg(j)),harmonic_envelope(power_stamp_ipg(j)),'r*',Li

neWidth=1.5) 

        end 

end 

 

% Apple 

figure 

for k=1:length(tremor_bands)/2 

    harmonic_tremor_abs_apple=[]; 

    harmonic_tremor_band_apple=find(Apple_synced >=tremor_bands(k*2-1) & 

Apple_synced <=tremor_bands(k*2)); 

    

harmonic_tremor_abs_apple=Apple_all_mag(harmonic_tremor_band_apple(1):harmonic_

tremor_band_apple(end),:); 

    dist = trapz(harmonic_tremor_abs_apple); 

    df = mean(diff(Apple_synced)); 

    BW = Apple_synced(harmonic_tremor_band_apple(end))-

Apple_synced(harmonic_tremor_band_apple(1)); 

    harmonic_mag_results_apple= 

[harmonic_mag_results_apple;10*log10(dist.*df/BW)]; 

    subplot(length(tremor_bands)/2,1,k) 

    plot(Apple_time,harmonic_mag_results_apple(k,:)) 

    title(['Apple ' tremor_band_titles{k}]) 

    ylabel('Integral Power (dB)') 

    xlabel('Time (seconds)') 

    hold on 

    for j=1:m 

        subplot(length(tremor_bands)/2,1,k) 

        

plot(Apple_time(power_stamp_apple(j)),harmonic_mag_results_apple(k,power_stamp_

apple(j)),'r*',LineWidth=1.5) 

    end 

end 
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% Apple harmonics envelopes 

figure 

for k=1:length(tremor_bands)/2 

    w=round(5*length(Apple_time)/Apple_time(end)); 

    ones_m=ones(1,w); 

    

harmonic_envelope_apple=conv(harmonic_mag_results_apple(k,:),ones_m,'same')/len

gth(ones_m); 

    subplot(length(tremor_bands)/2,1,k) 

    plot(Apple_time,harmonic_envelope_apple) 

    title(['Apple Power Envelope ' tremor_band_titles{k}]) 

    ylabel('Integral Power (dB)') 

    xlabel('Time (seconds)') 

    hold on 

        for j=1:m 

            subplot(length(tremor_bands)/2,1,k) 

            

plot(Apple_time(power_stamp_apple(j)),harmonic_envelope_apple(power_stamp_apple

(j)),'r*',LineWidth=1.5) 

        end 

end 

 

Apple STFT spectrogram 
A=20*log10(Apple_all_mag(end/2:end,:)); 

A_norm=(A-

min(min(20*log10(Apple_all_mag))))./(max(max(20*log10(Apple_all_mag)))-

min(min(20*log10(Apple_all_mag)))); 

figure 

h=surf(Apple_time,Apple_synced(end/2:end),A_norm); 

set(gca,'FontSize',18) 

title('Apple STFT Spectrogram (Normalized)','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('Frequency (Hz)','FontSize',18) 

zlabel('Magnitude dB','FontSize',18) 

ylim([0,max(Apple_synced)]) 

xlim([0,max(Apple_time)]) 

set(h, 'EdgeColor', 'none'); 

colorbar 

grid off 

 

IPG STFT spectrogram 
A_IPG=20*log10(IPG_all_mag(end/2:end,:)); 

A_IPG_norm=(A_IPG-

min(min(20*log10(IPG_all_mag))))./(max(max(20*log10(IPG_all_mag)))-

min(min(20*log10(IPG_all_mag)))); 

figure 

h=surf(IPG_time,FIPG_synced(end/2:end),A_IPG_norm); 

set(gca,'FontSize',18) 

title('IPG STFT Spectrogram (Normalized)','FontSize',18) 
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xlabel('Time (Seconds)','FontSize',18) 

ylabel('Frequency (Hz)','FontSize',18) 

zlabel('Magnitude dB','FontSize',18) 

ylim([0,max(FIPG_synced)]) 

xlim([0,max(IPG_time)]) 

set(h, 'EdgeColor', 'none'); 

colorbar 

grid off 

 

