
Algebra Comprehensive Exam
Brookfield, Shaheen∗, Troyka

Answer at least five (5) questions. You must answer at least one from each of linear algebra,

groups, and synthesis. If you attempt more than five problems, then we will count the best

five that cover all three sections.

Linear algebra

(L1) Let V be a vector space over a field F . Let S = {v1, v2} be a set of two linearly

independent vectors in V . Let v ∈ V where v ̸∈ S. Prove that if S ∪ {v} is a linearly

dependent set, then v is in the span of S.

Answer: Suppose that S ∪ {v} is a linearly dependent set. Then c1v1 + c2v2 + c3v = 0 for

some c1, c2, c3 ∈ F where c1, c2, c3 are not all zero. If c3 = 0, then c1v1 + c2v2 = 0 where

c1, c2 are not both zero. But this would contradict that S is a linearly independent set.

Thus c3 ̸= 0. So v = −c−1
3 c1v1 − c−1

3 c2v2. Thus v is in the span of S.

(L2) Let V and W be vector spaces and ϕ : V → W a bijection. Show that ϕ is linear if

and only if ϕ−1 is linear.

Answer: Since the inverse of a bijection is a bijection it suffices to prove only one direction.

Suppose that ϕ is linear. Then

ϕ(c1ϕ
−1(w1) + c2ϕ

−1(w2)) = c1ϕ(ϕ
−1(w1)) + c2ϕ(ϕ

−1(w2)) = c1w1 + c2w2

for all w1, w2 ∈ W and scalars c1 and c2, and so

ϕ−1(c1w1 + c2w2) = ϕ−1(ϕ(c1ϕ
−1(w1) + c2ϕ

−1(w2))) = c1ϕ
−1(w1) + c2ϕ

−1(w2)

This shows that ϕ−1 is linear.

(L3) Let V be a vector space over a field F , and let T : V → V be a linear operator.

Suppose T 2 = 0. If λ is an eigenvalue of T , then prove that λ = 0.

Answer: Let v ∈ V be a eigenvector of T with eigenvalue λ. This means that v ̸= 0 and

T (v) = λv. But T 2(v) = 0 (since T 2 = 0), so

0 = T 2(v) = T (T (v)) = T (λv) = λT (v) = λλv = λ2v.

Therefore, λ2v = 0. Since v ̸= 0, we conclude that λ2 = 0 and so λ = 0.
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Groups

(G1) Prove that the group of real numbers R is not a cyclic group under addition.

Answer: Suppose that R was cyclic. Then there exists x ∈ R with x ̸= 0 and

R = ⟨x⟩ = {. . . ,−3x,−2x,−x, 0, x, 2x, 3x, . . .}

But x
2 ∈ R and x

2 ̸∈ ⟨x⟩. Contradiction. Thus R is not cyclic.

OR

All infinite cyclic groups are isomorphic to Z and thus are countable. R is uncountable.

Thus R is not cyclic.

(G2) Let N and H be subgroups of a group G such that N is normal in G. Show that

H ∩N is normal in H.

Answer: Let π : G → G/N be the natural homomorphism with kerπ = N . Then π restricts

to a homomorphism from H to G/N . Then the kernel of the restricted homomorphism,

namely N ∩H, is normal in H.

OR

Let h ∈ H and n ∈ N ∩H. Then, since h ∈ G and N ⊴ G, we have h−1nh ∈ h−1Nh = N .

Since h, n ∈ H, we have h−1nh ∈ H. Thus h−1nh ∈ H ∩N for all n ∈ H ∩N and h ∈ H,

that is, H ∩N is a normal subgroup of H.

(G3) The center of a group G, denoted Z(G), is defined to be the set of elements G which

commute with all elements of G: that is,

Z(G) = {x ∈ G : gx = xg for all g ∈ G}.

If H and K are groups, then prove that Z(H ×K) = Z(H)× Z(K) (i.e. the center of the

direct product is equal to the direct product of the centers).

Answer: Let 1H and 1K denote the identity elements of H and K respectively.

