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Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.

Throughout this test, let N denote the set of positive integers; let Z
denote the set of integers; let Q denote the set of rational numbers; let

R denote the set of real numbers; and let C denote the set of complex

numbers.

NOTE: All solutions in this document were generated by AI and then

double-checked by a committee member.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Fall 2025 #1. Define f : R → R by

f(x) =

x2, x ∈ Q

x, x ∈ R \Q.

Find all points x ∈ R such that f is continuous at x. You do not need

to prove that your answer is correct.

We claim that f is continuous exactly at x = 0 and x = 1.

Let x0 ∈ R and suppose f is continuous at x0. Take a sequence (qn) of

rationals with qn → x0 and a sequence (rn) of irrationals with rn → x0.

Then by continuity,

lim
n→∞

f(qn) = f(x0) = lim
n→∞

f(rn).

But

lim
n→∞

f(qn) = lim
n→∞

q2n = x2
0, lim

n→∞
f(rn) = lim

n→∞
rn = x0.

Hence x2
0 = x0, so x0 ∈ {0, 1}.

We now check continuity at these points.

At x = 0. For any sequence xn → 0 in R, we have

f(xn) =

x2
n, xn ∈ Q,

xn, xn /∈ Q,

and in either case f(xn) → 0. Also f(0) = 02 = 0. Thus f is continuous

at 0.
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At x = 1. Similarly, for any sequence xn → 1,

f(xn) =

x2
n, xn ∈ Q,

xn, xn /∈ Q,

so f(xn) → 1. Since f(1) = 12 = 1, f is continuous at 1.

Therefore f is continuous exactly at x = 0 and x = 1.

Fall 2025 #2. For each subset of R below, answer the following

questions, and in each case justify your answer: (i) Is it closed? (ii) Is

it bounded? (iii) Is it compact?

(a)
{

1
n
| n ∈ N

}
(b) {m | m ∈ Z}
(c)

{
x ∈ R | −

√
2 ≤ x ≤

√
2
}

(a) A =
{

1
n
: n ∈ N

}
.

• A is bounded : 0 < 1
n
≤ 1 for all n.

• A is not closed : 0 is a limit point of A (since 1
n
→ 0), but 0 /∈ A.

• A is therefore not compact. In R, compact sets are exactly those

that are closed and bounded (Heine–Borel). A is not closed.

(b) B = {m : m ∈ Z}.

• B is unbounded : clearly |m| → ∞ as m → ±∞ in Z.
• B is closed : if (mk) is a convergent sequence in B, then its limit

must be an integer (since eventually the sequence is constant),

so all limit points of B lie in B.

• B is not compact : it is not bounded, hence not compact by

Heine–Borel.

(c) C = {x ∈ R : −
√
2 ≤ x ≤

√
2}.

• C is bounded : |x| ≤
√
2 for all x ∈ C.
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• C is closed : it is a closed interval [−
√
2,
√
2].

• C is compact : closed and bounded in R.

Fall 2025 #3. For all positive integers n, let

xn =
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n

1

n!
.

Show that the sequence (xn)
∞
n=1 is convergent.

Fall 2025 #3 (Cauchy–sequence solution). For all positive inte-

gers n, let

xn =
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n

1

n!
.

Fall 2025 #3 (Cauchy–sequence solution via alternating–series

tail estimate). For all positive integers n, let

xn =
1

1!
− 1

2!
+

1

3!
− · · ·+ (−1)n

1

n!
.

We show that (xn) is a Cauchy sequence.

Write ak =
1

k!
for k ≥ 1. Then (ak) is a decreasing sequence of positive

real numbers with ak → 0.

Let ε > 0 be given. Since ak → 0, there exists N ∈ N such that

aN+1 =
1

(N + 1)!
< ε.

Now take any m > n ≥ N . Consider the difference of partial sums:

xm − xn =
m∑
k=1

(−1)k+1ak −
n∑

k=1

(−1)k+1ak =
m∑

k=n+1

(−1)k+1ak.

This is a finite alternating sum whose first term in absolute value is

an+1, and whose terms an+1, an+2, . . . are decreasing.

By the usual estimate for alternating sums of decreasing positive terms

(i.e. the key step in the alternating series test), the absolute value of
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such a tail is at most the first omitted term:

|xm − xn| =

∣∣∣∣∣
m∑

k=n+1

(−1)k+1ak

∣∣∣∣∣ ≤ an+1 =
1

(n+ 1)!
≤ 1

(N + 1)!
< ε.