Tremor detection using Apple Watch STFT 

apple_detecting=harmonic_mag_results_apple(1,:); 

tremor_detected=[]; 

peak=[]; 

detected=[]; 

t_sync=Apple_synced(end/2:end); 

for k = 1:length(apple_detecting) 

    detected=0; 

    if apple_detecting(k)>=-1 

        

[TF,P]=islocalmax(20*log10(Apple_all_mag(end/2:end,k)),'MinProminence',12); 

        amp=20*log10(Apple_all_mag(end/2:end,k)); 

        peaks=find(TF); 

        if isempty(peaks) 

            detected = 0; 

        elseif any((t_sync(peaks) >= 3 & t_sync(peaks) <= 7) | (t_sync(peaks) 

>= 7 & t_sync(peaks) <= 10)) 

            if any(amp(peaks)>=-25) 

                detected = 1; 

            end 

        else 

            detected=0; 

        end 

    end 

    tremor_detected=[tremor_detected;detected]; 

end 

 

figure 

stairs(Apple_time,tremor_detected) 

title("Apple STFT Tremor Detection") 

ylim([0 2]) 

 

Perform CWT on IPG accelerometry and plot results 
IPG_wave_abs=[]; 

figure 

for j = 1:channels % acceleration axis - x, y, or z 

    [IPG_wavelet, FIPG_wavelet] = cwt(IPGaccel(:,j),IPGfs); 

    %cwt(IPGaccel(:,j),IPGfs); 

    IPG_wave_abs=[IPG_wave_abs;abs(IPG_wavelet)]; 

    subplot(3,1,j) 

    h=surf(time,FIPG_wavelet,abs(IPG_wavelet)); 
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    set(gca,'FontSize',18) 

    title('-Axis','FontSize',18) 

    xlabel('Time (Seconds)','FontSize',18) 

    ylabel('Frequency (Hz)','FontSize',18) 

    ylim([0.18,max(FIPG_wavelet)]) 

    xlim([0,max(time)]) 

    %set(gca, 'YScale', 'log'); 

    set(h, 'EdgeColor', 'none'); 

    cb = colorbar; 

    cb.Label.String ='Magnitude'; 

    cb.Label.FontSize = 18; 

    grid off 

end 

 

[s_1,n]=size(FIPG_wavelet); 

[n,s_2]=size(IPG_wave_abs); 

 

IPG_wave_mag=[]; 

for j=1:s_1 

    for k=1:s_2 

    IPG_wave_mag(j,k) = sqrt((IPG_wave_abs(j,k)).^2+(IPG_wave_abs(s_1+j,k)).^2 

+ (IPG_wave_abs(2*s_1+j,k)).^2 ); 

    end 

end 

 

IPG_wave_db=flipud(20*log10(IPG_wave_mag)); 

wavelet_freq=flipud(FIPG_wavelet); 

 

A_IPG_wave_norm=(IPG_wave_db-min(min(IPG_wave_db)))./(max(max(IPG_wave_db))-

min(min(IPG_wave_db))); 

 

figure('Name', [filename_IPG '_' char(fn(indx))]) 

h=surf(time,wavelet_freq,A_IPG_wave_norm); 

set(gca,'FontSize',18) 

title('IPG Wavelet Scalogram (Normalized)','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('Frequency (Hz)','FontSize',18) 

ylim([0.18,max(wavelet_freq)]) 

xlim([0,max(time)]) 

%set(gca, 'YScale', 'log'); 

set(h, 'EdgeColor', 'none'); 

colorbar 

grid off 

 

Calculate IPG activity band average power 
plotting_av=[]; 

for k=1:length(time) 

    IPG_wave_amp=IPG_wave_db(:,k); 

    activity_band_i=wavelet_freq>=0.5 & wavelet_freq<=3; 

    IPG_wave_amp_st=10.^(IPG_wave_amp/20); 

