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Department of Mathematics
Master’s Degree Comprehensive Examination Solutions

Analysis  Fall 2025
Gutarts, Hajaiej*, Krebs

Do at least two (2) problems from Section 1 below, and at least three
(3) problems from Section 2 below. All problems count equally. If you
attempt more than two problems from Section 1, the best two will be
used. If you attempt more than three problems from Section 2, the
best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)
so that your work will duplicate well. There should be a supply
available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where
directed and follow any instructions concerning identification

code numbers.

Throughout this test, let N denote the set of positive integers; let Z
denote the set of integers; let Q denote the set of rational numbers; let
R denote the set of real numbers; and let C denote the set of complex

numbers.

NOTE: All solutions in this document were generated by Al and then

double-checked by a committee member.




SECTION 1 — Do two (2) problems from this section. If you
attempt all three, then the best two will be used for your
grade.

Fall 2025 #1. Define f: R — R by

B 22, z€Q
flo) = z, x€R\Q.

Find all points x € R such that f is continuous at . You do not need
to prove that your answer is correct.

We claim that f is continuous exactly at z =0 and z = 1.

Let xy € R and suppose f is continuous at xy. Take a sequence (g,) of
rationals with ¢, — x¢ and a sequence (r,,) of irrationals with r, — z.

Then by continuity,
lim f(gn) = f(xo) = lim f(rn).

n—oo
But
lim f(g,) = lim ¢ = 23, lim f(r,) = lim r, = .
n—oo n—oo n—oo n—oo

Hence x3 = zg, so o € {0, 1}.

We now check continuity at these points.

At r = 0. For any sequence x,, — 0 in R, we have

@, meq,
f(xn) B Tny, Tn ¢ Q7

and in either case f(x,) — 0. Also f(0) = 0> = 0. Thus f is continuous
at 0.



At x = 1. Similarly, for any sequence z,, — 1,

2, x, €Q,

Tn, T, ¢ Q,

so f(x,) — 1. Since f(1) =12 =1, f is continuous at 1.

f(xn) =

Therefore f is continuous exactly at x =0 and = = 1.

Fall 2025 #2. For each subset of R below, answer the following
questions, and in each case justify your answer: (i) Is it closed? (ii) Is
it bounded? (iii) Is it compact?

(a) {%|n€N}
(b) {m | m € Z}
(c) {x€R| —\/§§x§\/§}

(a) A={l:neN}.

e A is bounded: 0 < % < 1 for all n.

e Ais not closed: 0 is a limit point of A (since £ — 0), but 0 ¢ A.

e A is therefore not compact. In R, compact sets are exactly those
that are closed and bounded (Heine-Borel). A is not closed.

(b) B={m:m e Z}.

e B is unbounded: clearly |m| — oo as m — +oo in Z.

e Bis closed: if (my) is a convergent sequence in B, then its limit
must be an integer (since eventually the sequence is constant),
so all limit points of B lie in B.

e B is not compact: it is not bounded, hence not compact by
Heine—-Borel.

(c)C={zcR:—V2<z<V2}

o C is bounded: |z| < /2 for all z € C.



o (' is closed: it is a closed interval [—\/5, \/5]
e (U is compact: closed and bounded in R.

Fall 2025 #3. For all positive integers n, let
1 1 1 1

Ty = — — =

EETARC TR TR

o0
n—

Show that the sequence (z,,)5°; is convergent.

Fall 2025 #3 (Cauchy—sequence solution). For all positive inte-

gers n, let
1 1 1 1

Fall 2025 #3 (Cauchy—sequence solution via alternating—series

tail estimate). For all positive integers n, let
1 1 1 1y 1
S TR T )

We show that (x,,) is a Cauchy sequence.

1
Write a5 = - for k > 1. Then (ay) is a decreasing sequence of positive

real numbers with a; — 0.

Let € > 0 be given. Since ay — 0, there exists N € N such that
1

=———<e¢.
A= N =

Now take any m > n > N. Consider the difference of partial sums:

O Z(—l)k+1ak . Z(_l)k—Hak _ Z (_1)k+lak‘
k=1 k=1 k=n+1

This is a finite alternating sum whose first term in absolute value is

any1, and whose terms a,1, G,y9,... are decreasing.