Since for every ε > 0 we can find N such that |xm − xn| < ε whenever

m,n ≥ N , the sequence (xn) is Cauchy. Because R is complete, (xn) is

therefore convergent.

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

Fall 2025 #4. Let E be a Banach space, equipped with the norm

∥ · ∥. Suppose that for all x, y ∈ E we have that

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
.

For all x, y ∈ E, define

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + i ∥x+ iy∥2 − i ∥x− iy∥2

)
.

Hint: As you go along in this problem, use the previous parts of the

problem. You can use a previous part even if you didn’t do that part.

(a) Show that for all x, y, z ∈ E,

⟨x+ y, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
y,

z

2

〉
.

Let w = z/2, so z = 2w. Then

⟨x+ y, z⟩ = ⟨x+ y, 2w⟩.

Using the definition and the parallelogram law repeatedly, one can

expand ∥x+y+2w∥2 and ∥x+y−2w∥2 and rewrite the result in terms
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of ∥x± w∥2 and ∥y ± w∥2; the algebra gives precisely

⟨x+ y, 2w⟩ = 2⟨x,w⟩+ 2⟨y, w⟩.

Replacing w with z/2 yields the desired identity.

(Any full solution can include the detailed expansions; the key point is

systematic use of the parallelogram identity.)

(b) Show that for all x, z ∈ E,

2
〈
x,

z

2

〉
= ⟨x, z⟩.

Again write w = z/2. Then z = 2w, and

⟨x, z⟩ = ⟨x, 2w⟩.

Applying the definition and the homogeneity of the norm ∥αu∥ =

|α|∥u∥, a direct computation yields

⟨x, 2w⟩ = 2⟨x,w⟩.

Thus 2⟨x, z/2⟩ = ⟨x, z⟩.

(c) Show that for all λ ∈ C and x, y ∈ E,

⟨λx, y⟩ = λ⟨x, y⟩.

First assume λ ∈ R, λ > 0. Using the definition and ∥λu∥ = |λ|∥u∥,
one checks that

⟨λx, y⟩ = λ⟨x, y⟩.
For λ < 0 this follows from ⟨−x, y⟩ = −⟨x, y⟩ (which itself is obtained

by applying (a) and (b) with x+ y = 0).

For general λ = a+ ib ∈ C, write

⟨(a+ib)x, y⟩ = ⟨ax, y⟩+⟨ibx, y⟩ = a⟨x, y⟩+i⟨bx, y⟩ = a⟨x, y⟩+ib⟨x, y⟩ = λ⟨x, y⟩,
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using the real homogeneity already established and the definition of

⟨ix, y⟩ (again via the norm and parallelogram law). Thus the identity

holds for all λ ∈ C.

(d) Show that ⟨·, ·⟩ is an inner product on E.

We must verify:

(i) Linearity in the first variable: Parts (a) and (b) together imply

⟨x+ y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,

and part (c) gives ⟨λx, z⟩ = λ⟨x, z⟩.
(ii) Conjugate symmetry: A direct computation from the definition

shows

⟨y, x⟩ = ⟨x, y⟩,
using the parallelogram law and the fact that ∥x + iy∥2 and

∥x− iy∥2 appear with conjugate coefficients.

(iii) Positive-definiteness: Taking y = x in the definition gives

⟨x, x⟩ = 1

4

(
∥2x∥2−∥0∥2+i∥x+ix∥2−i∥x−ix∥2

)
=

1

4
(4∥x∥2−0+i·0−i·0) = ∥x∥2 ≥ 0,

and ⟨x, x⟩ = 0 iff ∥x∥ = 0, i.e. iff x = 0.

Hence ⟨·, ·⟩ is an inner product.

(e) Show that ∥ · ∥ is the norm associated to ⟨·, ·⟩.

From (d)(iii) we have for all x,

⟨x, x⟩ = ∥x∥2.

Thus the norm induced by the inner product, ∥x∥⟨·,·⟩ :=
√

⟨x, x⟩, coin-
cides with the given norm ∥x∥.

And now, here are all the excruciating details for parts (a), (b), and (c).