    

average_power=trapz(wavelet_freq(activity_band_i),IPG_wave_amp_st(activity_band

_i))/(max(wavelet_freq(activity_band_i))-min(wavelet_freq(activity_band_i))); 

    plotting_av=[plotting_av,average_power]; 

end 

w=round(3*length(time)/time(end)); 

ones_m=ones(1,w); 

activity_envelope=conv(plotting_av,ones_m,'same')/length(ones_m); 
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figure('Name', [filename_IPG '_' char(fn(indx))]) 

subplot(2,1,1) 

plot(time,plotting_av) 

xlabel('Time (seconds)') 

ylabel('Average power') 

title('IPG 0.5-3 Hz Average Power') 

hold on 

 

subplot(2,1,2) 

plot(time,activity_envelope) 

xlabel('Time (seconds)') 

ylabel('Power Moving Average') 

title('IPG 0.5-3 Hz Moving Average') 

hold on 

 

IPG CWT tremor detection 
IPG_resting_tremor_detection=[]; 

IPG_act_trem_detection=[]; 

IPG_freq_amp_4_7=[]; 

IPG_freq_4_7_i=[]; 

transition_amp=[]; 

harmonic_freq=[]; 

harmonic_amp=[]; 

harmonic_index_1=[]; 

harmonic_index_2=[]; 

margin=0.01; 

 

for k=1:length(time) 

    % Initialize variables 

    activity= activity_envelope(k)>=1; 

    detected_resting_tremor=0; 

    detected_act_tremor=0; 

    IPG_wave_amp=IPG_wave_db(:,k); 

 

    % Find peaks to compare 

    [TF,P]=islocalmax(IPG_wave_amp); 

    peaks=find(TF); 

    [IPG_freq_amp_4_7,f_idx] = max(IPG_wave_amp(peaks(wavelet_freq(TF)>=3.5 & 

wavelet_freq(TF)<= 7.5))); 

    IPG_freq_4_7_i=peaks(wavelet_freq(TF)>=3.5 & wavelet_freq(TF)<= 7.5); 

    transition_amp=max(IPG_wave_amp(peaks(wavelet_freq(TF)>0.1 & 

wavelet_freq(TF)<= 0.5))); 

 

    % find harmonics and extract value if present 

    if ~isempty(IPG_freq_4_7_i) 

        harmonic_freq=2*wavelet_freq(IPG_freq_4_7_i(f_idx)); 

        harmonic_index_1=find(abs(wavelet_freq-harmonic_freq)<=margin); 

        if ~isempty(harmonic_index_1) 

            

harmonic_index_2=find(wavelet_freq==wavelet_freq(harmonic_index_1)); 

            harmonic_amp=IPG_wave_amp(harmonic_index_2); 

        end 

    end 

 

    % Detect and distinguish resting or activity tremor 
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    switch activity 

        case false 

            if (~isempty(IPG_freq_4_7_i) && ~isempty(IPG_freq_amp_4_7)) && 

(IPG_freq_amp_4_7 > 4) 

                detected_resting_tremor=1; 

            end 

        case true 

            if ((~isempty(harmonic_amp) && ~isempty(IPG_freq_amp_4_7)) && 

transition_amp < 15) && (IPG_freq_amp_4_7 > 20 && harmonic_amp > 15) 

                detected_act_tremor=1; 

            end 

    end 

 

    IPG_act_trem_detection=[IPG_act_trem_detection;detected_act_tremor]; 

    

IPG_resting_tremor_detection=[IPG_resting_tremor_detection;detected_resting_tre

mor]; 

end 

 

IPG_combined_tremor=IPG_resting_tremor_detection|IPG_act_trem_detection; 

 

Plot IPG resting tremor, activity tremor, and combined tremor detection 
figure('Name', [filename_IPG '_' char(fn(indx))]) 

subplot(3,1,1) 

stairs(time,IPG_resting_tremor_detection) 

title('IPG Resting Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (seconds)') 

ylim([0,2]) 

 

subplot(3,1,2) 

stairs(time,IPG_act_trem_detection) 

title('IPG Activity Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (seconds)') 

ylim([0,2]) 

 

subplot(3,1,3) 

stairs(time,IPG_combined_tremor) 

title('Combined IPG Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (seconds)') 

ylim([0,2]) 

 

% Plot tremor detection over original acceleration plots 

trem_i=find(IPG_combined_tremor==1); 

 

x_IPG_trem=NaN(size(x_samples)); 

x_IPG_trem(trem_i)=x_samples(trem_i); 

 

y_IPG_trem=NaN(size(y_samples)); 

y_IPG_trem(trem_i)=y_samples(trem_i); 