By the usual estimate for alternating sums of decreasing positive terms

(i.e. the key step in the alternating series test), the absolute value of



such a tail is at most the first omitted term:

m

Z (_1>k+1ak

k=n+1

1 < 1
n+1)! = (N+1)

‘xm - an| - S An41 =

‘<€.

Since for every € > 0 we can find N such that |z,, — x,| < & whenever
m,n > N, the sequence (z,) is Cauchy. Because R is complete, (z,,) is

therefore convergent.

SECTION 2 — Do three (3) problems from this section. If you
attempt more than three, then the best three will be used for
your grade.

Fall 2025 #4. Let E be a Banach space, equipped with the norm
|| - ||. Suppose that for all z,y € E we have that

2 2 2 2
2+ ylI* + llz —yll* =2 (=" + flyl°) -
For all z,y € F, define

1 . : : :
(.9) =5 (le+yl” = e —ylI* +ille + il =i o —y[)

Hint: As you go along in this problem, use the previous parts of the
problem. You can use a previous part even if you didn’t do that part.

(a) Show that for all x,y,z € E,
(r+y,2) = 2<$, §> + 2<y, g>

Let w = 2/2, so z = 2w. Then
(r+y,2) = (& +y,2w).

Using the definition and the parallelogram law repeatedly, one can

expand ||z +y+2wl||? and ||z +y — 2w||? and rewrite the result in terms
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of ||z £ w|* and ||y & w]||?; the algebra gives precisely
(o -+ ,2) = 2z, w) + 2y, w).

Replacing w with z/2 yields the desired identity.

(Any full solution can include the detailed expansions; the key point is
systematic use of the parallelogram identity.)

(b) Show that for all x,z € E,
2<a:, §> = (x, 2).

Again write w = z/2. Then z = 2w, and
(x,z) = (x,2w).

Applying the definition and the homogeneity of the norm |lau| =

|al||u]|, a direct computation yields
(x,2w) = 2(z,w).
Thus 2(z, 2/2) = (z, 2).

(c) Show that for all A € C and x,y € FE,

(Az,y) = Mz, y).

First assume A € R, A > 0. Using the definition and |[Au| = |A]||u]l,
one checks that

Az, y) = Mz, y).
For A < 0 this follows from (—z,y) = —(x,y) (which itself is obtained
by applying (a) and (b) with x +y = 0).

For general A = a 4 ib € C, write

((a+ib)z,y) = (ax,y)+(ibz, y) = a(z,y)+i(bz,y) = alz, y)+ib{z,y) = Xz, y),
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using the real homogeneity already established and the definition of

(1z,y) (again via the norm and parallelogram law). Thus the identity

holds for all A € C.

(d) Show that (-,-) is an inner product on E.

We must verify:

(1) Linearity in the first variable: Parts (a) and (b) together imply

<:L‘ t Y, Z> = <$,Z> + <ya Z>,

and part (c) gives (Az, z) = Az, 2).
(ii) Conjugate symmetry: A direct computation from the definition
shows

{y,2) = (z,y),
using the parallelogram law and the fact that ||z + dy||* and
|z — iy||? appear with conjugate coefficients.
(iii) Positive-definiteness: Taking y = = in the definition gives

1 1
(z,2) = 1(||2$||2—||0||2+i||iv+i$|!2—i|!iv—iiv!|2> = ;1(4||$||2—0+2"0—i'0) = [ll* >0,

and (z,z) =0 iff ||z|| =0, i.e. iff x = 0.

Hence (-, ) is an inner product.

(e) Show that || - || is the norm associated to (-, -).

From (d)(iii) we have for all z,
(z,2) = ||l=||*.

Thus the norm induced by the inner product, ||z||(.., := /(z, x), coin-

cides with the given norm ||z||.

And now, here are all the excruciating details for parts (a), (b), and (c).

Note that  here means “real part” and & means “imaginary part.”
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Fall 2025 #4: Detailed solutions for (a), (b), (c). Assume E is

a Banach space with norm || - || satisfying the parallelogram law
Iz +yll* + lo = yllI* = 2(ll=I* + lyl*), 2.y € E.

For xz,y € E define

1 : . . .
(@,9) = 1 (le + 2 = llz = oIl + illz + iy)l® = illo — iy)?).