Note that ℜ here means “real part” and ℑ means “imaginary part.”
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Fall 2025 #4: Detailed solutions for (a), (b), (c). Assume E is

a Banach space with norm ∥ · ∥ satisfying the parallelogram law

∥x+ y∥2 + ∥x− y∥2 = 2
(
∥x∥2 + ∥y∥2

)
, x, y ∈ E.

For x, y ∈ E define

⟨x, y⟩ = 1

4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
.

We now prove (a), (b), (c) with full details.

(a) Show that for all x, y, z ∈ E we have

⟨x+ y, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
y,

z

2

〉
.

Set w = z/2, so z = 2w. We will show

⟨x+ y, 2w⟩ = 2⟨x,w⟩+ 2⟨y, w⟩.

Real parts. Using the definition,

ℜ⟨u, v⟩ = 1

4

(
∥u+ v∥2 − ∥u− v∥2

)
.

So

4ℜ⟨x+ y, 2w⟩ = ∥x+ y + 2w∥2 − ∥x+ y − 2w∥2,
and

4ℜ
(
2⟨x,w⟩+2⟨y, w⟩

)
= 2

(
∥x+w∥2−∥x−w∥2

)
+2

(
∥y+w∥2−∥y−w∥2

)
.

Now apply the parallelogram law twice.

First with a = x+ w and b = y + w:

∥a+ b∥2 + ∥a− b∥2 = 2∥a∥2 + 2∥b∥2.

That is,

(1) ∥x+ y + 2w∥2 + ∥x− y∥2 = 2∥x+ w∥2 + 2∥y + w∥2.
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Second with a = x− w and b = y − w:

(2) ∥x+ y − 2w∥2 + ∥x− y∥2 = 2∥x− w∥2 + 2∥y − w∥2.

Subtracting (2) from (1) gives

∥x+y+2w∥2−∥x+y−2w∥2 = 2
(
∥x+w∥2−∥x−w∥2+∥y+w∥2−∥y−w∥2

)
.

Comparing with the expressions above,

4ℜ⟨x+ y, 2w⟩ = 4ℜ
(
2⟨x,w⟩+ 2⟨y, w⟩

)
,

hence

ℜ⟨x+ y, 2w⟩ = ℜ
(
2⟨x,w⟩+ 2⟨y, w⟩

)
.

Imaginary parts. Similarly,

ℑ⟨u, v⟩ = 1

4

(
∥u+ iv∥2 − ∥u− iv∥2

)
,

so

4ℑ⟨x+ y, 2w⟩ = ∥x+ y + 2iw∥2 − ∥x+ y − 2iw∥2,
and

4ℑ
(
2⟨x,w⟩+2⟨y, w⟩

)
= 2

(
∥x+iw∥2−∥x−iw∥2

)
+2

(
∥y+iw∥2−∥y−iw∥2

)
.

Now we repeat the parallelogram-law argument with w replaced by iw.

Note that the parallelogram law holds for all vectors in E, including

iw. So exactly as above we obtain

∥x+y+2iw∥2−∥x+y−2iw∥2 = 2
(
∥x+iw∥2−∥x−iw∥2+∥y+iw∥2−∥y−iw∥2

)
,

which implies

ℑ⟨x+ y, 2w⟩ = ℑ
(
2⟨x,w⟩+ 2⟨y, w⟩

)
.

Since the real and imaginary parts agree, we have

⟨x+ y, 2w⟩ = 2⟨x,w⟩+ 2⟨y, w⟩,

i.e.

⟨x+ y, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
y,

z

2

〉
.
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This proves (a).

(b) Show that for all x, z ∈ E we have

2
〈
x,

z

2

〉
= ⟨x, z⟩.

We use part (a) with y = 0. For all x, z we have

⟨x+ 0, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
0,

z

2

〉
.

So

⟨x, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
0,

z

2

〉
.

It remains to show ⟨0, w⟩ = 0 for all w ∈ E.

By definition,

⟨0, w⟩ = 1

4

(
∥0+w∥2−∥0−w∥2+i∥0+iw∥2−i∥0−iw∥2

)
=

1

4

(
∥w∥2−∥−w∥2+i∥iw∥2−i∥−iw∥2

)
.

But norms satisfy ∥w∥ = ∥−w∥ and ∥iw∥ = ∥− iw∥, so each difference

is 0, hence ⟨0, w⟩ = 0. Therefore

⟨x, z⟩ = 2
〈
x,

z

2

〉
,

which is exactly the desired identity.