 

z_IPG_trem=NaN(size(z_samples)); 

z_IPG_trem(trem_i)=z_samples(trem_i); 

 

figure('Name', [filename_IPG '_' char(fn(indx))]) 

subplot(3,1,1) 

plot(time, x_samples, time, x_IPG_trem, 'r-') 
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set(gca,'FontSize',18) 

title('IPG Acceleration X-Axis','FontSize',18) 

ylabel('a_x(G)','FontSize',18) 

hold on 

 

subplot(3,1,2) 

plot(time, y_samples, time,y_IPG_trem, 'r-') 

set(gca,'FontSize',18) 

title('IPG Acceleration Y-Axis','FontSize',18) 

ylabel('a_y(G)','FontSize',18) 

hold on 

 

subplot(3,1,3) 

plot(time, z_samples,time, z_IPG_trem, 'r-') 

set(gca,'FontSize',18) 

title('IPG Acceleration Z-Axis','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('a_z(G)') 

hold on 

 

for k=1:m 

    for i=1:channels 

        subplot(3,1,i) 

        plot(time_stamps{k}(1,i),time_stamps{k}(2,i),'yo',LineWidth= 3); 

    end 

end 

 

Perform CWT on Apple Watch accelerometry and plot results 
Apple_wave_abs=[]; 

fb = 

cwtfilterbank(SignalLength=numel(synced_time),SamplingFrequency=fs,TimeBandwidt

h=60); 

figure 

for j = 1:channels 

    [Apple_wavelet, FApple_wavelet,coi,scaling] = 

cwt(Appleaccel(:,j),FilterBank=fb); 

    Apple_wave_abs=[Apple_wave_abs;abs(Apple_wavelet)]; 

    subplot(3,1,j) 

    h=surf(synced_time,FApple_wavelet,abs(Apple_wavelet)); 

    set(gca,'FontSize',18) 

    title('-Axis','FontSize',18) 

    xlabel('Time (Seconds)','FontSize',18) 

    ylabel('Frequency (Hz)','FontSize',18) 

    ylim([0.018,FApple_wavelet(1)]) 

    xlim([0,max(synced_time)]) 

    set(h, 'EdgeColor', 'none'); 

    colorbar 

    grid off 

    cb = colorbar; 

    cb.Label.String ='Magnitude'; 

    cb.Label.FontSize = 18; 

    grid off 

end 

 

[s_1,n]=size(FApple_wavelet); 
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[n,s_2]=size(Apple_wave_abs); 

 

Apple_wave_mag=[]; 

for j=1:s_1 

    for k=1:s_2 

    Apple_wave_mag(j,k) = 

sqrt((Apple_wave_abs(j,k)).^2+(Apple_wave_abs(s_1+j,k)).^2 + 

(Apple_wave_abs(2*s_1+j,k)).^2 ); 

    end 

end 

 

dif = diff(FApple_wavelet); 

dif = [dif(1); dif]; 

power_per_hz_w = Apple_wave_mag ./ df; 

power_per_hz_w=flipud(20*log10(power_per_hz_w)); 

 

Apple_wave_db=flipud(20*log10(Apple_wave_mag)); 

Apple_wavelet_freq=flipud(FApple_wavelet); 

 

Apple_wave_db_norm=(power_per_hz_w-

min(min(power_per_hz_w)))./(max(max(power_per_hz_w))-min(min(power_per_hz_w))); 

figure('Name', [filename_IPG '_' char(fn(indx))]) 

h=surf(synced_time,Apple_wavelet_freq,Apple_wave_db_norm); 

set(gca,'FontSize',18) 

title('Apple Wavelet Scalogram (Normalized)','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('Frequency (Hz)','FontSize',18) 

ylim([0.018,Apple_wavelet_freq(end)]) 

xlim([0,max(synced_time)]) 

%set(gca, 'YScale', 'log'); 

set(h, 'EdgeColor', 'none'); 

colorbar 

grid off 

 
Plot CWT filter bank 
signalLength = length(Appleaccel(:,1)); 

fb = cwtfilterbank(SamplingFrequency=fs,TimeBandwidth=60); 

figure 

freqz(fb); 