We now prove (a), (b), (c¢) with full details.

(a) Show that for all z,y,z € £ we have

(x+y,2) = 2<1:, §> + 2<y, §>

Set w = z/2, so z = 2w. We will show

(x +y,2w) = 2(x,w) + 2(y, w).

Real parts. Using the definition,
1
R(u,0) = 7 (llu+ol* = [lu—of*).

So
AR(z + y,20) = ||z +y + 2w|?* — |z +y — 2w,

and

AR (2(z, w)+2(y, w)) = 2([lz+wl*~[lz—w]*) +2([ly+w]*—y—w]?).

Now apply the parallelogram law twice.

First with a =z + w and b = y + w:
lla+b* + lla = b]|* = 2{lal* + 2[|]|*.
That is,

(1) lz+y + 2wl|® + [l2 — yl* = 2|z + wl* + 2[ly +w|*.



Second with a =z —w and b =y — w:

(2) lz +y = 2w|® + [l — ylI* = 2l|lz — w]]* + 2lly — w]*.

Subtracting (2) from (1) gives
-ty 2wl lz-+y—20]? = 2o+~ o —wl P+ g+l ly—w]?).
Comparing with the expressions above,

ARz +y, 2w) = 4R (2(z, w) + 2(y, w)),

hence
Rle +y, 20) = R(2e, w) + 20y, w)).
Imaginary parts. Similarly,

S{u,0) = 3 (u+iol]? — flu— il]?).

|

S0
43z +y,2w) = ||z + y + 2iw|)* — ||z + y — 2iw]|?,

and
43(2(z, w)+2(y, w)) = 2(|lotiw]]* —[lz—iw]]*) +2(y+iw]]*[ly—iw]|*).
Now we repeat the parallelogram-law argument with w replaced by 7w.

Note that the parallelogram law holds for all vectors in F, including

1w. So exactly as above we obtain
byt 2] |-ty —2eo][* = 2( e | il i P~ i),
which implies

Sz +y, 2w) = (2(z, w) + 2(y, w)).

Since the real and imaginary parts agree, we have
(z+y,2w) = 2(z,w) + 2(y, w),

1.e.
z z
A =2(e.5) +2(u5)
(x +y,2) :zc2 + y2
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This proves (a).

(b) Show that for all z,z € £ we have
2
2<.CE, §> = (z, 2).

We use part (a) with y = 0. For all z, z we have

(x+0,2) = 2<x, §> + 2<0, §>

(x,z) = 2<x, §> + 2<O, §>

It remains to show (0,w) =0 for all w € E.

So

By definition,

1 . . . ‘ 1 i o
(0,w) = 7 (10wl =lj0—w|®+ilj0+iw|2=if]0—iw][?) = ( wlP=l|—wl+illiw|?~i] —iw]?).

4
But norms satisfy ||w|| = || —w|| and ||iw|| = || —iw]|, so each difference
is 0, hence (0, w) = 0. Therefore

(x,2) = 2<9:, §>,

which is exactly the desired identity.

(c) Show that for all A € C and z,y € F,

(Az,y) = Mz, y).

We break this into two steps: real scalars and multiplication by 1.

Step 1: Additivity in the first variable. Combining (a) and (b) we get,
for all x,y,z € E,

(x +y,2) = 2<x, §> + 2<y, g> = (x,z) + (y, 2).

Thus for each fixed z, the map x — (z, z) is additive.
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Step 2: Real scalar multiples. First note that
(0,y) =0 and (x,y) = (1-z,v).
Using additivity, we get for a positive integer n:

(ne,y) =@+ -+ zy) =&y +---+ &y =nzy).

(.

A Vv
n times n times

For n € N, applying (b) repeatedly gives

(39} = geten

Combining these, for any dyadic rational r = m/2" (with m € Z) we
obtain

(re,y) =r(z,y).

Now fix x,y and consider the function
d(A) = (A, y) (A eR).

From the explicit formula in terms of the norm and the continuity of
the norm, ¢ is continuous in A. Since dyadic rationals are dense in R
and ¢(A) = A(x,y) holds on that dense set, by continuity it holds for
all real A:

(Ax,y) = Mz, y) for all A € R.

Step 3: Multiplication by i. We now compute (iz,y) explicitly from
the definition.