(c) Show that for all λ ∈ C and x, y ∈ E,

⟨λx, y⟩ = λ⟨x, y⟩.

We break this into two steps: real scalars and multiplication by i.

Step 1: Additivity in the first variable. Combining (a) and (b) we get,

for all x, y, z ∈ E,

⟨x+ y, z⟩ = 2
〈
x,

z

2

〉
+ 2

〈
y,

z

2

〉
= ⟨x, z⟩+ ⟨y, z⟩.

Thus for each fixed z, the map x 7→ ⟨x, z⟩ is additive.
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Step 2: Real scalar multiples. First note that

⟨0, y⟩ = 0 and ⟨x, y⟩ = ⟨1 · x, y⟩.

Using additivity, we get for a positive integer n:

⟨nx, y⟩ = ⟨x+ · · ·+ x︸ ︷︷ ︸
n times

, y⟩ = ⟨x, y⟩+ · · ·+ ⟨x, y⟩︸ ︷︷ ︸
n times

= n⟨x, y⟩.

For n ∈ N, applying (b) repeatedly gives〈 x

2n
, y
〉
=

1

2n
⟨x, y⟩.

Combining these, for any dyadic rational r = m/2n (with m ∈ Z) we
obtain

⟨rx, y⟩ = r ⟨x, y⟩.

Now fix x, y and consider the function

ϕ(λ) := ⟨λx, y⟩ (λ ∈ R).

From the explicit formula in terms of the norm and the continuity of

the norm, ϕ is continuous in λ. Since dyadic rationals are dense in R
and ϕ(λ) = λ⟨x, y⟩ holds on that dense set, by continuity it holds for

all real λ:

⟨λx, y⟩ = λ⟨x, y⟩ for all λ ∈ R.

Step 3: Multiplication by i. We now compute ⟨ix, y⟩ explicitly from

the definition.

We use that ∥iu∥ = ∥u∥ for all u ∈ E (since ∥iu∥ = |i|∥u∥ = ∥u∥) and
that multiplying a vector by i or −i does not change its norm.

First,

ix+ y = i(x− iy), ix− y = i(x+ iy),

so

∥ix+ y∥2 = ∥x− iy∥2, ∥ix− y∥2 = ∥x+ iy∥2.
Also

ix+ iy = i(x+ y), ix− iy = i(x− y),
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so

∥ix+ iy∥2 = ∥x+ y∥2, ∥ix− iy∥2 = ∥x− y∥2.

Thus

⟨ix, y⟩ = 1

4

(
∥ix+ y∥2 − ∥ix− y∥2 + i∥ix+ iy∥2 − i∥ix− iy∥2

)
=

1

4

(
∥x− iy∥2 − ∥x+ iy∥2 + i∥x+ y∥2 − i∥x− y∥2

)
.

On the other hand,

i⟨x, y⟩ = i · 1
4

(
∥x+ y∥2 − ∥x− y∥2 + i∥x+ iy∥2 − i∥x− iy∥2

)
=

1

4

(
i∥x+ y∥2 − i∥x− y∥2 + i2∥x+ iy∥2 − i2∥x− iy∥2

)
=

1

4

(
i∥x+ y∥2 − i∥x− y∥2 − ∥x+ iy∥2 + ∥x− iy∥2

)
.

Comparing these two expressions, we see they are identical:

⟨ix, y⟩ = i⟨x, y⟩.

Step 4: General complex scalars. Let λ = a + ib ∈ C with a, b ∈ R.
Then

⟨λx, y⟩ = ⟨(a+ ib)x, y⟩ = ⟨ax, y⟩+ ⟨ibx, y⟩
by additivity in the first variable. Using real homogeneity from Step 2

and the i–homogeneity from Step 3, we get

⟨ax, y⟩ = a⟨x, y⟩, ⟨ibx, y⟩ = i b⟨x, y⟩.

Hence

⟨λx, y⟩ = a⟨x, y⟩+ ib⟨x, y⟩ = (a+ ib)⟨x, y⟩ = λ⟨x, y⟩.

This completes the proof of (c).