[psi,t] = wavelets(fb); 

figure 

plot(t,abs(psi(1,:))) 

hold on 

plot(t,abs(psi(end,:))) 

grid on 

title('Time-domain Wavelets') 

 
Calculate Apple Watch activity band average power 
plotting_av=[]; 

for k=1:length(synced_time) 

    A_wave_amp=Apple_wave_db(:,k); 

    activity_band_i=Apple_wavelet_freq>=0.01 & Apple_wavelet_freq<=3; 

    A_wave_amp_st=10.^(A_wave_amp/20); 

    

average_power=trapz(Apple_wavelet_freq(activity_band_i),A_wave_amp_st(activity_
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band_i))/(max(Apple_wavelet_freq(activity_band_i))-

min(Apple_wavelet_freq(activity_band_i))); 

    plotting_av=[plotting_av,average_power]; 

end 

w=round(3*length(synced_time)/synced_time(end)); 

ones_m=ones(1,w); 

activity_envelope=conv(plotting_av,ones_m,'same')/length(ones_m); 

 

figure 

subplot(2,1,1) 

plot(synced_time,plotting_av) 

set(gca,'FontSize',18) 

xlabel('Time (seconds)','FontSize',18) 

ylabel('Average power','FontSize',18) 

title('Apple 0.01-3 Hz Average Power','FontSize',18) 

hold on 

 

subplot(2,1,2) 

plot(synced_time,activity_envelope) 

set(gca,'FontSize',18) 

xlabel('Time (seconds)','FontSize',18) 

ylabel('Power Moving Average','FontSize',18) 

title('Apple 0.01-3 Hz Moving Average','FontSize',18) 

hold on 

 
Apple Watch CWT tremor detection 
resting_tremor_detection=[]; 

act_trem_detection=[]; 

A_freq_amp_4_7=[]; 

A_freq_4_7_i=[]; 

transition_amp=[]; 

harmonic_freq=[]; 

harmonic_amp=[]; 

harmonic_index_1=[]; 

harmonic_index_2=[]; 

margin=0.01; 

for k=1:length(synced_time) 

    % Initialize variables 

    activity= activity_envelope(k)>=0.04; 

    detected_resting_tremor=0; 

    detected_act_tremor=0; 

    A_wave_amp=Apple_wave_db(:,k); 

 

    % Find peaks to compare 

    [TF,P]=islocalmax(A_wave_amp); 

    peaks=find(TF); 

    [A_freq_amp_4_7,f_idx] = max(A_wave_amp(peaks(Apple_wavelet_freq(TF)>=3.5 & 

Apple_wavelet_freq(TF)<= 7.5))); 

    A_freq_4_7_i=peaks(Apple_wavelet_freq(TF)>=3.5 & Apple_wavelet_freq(TF)<= 

7.5); 

    transition_amp=max(A_wave_amp(peaks(Apple_wavelet_freq(TF)>0.1 & 

Apple_wavelet_freq(TF)<= 0.5))); 

 

    % find harmonics and extract value if present 

    if ~isempty(A_freq_4_7_i) 

        harmonic_freq=2*Apple_wavelet_freq(A_freq_4_7_i(f_idx)); 

        harmonic_index_1=find(abs(Apple_wavelet_freq-harmonic_freq)<=margin); 

        if ~isempty(harmonic_index_1) 
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harmonic_index_2=find(Apple_wavelet_freq==Apple_wavelet_freq(harmonic_index_1))

; 

            harmonic_amp=A_wave_amp(harmonic_index_2); 

        end 

    end 

 

    % Detect and distinguish resting or activity tremor 

    switch activity 

        case false 

            if ~isempty(A_freq_amp_4_7) && A_freq_amp_4_7>-40 

                detected_resting_tremor=1; 

            end 

        case true 

            if (~isempty(harmonic_amp) && ~isempty(A_freq_amp_4_7)) && 

(A_freq_amp_4_7>-20 && harmonic_amp > -25 && activity_envelope(k)<=0.08) 

                detected_act_tremor=1; 

            end 

    end 

 

    act_trem_detection=[act_trem_detection;detected_act_tremor]; 