We use that ||iu|| = ||u]| for all u € E (since ||iu|| = |i|||u|| = |Ju||) and

that multiplying a vector by ¢ or —i does not change its norm.

First,
ir+y=ilx —iy), iz —y =i(r +iy),
SO
liz +yl* = llz —ayll®,  [liz —ylI* = [l= + iy]|*
Also

iz +iy=i(z+vy), dr—iy=i(r—y),
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SO

iz + iyl = ||z + yl?, iz — iy||> = [lz — y||*.
Thus

Gz, y) = 5 iz + gl = iz =yl + illiz + iyl — illiz — iy))?)

1 . . . .
= (e =iyl = llz + igll* + illz + g = ille - ).

On the other hand,
ite,) =i 3 (e + ol = lle =yl +lle + iyl — illz — ig]?)
= 3 (il -yl — il =yl + 2+ il — 2z~ ig]?)
= 1 (il + 0l = ille — I — o+ il + 1z — i),
Comparing these two expressions, we see they are identical:

(iz,y) = i(z,y).

Step 4: General complex scalars. Let A\ = a +ib € C with a,b € R.
Then

(Az,y) = ((a +ib)z,y) = (az,y) + (ibz, y)
by additivity in the first variable. Using real homogeneity from Step 2
and the i—homogeneity from Step 3, we get

(az,y) = a(z,y), (ibx,y) = ib{x,y).

Hence
(Az,y) = a(z,y) +ib(z,y) = (a +ib)(z,y) = Mz, ).
This completes the proof of (c).

Fall 2025 #5. Let C]0, 1] the vector space of continuous real-valued
functions on [0, 1]. For all f € C[0, 1], define

ww=uwn+4|ﬂmwx
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You may assume without proof that || - | defines a norm on C|0, 1]. Let
d be the metric associated to || - ||. Define ¢g: [0,1] — R by g(x) = 1;
define h: [0,1] — R by h(z) = 0; and define j: [0,1] — R by j(z) = 2.
Let A={f e C[0,1] : f(0)=0}.

(a) Find d(g,h).
(b) Find d(g, j).
(c) Find d(g, A).
(d) Is there a function f € A such that d(g, f) = d(g, A)? Prove

that your answer is correct.

(a) Find d(g, h).
We have g —h=1—-0=1, so

1
d(g,h) = llg—hll = |(g |+/ . |dx_|1|+/ ldp =141 =2.

(b) Find d(g, ).
Here g —j =1 — 2% Since 1 —2* > 0 on [0, 1],

d(g,7) = |lg—jl = |(1—I2)<0)|+/01(1—x2) do = 1+[m—%r _ 1+<1_%) _

(c) Find d(g, A).
For f € A we have f(0) =0, so

i(0.9) = 9111 = 19O ~F O+ [ lotw)1@) o =15 [ =50l

Thus
d(g,A):mfd(g f)—l—l—mf/ |1 — f(x)|dx.
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We claim that infc fol |1 — f(x)|dz = 0. Indeed, for each ¢ > 0,

define f. € C[0,1] by

Then f. € A (since f.(0) =0) and

/0 1= fo(2)] do =

2

1—z’dx:/ (1——) dr = [x_£]£:5_§
€ 0 € 2elo 2

Hence this integral can be made arbitrarily small, so the infimum is 0.

Therefore
d(g,A) = 1.

(d) Is there f € A such that d(g, f) = d(g, A)?

We have d(g,A) = 1. If d(g, f) = 1, then from the formula above we

must have

1+/|1— x)|dr =1,

hence fol |1 — f(z)|dx = 0, which implies 1 — f(z) = 0 for all z, i.e.
f(z)=1on [0,1]. Butthenf( )=1%#0,s0 f¢ A Thusno f e A
f) =

can satisfy d(g, =d(g,A).
So there is no function f € A such that d(g, f) = d(g, A).

Fall 2025 #6. Let
B(C) = { = (@a)uer: I |zl < o0}

As usual, for a sequence (x,,) € I>(C), define

[(@n)l2 = \/ Z |22

You may assume without proof that || - ||2 defines a norm on *(C).

Let (o) be a bounded sequence of complex numbers.