(⊆): Let (x, y) ∈ Z(H × K). We will prove that (x, y) ∈ Z(H) × Z(K) by proving that

x ∈ Z(H) and y ∈ Z(K). First, for all h ∈ H, we have

(hx, y) = (h, 1K)(x, y) = (x, y)(h, 1K) = (xh, y),

so hx = xh. Therefore x ∈ Z(H). A similar calculation with (x, y) and (1H , k) shows that

y ∈ Z(K). Therefore, (x, y) ∈ Z(H)× Z(K).

(⊇): Let (x, y) ∈ Z(H) × Z(K), meaning that x ∈ Z(H) and y ∈ Z(K). Then, for all

(h, k) ∈ H ×K, we have hx = xh and ky = yk, so

(h, k)(x, y) = (hx, ky) = (xh, yk) = (x, y)(h, k).

Therefore, (x, y) ∈ Z(H ×K).
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Synthesis

(S1) Prove that SL(2,R) =

{(
a b

c d

) ∣∣∣∣∣ ad− bc = 1

}
is a subgroup of GL(2,R). Then

prove that SL(2,R) is a normal in GL(2,R).

Answer: First we should show that SL(2,R) is a subgroup of GL(2,R). Note that the

identity matrix I =

(
1 0

0 1

)
has determinant 1. Thus I ∈ SL(2,R). Let A,B ∈ SL(2,R).

Then det(AB−1) = det(A)det(B)−1 = 1 · 1 = 1. So AB−1 ∈ SL(2,R). Thus SL(2,R) is a

subgroup of GL(2,R).
Now we show that it is a normal subgroup. Let A ∈ SL(2,R) and B ∈ GL(2,R). Then

det(B−1AB) = det(B−1)det(A)det(B) = det(B−1) · 1 · det(B) = det(B−1B) = det(I) = 1.

Thus B−1AB ∈ SL(2,R).
OR

SL(2,R) is the kernel of the homomorphism det : GL(2,R) → R∗, and the kernel of a

homomorphism is a normal subgroup.

(S2) Suppose A,B ∈ GL2(R). Show that, if A and B are conjugate, then they have the

same eigenvalues. Is the converse true?

Answer: If A and B are conjugate, then A = SBS−1 for some S ∈ GL2(R). The eigenvalues
of A and B are the roots of the characteristic polynomials of these matrices, so to prove

the claim it suffices to show that A and B have the same characteristic polynomials:

det(A− λI) = det(SBS−1 − λI) = det(S(B − λI)S−1)

= det(S) det(B − λI) det(S−1) = det(B − λI)

The matrices I and

[
1 1

0 1

]
have the same characteristic polynomial, but they are not

conjugate since the conjugacy class of I is {I}

(S3) Let C∗ denote the group of non-zero complex numbers under multiplication. Define

ϕ : C∗ → GL(2,R) by

ϕ(a+ bi) =

(
a −b

b a

)
(where a, b ∈ R). (a) Prove that ϕ is a group homomorphism. (b) Is ϕ injective? Is ϕ

surjective? Prove your answers.

Answer: If a+ bi, c+ di ∈ C∗ with a, b, c, d ∈ R, then

ϕ((a+ bi)(c+ di)) = ϕ((ac− bd) + (ad+ bc)i) =

(
ac− bd −ad− bc

ad+ bc ac− bd

)
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and

ϕ(a+ bi)ϕ(c+ di) =

(
a −b

b a

)(
c −d

d c

)
=

(
ac− bd −ad− bc

ad+ bc ac− bd

)
.

Therefore, ϕ((a+ bi)(c+ di)) = ϕ(a+ bi)ϕ(c+ di), so ϕ is a homomorphism.

ϕ is injective: if ϕ(a+ bi) =

(
1 0

0 1

)
, then

(
a −b

b a

)
=

(
1 0

0 1

)
,

which implies a = 1 and b = 0, so a+ bi = 1. Thus ker(ϕ) = {1}.

ϕ is not surjective: for instance,

(
1 0

0 2

)
∈ GL(2,R) is not equal to

(
a −b

b a

)
for some

a, b ∈ R.