Fall 2025 #5. Let C[0, 1] the vector space of continuous real-valued

functions on [0, 1]. For all f ∈ C[0, 1], define

∥f∥ = |f(0)|+
∫ 1

0

|f(x)| dx.
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You may assume without proof that ∥ ·∥ defines a norm on C[0, 1]. Let

d be the metric associated to ∥ · ∥. Define g : [0, 1] → R by g(x) = 1;

define h : [0, 1] → R by h(x) = 0; and define j : [0, 1] → R by j(x) = x2.

Let A = {f ∈ C[0, 1] : f(0) = 0} .

(a) Find d(g, h).

(b) Find d(g, j).

(c) Find d(g, A).

(d) Is there a function f ∈ A such that d(g, f) = d(g, A)? Prove

that your answer is correct.

(a) Find d(g, h).

We have g − h = 1− 0 = 1, so

d(g, h) = ∥g−h∥ = |(g−h)(0)|+
∫ 1

0

|g(x)−h(x)| dx = |1|+
∫ 1

0

1 dx = 1+1 = 2.

(b) Find d(g, j).

Here g − j = 1− x2. Since 1− x2 ≥ 0 on [0, 1],

d(g, j) = ∥g−j∥ = |(1−x2)(0)|+
∫ 1

0

(1−x2) dx = 1+
[
x−x3

3

]1
0
= 1+

(
1−1

3

)
=

5

3
.

(c) Find d(g, A).

For f ∈ A we have f(0) = 0, so

d(g, f) = ∥g−f∥ = |g(0)−f(0)|+
∫ 1

0

|g(x)−f(x)| dx = 1+

∫ 1

0

|1−f(x)| dx.

Thus

d(g, A) = inf
f∈A

d(g, f) = 1 + inf
f∈A

∫ 1

0

|1− f(x)| dx.
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We claim that inff∈A
∫ 1

0
|1 − f(x)| dx = 0. Indeed, for each ε > 0,

define fε ∈ C[0, 1] by

fε(x) =


x
ε
, 0 ≤ x ≤ ε,

1, ε ≤ x ≤ 1.

Then fε ∈ A (since fε(0) = 0) and∫ 1

0

|1−fε(x)| dx =

∫ ε

0

∣∣∣1−x

ε

∣∣∣ dx =

∫ ε

0

(
1−x

ε

)
dx =

[
x−x2

2ε

]ε
0
= ε−ε

2
=

ε

2
.

Hence this integral can be made arbitrarily small, so the infimum is 0.

Therefore

d(g, A) = 1.

(d) Is there f ∈ A such that d(g, f) = d(g, A)?

We have d(g, A) = 1. If d(g, f) = 1, then from the formula above we

must have

1 +

∫ 1

0

|1− f(x)| dx = 1,

hence
∫ 1

0
|1 − f(x)| dx = 0, which implies 1 − f(x) = 0 for all x, i.e.

f(x) ≡ 1 on [0, 1]. But then f(0) = 1 ̸= 0, so f /∈ A. Thus no f ∈ A

can satisfy d(g, f) = 1 = d(g, A).

So there is no function f ∈ A such that d(g, f) = d(g, A).

Fall 2025 #6. Let

l2(C) =
{
x = (xn)n∈N :

∑
|xn|2 < ∞

}
.

As usual, for a sequence (xn) ∈ l2(C), define

∥(xn)∥2 =
√∑

|xn|2.

You may assume without proof that ∥ · ∥2 defines a norm on l2(C).

Let (αn) be a bounded sequence of complex numbers.

Define U : l2(C) → l2(C), x = (x1, x2, · · · , xn, · · · ) 7→ (0, α1x1, α2x2, · · · , αnxn, · · · ).
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(a) Verify that U is well-defined. In other words, prove that if

(x1, x2, · · · , xn, · · · ) ∈ l2(C), then

(0, α1x1, α2x2, · · · , αnxn, · · · ) ∈ l2(C).

(b) Prove that U is linear.

(c) Prove that U is continuous.

(d) Find ∥U∥, the operator norm of U .

Let

ℓ2(C) =
{
x = (xn)n∈N :

∞∑
n=1

|xn|2 < ∞
}
,

and define

∥(xn)∥2 =
( ∞∑
n=1

|xn|2
)1/2

.

Let (αn) be a bounded sequence of complex numbers: there

exists M ≥ 0 such that |αn| ≤ M for all n.

Define U : ℓ2(C) → ℓ2(C) by

U(x1, x2, . . . ) = (0, α1x1, α2x2, . . . ).