    

resting_tremor_detection=[resting_tremor_detection;detected_resting_tremor]; 

end 

 

Apple_combined_tremor=resting_tremor_detection|act_trem_detection; 

 

Plot resting tremor, activity tremor, and combined tremor detection 
figure 

subplot(3,1,1) 

stairs(synced_time,resting_tremor_detection) 

title('Resting-Apple Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (Seconds)') 

ylim([0,2]) 

 

subplot(3,1,2) 

stairs(synced_time,act_trem_detection) 

title('Activity-Apple Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (Seconds)') 

ylim([0,2]) 

 

subplot(3,1,3) 

stairs(synced_time,Apple_combined_tremor) 

title('Combined-Apple Wavelet Detection') 

ylabel('Detection') 

xlabel('Time (Seconds)') 

ylim([0,2]) 

 

% Plot tremor detection over original acceleration plots 

trem_i=find(Apple_combined_tremor==1); 

x_apple=a_x_samples(apple_index_1:apple_index_2); 

y_apple=a_y_samples(apple_index_1:apple_index_2); 

z_apple=a_z_samples(apple_index_1:apple_index_2); 
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x_apple_trem=NaN(size(x_apple)); 

x_apple_trem(trem_i)=x_apple(trem_i); 

 

y_apple_trem=NaN(size(y_apple)); 

y_apple_trem(trem_i)=y_apple(trem_i); 

 

z_apple_trem=NaN(size(z_apple)); 

z_apple_trem(trem_i)=z_apple(trem_i); 

 

figure 

subplot(3,1,1) 

plot(synced_time, x_apple, synced_time, x_apple_trem, 'r-') 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration X-Axis','FontSize',18) 

ylabel('a_x(G)','FontSize',18) 

hold on 

 

subplot(3,1,2) 

plot(synced_time, y_apple, synced_time,y_apple_trem, 'r-') 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration Y-Axis','FontSize',18) 

ylabel('a_y(G)','FontSize',18) 

hold on 

 

subplot(3,1,3) 

plot(synced_time, z_apple,synced_time, z_apple_trem, 'r-') 

set(gca,'FontSize',18) 

title('Apple Watch Acceleration Z-Axis','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('a_z(G)','FontSize',18) 

hold on 

 

for k=1:m 

    for i=1:channels 

        subplot(3,1,i) 

        

plot(time_stamps_apple{k}(1,i),time_stamps_apple{k}(2,i),'yo',LineWidth= 3); 

    end 

end 

 

Compare Apple Watch and IPG CWT tremor detection 
int_time=min(min(synced_time),min(time)):0.01:max(max(synced_time),max(time)); 

Apple_interp=interp1(synced_time,double(Apple_combined_tremor),int_time,'neares

t'); 

IPG_interp=interp1(time,double(IPG_combined_tremor),int_time,'nearest'); 

 

trem_overlap=(Apple_interp==1)&(IPG_interp==1); 

 

trem_interp_values=int_time(trem_overlap); 

 

% compute pairwise time differences 

distances_to_Apple = synced_time'-trem_interp_values; 

distances_to_IPG = time'-trem_interp_values; 

 

% Find the closest indices 

[~, closest_Apple] = min(abs(distances_to_Apple)); 

[~, closest_IPG] = min(abs(distances_to_IPG)); 
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% Retrieve the original times 

original_times_Apple = unique(synced_time(closest_Apple)); 

original_times_IPG = unique(time(closest_IPG)); 

 

%logic array for when both IPG and Apple detect tremor 

Apple_overlap=ismember(synced_time,original_times_Apple); 

IPG_overlap=ismember(time,original_times_IPG); 

 

figure ('Name', [filename_IPG '_' char(fn(indx))]) 

subplot(3,1,1) 

stairs(time,IPG_combined_tremor) 

set(gca,'FontSize',18) 

ylim([0,2]) 

title('IPG-Tremor Detected','FontSize',18) 

ylabel('Detected','FontSize',18) 

subplot(3,1,2) 

stairs(synced_time,Apple_combined_tremor); 

set(gca,'FontSize',18) 

ylim([0,2]) 

title('Apple-Tremor Detected','FontSize',18) 

ylabel('Detected','FontSize',18) 

subplot(3,1,3) 

stairs(int_time,trem_overlap); 

set(gca,'FontSize',18) 

ylim([0,2]) 

title('Apple and IPG Overlap','FontSize',18) 

xlabel('Time (Seconds)','FontSize',18) 

ylabel('Detected','FontSize',18) 