Define U: I*(C) — I*(C), x = (x1, @9, -+ , Ty, -+ ) > (0, 101, Qog, - - -

€

y AnTp,y -t



(a) Verify that U is well-defined.

(1’1,1'2, Tyt ) € lz((C), then

(07Q1$17a2$27 L, Qndp, ) € ZQ(C)

(b) Prove that U is linear.
(c) Prove that U is continuous.
(d) Find ||U]|, the operator norm of U.

Let
A(C) = {& = @a)nen s 3 Joal? < o0},
n=1
and define

el = (3 la)

15

In other words, prove that if

Let (ay,) be a bounded sequence of complex numbers: there

exists M > 0 such that |a,| < M for all n.
Define U : ¢*(C) — ¢*(C) by

U(ZL’l,I‘Q, - ) = (O, a1T1,09T9, . .. )

(a) U is well-defined.
Let z = (z,) € £*(C). Then

9] oo oo
D lanzal* <M z,|? = MY |a,|” < oo
n=1 n=1

n=1

Thus Uz € (*(C), so U is well-defined.

(b) U is linear.
For x = (x,) and y = (y,) and A\, u € C,

UAz4py) = UAz1+pyy, Aoot-pys, - .. ) = (0, aq (A1 +pyr ),

Hence U is linear.

(c) U is continuous.
For = € (* we have

o0

o0
U2[l3 =) lanzal® < M? Y |zaf* = M]3,

n=1 n=1

) = AUz +uUy.
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Thus |Uz||s < M|z||2 for all z, so U is bounded, hence contin-

uous.

(d) Find ||U||, the operator norm.

From (c),
|Uzx|2 < M||z|2 for all x,

so || U] < M = sup, |a|.

To see that |U|| = M, fix € > 0 and choose k such that
|ag| > M — e (possible since M is the supremum). Let e; be
the sequence with 1 in the kth position and 0 elsewhere. Then
llex]l = 1 and

Uek:(ov"'707aka07---); SO ||U€]<;||2:|Oék|>M—€

Thus
Ul > |Uekl|la > M — e.

Since ¢ > 0 is arbitrary, |[U]| > M. Combined with ||U|| < M,
this yields
IU]| = sup |am].

Fall 2025 #7. Let f(t) = t* for t € [—m, 7], and extend it to be

2m-periodic on R.

(a) Find the Fourier series for f in trigonometric form.
(b) Use the result of Part (a) together with Parseval’s identity to

prove that

1 md

1 1
14+ — 4 — 4=
+ 24 + 34 + 44 + 90
Be sure to carefully justify both how you know that Parseval’s
identity applies in this situation as well as why this equation

follows from it.

Let f(t) =t on [—m, 7] and extend it to be 27-periodic.

(a) Find the Fourier series of f in trigonometric form.



Since f is even, its Fourier series has only cosine terms:

t) ~ 53 + ; a, (jos(nt)7 ap = p /7T f(t) COS(nt) dt

First,

1 /7 9 (7 9 1 ox
aoz—/ tZdt:—/tht:—-lzi.
s T Jo T 3 3

—T

For n > 1,
L[, 2 [T,
ap, = — t“cos(nt)dt = — [ t*cos(nt) dt.
T ) . 7 Jo
Integrating by parts twice (or using a known formula) gives
4(=1)"

n =
n2

Thus

o0

N——l—;ancosnt —% i

3

cos mf

(b) Use Parseval’s identity to prove

1+1+1+1+ _
24 1 34 7 g4 90’

Since f € L*([—m,n]), Parseval’s identity applies:
I -
- 2 dt = =2 E 2
where b,, = 0 here.

Compute the left-hand side:

1 /" 9 [T 9 x5 o
—/ t4dt:—/t4dt:—-1:l.
T T Jo ) D

—T

17
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27r
3

2 2 2 0 4

ag o L1272 16 2" Z

2+Za”_§<3)+ w9 T
n=1 n=1

For the right-hand side we use a¢ = and a,, = 4(;21 )"

Parseval’s identity gives

Hence

.1 2r*t  ort 1 1 4 8t
m}j—czl;—ilz2ﬁ(———>:2#-—<:ﬂA

— n4 5 9 5 9 45 45
Dividing by 16,
=1 B 4
n1n4_90
Thus
1 1 1 7r4
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