(a) U is well-defined.

Let x = (xn) ∈ ℓ2(C). Then
∞∑
n=1

|αnxn|2 ≤
∞∑
n=1

M2|xn|2 = M2

∞∑
n=1

|xn|2 < ∞.

Thus Ux ∈ ℓ2(C), so U is well-defined.

(b) U is linear.

For x = (xn) and y = (yn) and λ, µ ∈ C,

U(λx+µy) = U(λx1+µy1, λx2+µy2, . . . ) = (0, α1(λx1+µy1), . . . ) = λUx+µUy.

Hence U is linear.

(c) U is continuous.

For x ∈ ℓ2 we have

∥Ux∥22 =
∞∑
n=1

|αnxn|2 ≤ M2

∞∑
n=1

|xn|2 = M2∥x∥22.
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Thus ∥Ux∥2 ≤ M∥x∥2 for all x, so U is bounded, hence contin-

uous.

(d) Find ∥U∥, the operator norm.

From (c),

∥Ux∥2 ≤ M∥x∥2 for all x,

so ∥U∥ ≤ M := supn |αn|.
To see that ∥U∥ = M , fix ε > 0 and choose k such that

|αk| > M − ε (possible since M is the supremum). Let ek be

the sequence with 1 in the kth position and 0 elsewhere. Then

∥ek∥2 = 1 and

Uek = (0, . . . , 0, αk, 0, . . . ), so ∥Uek∥2 = |αk| > M − ε.

Thus

∥U∥ ≥ ∥Uek∥2 > M − ε.

Since ε > 0 is arbitrary, ∥U∥ ≥ M . Combined with ∥U∥ ≤ M ,

this yields

∥U∥ = sup
n

|αn|.

Fall 2025 #7. Let f(t) = t2 for t ∈ [−π, π], and extend it to be

2π-periodic on R.

(a) Find the Fourier series for f in trigonometric form.

(b) Use the result of Part (a) together with Parseval’s identity to

prove that

1 +
1

24
+

1

34
+

1

44
+ · · · = π4

90
.

Be sure to carefully justify both how you know that Parseval’s

identity applies in this situation as well as why this equation

follows from it.

Let f(t) = t2 on [−π, π] and extend it to be 2π-periodic.

(a) Find the Fourier series of f in trigonometric form.
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Since f is even, its Fourier series has only cosine terms:

f(t) ∼ a0
2

+
∞∑
n=1

an cos(nt), an =
1

π

∫ π

−π

f(t) cos(nt) dt.

First,

a0 =
1

π

∫ π

−π

t2 dt =
2

π

∫ π

0

t2 dt =
2

π
· π

3

3
=

2π2

3
.

For n ≥ 1,

an =
1

π

∫ π

−π

t2 cos(nt) dt =
2

π

∫ π

0

t2 cos(nt) dt.

Integrating by parts twice (or using a known formula) gives

an =
4(−1)n

n2
.

Thus

t2 ∼ a0
2

+
∞∑
n=1

an cos(nt) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nt).

(b) Use Parseval’s identity to prove

1 +
1

24
+

1

34
+

1

44
+ · · · = π4

90
.

Since f ∈ L2([−π, π]), Parseval’s identity applies:

1

π

∫ π

−π

|f(t)|2 dt = a20
2

+
∞∑
n=1

a2n,

where bn = 0 here.

Compute the left-hand side:

1

π

∫ π

−π

t4 dt =
2

π

∫ π

0

t4 dt =
2

π
· π

5

5
=

2π4

5
.
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For the right-hand side we use a0 =
2π2

3
and an = 4(−1)n

n2 :

a20
2

+
∞∑
n=1

a2n =
1

2

(2π2

3

)2

+
∞∑
n=1

16

n4
=

2π4

9
+ 16

∞∑
n=1

1

n4
.

Parseval’s identity gives

2π4

5
=

2π4

9
+ 16

∞∑
n=1

1

n4
.

Hence

16
∞∑
n=1

1

n4
=

2π4

5
− 2π4

9
= 2π4

(1
5
− 1

9

)
= 2π4 · 4

45
=

8π4

45
.

Dividing by 16,
∞∑
n=1

1

n4
=

π4

90
.

Thus

1 +
1

24
+

1

34
+

1

44
+ · · · = π4

90
.
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