 

% Compare Apple STFT vs Wavelet Detection 

int_time=min(min(synced_time),min(Apple_time)):0.01:max(max(synced_time),max(Ap

ple_time)); 

 

wavelet_interp=interp1(synced_time,double(Apple_combined_tremor),int_time,'line

ar', 'extrap'); 

stft_interp=interp1(Apple_time,tremor_detected,int_time,'linear', 'extrap'); 

 

apple_overlap=(wavelet_interp==1)&(stft_interp==1); 

 

apple_interp_values=int_time(apple_overlap); 

 

% compute pairwise time differences 

distances_to_wavelet = synced_time'-apple_interp_values; 

distances_to_stft = Apple_time-apple_interp_values; 

 

% Find the closest indices 

[~, closest_wavelet] = min(abs(distances_to_wavelet)); 

[~, closest_stft] = min(abs(distances_to_stft)); 

 

% Retrieve the original times 

original_times_wavelet = unique(synced_time(closest_wavelet)); 

original_times_stft = unique(Apple_time(closest_stft)); 

 

% logic array for when both IPG and Apple detect tremor 

wavelet_overlap=ismember(synced_time,original_times_wavelet); 

stft_overlap=ismember(time,original_times_stft); 

 

figure ('Name', [filename_apple '_' char(fn(indx))]) 

subplot(3,1,1) 

stairs(synced_time,Apple_combined_tremor); 

set(gca,'FontSize',18) 

ylim([0,2]) 
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title('Apple Wavelet Tremor Detection','FontSize', 18) 

ylabel('Detected','FontSize', 18) 

subplot(3,1,2) 

stairs(Apple_time,tremor_detected) 

set(gca,'FontSize',18) 

ylim([0,2]) 

title('Apple STFT Tremor Detection','FontSize', 18) 

ylabel('Detected','FontSize', 18) 

subplot(3,1,3) 

stairs(int_time,apple_overlap); 

set(gca,'FontSize',18) 

ylim([0,2]) 

title('Apple Wavelet vs STFT Overlap','FontSize', 18) 

xlabel('Time (Seconds)','FontSize', 18) 

ylabel('Detected','FontSize', 18) 

 

Plot frequencies at individual time points Apple Watch CWT 
find_this_time=177; 

time_index=find(synced_time>find_this_time, 1); 

y_wavelet=Apple_wave_db_norm(:,time_index); 

[TF,P]= islocalmax(y_wavelet); 

figure 

plot(Apple_wavelet_freq,y_wavelet) 

set(gca, 'FontSize', 18) 

title(sprintf('Frequency Power Normalized (Wavelet)\n%d Seconds Into Trial', 

find_this_time),'FontSize', 18); 

xlabel('Frequency (Hz)','FontSize', 18) 

ylabel('Power Content (Normalized)','FontSize', 18) 

xlim([0 max(Apple_wavelet_freq)]) 

ylim([0 1]) 

 

Plot frequencies at individual time points Apple Watch STFT 
find_this_time=175; 

time_index=find(Apple_time>find_this_time, 1); 

A=20*log10(Apple_all_mag(end/2:end,time_index)/(t_sync(2)-t_sync(1))); 

A_norm=(A-

min(min(20*log10(Apple_all_mag))))./(max(max(20*log10(Apple_all_mag)))-

min(min(20*log10(Apple_all_mag)))); 

t_sync=Apple_synced(end/2:end); 

figure 

plot(t_sync,A_norm) 

set(gca, 'FontSize', 18) 

title(sprintf('Frequency Power Normalized (STFT) \n%d Seconds Into Trial', 

find_this_time),'FontSize', 18); 

xlabel('Frequency (Hz)','FontSize', 18) 

ylabel('Power Content (Normalized)','FontSize', 18) 

xlim([0 max(t_sync)]) 

ylim([0 1]) 


