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ABSTRACT 

Large-Scale Simulation of Microstructural Evolution in Alloy Solidification 

By 

Nicholas Anthony Cusato 

During the past two decades, researchers have shown interest in large-scale 

simulations to analyze alloy solidification. These simulations provide the basis for 

understanding important industrial applications using various numerical schemes to solve 

for two main phenomena: transport and morphology evolution. Transport phenomena that 

consist of heat transfer, diffusion, and fluid flow whereas the evolution of morphology 

needs models to capture the solid/liquid interface during solidification. Regardless of the 

technique, understanding complex, real-world phenomena requires large-scale 

simulations that can be achieved using parallelization techniques, such as MPI and 

CUDA. This thesis outlines the advances in both mathematical models and computational 

hardware/software that enable large-scale simulations of solidification microstructure. 

The secondary purpose of this thesis is to present a solution for measuring permeability, 

as well as performing simulations of large-scale. The lattice Boltzmann method was 

utilized to simulate the fluid flow in order to measure the permeability of the structure. 

Phase field method was used to capture the solidification morphology while finite 

difference method was used to solve for solute diffusion and the phase field equations. 

The simulations provide greater insight into higher-order branching and the parameters 

required to scale performance.  In addition, methods were developed for importing 3D 

experimental or simulation morphologies into the code for permeability calculations. 
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CHAPTER 1  

Introduction 

The research in simulation of dendritic growth during alloy solidification used to be 

limited to small-scale, single dendrites that do not fully capture all of the physics behind 

solidification. The computation power and cost required for more superb analysis have 

been the main hindrance for performing more complex, large-scale simulations. This 

thesis outlines the advances in both mathematical models and computational 

hardware/software that enable large-scale simulations of solidification microstructure, 

including features and applications of the simulations. The secondary purpose of this 

thesis is to present a solution for measuring permeability, as well as performing 

simulations of large-scale. Discussing optimization and comparison of the techniques to 

provide a comprehensive understanding of simulating microstructural evolution of alloys.  

Large-scale simulations of dendritic growth can greatly benefit manufacturing and 

materials engineers and scientists offering a detailed understanding of microstructural 

evolution during solidification processes. Reducing the trial and error of the 

manufacturing process, the simulations save time, giving greater understanding to the 

microstructure and defect formation. Many advances in in-situ X-ray observations of 

solidification have identified areas that can benefit from large-scale realistic modeling of 

dendrites Lee and Hunt [1] first examined slabs of Al-Cu alloys for hydrogen pores in 

situ during directional solidification (DS). They discovered that as the growth speed of 

dendrites increases, along with hydrogen content, the pores’ shape evolves into a “worm-

hole-like” shape. Defects that form can be caused by numerous conditions, such as gas 

bubbles, segregation, tears, among other factors which can be difficult to predict, due to 
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the rheological behavior of the mushy zone [2], [3]. This cycle of casting and taking x-

rays of the samples are both costly and time consuming. Therefore, a lot of research has 

been conducted to understand the physics behind these defects [4]–[11] and reproducing 

them using computer simulations. Initial simulations produced two-dimensional (2D) 

axisymmetric, branchless features that lacked details needed to understand the issues that 

develop during manufacturing processes. There are three-dimensional (3D) aspects that 

are not captured by 2D simulations. However, 3D simulations require extensive 

computing power and algorithms to scale. Recent advances in large-scale simulation of 

solidification microstructure have produced some astonishing new discoveries [12]. This 

has been made possible thanks to development in parallelization and supercomputing. 

State-of-the-art hardware and algorithm techniques have enabled researchers to produce 

computations that used to be seen as impossible. The ability to see high resolution in the 

formation of microstructures has never been more accessible. The size, spacing, and 

morphology of dendritic arms show a significant effect on the solidified materials' 

properties [1].  

Solidification modeling is a complex multiphysics problem, including fluid flow, 

heat, and solute diffusion aspects. There is also a need to solve equations for phase 

change or track the interface to simulate the morphology. The morphology of the 

dendrites can be captured using Cellular Automaton (CA), Phase-field (PF), Direct-

Interface-Tracking (DIT), Level-Set (LS), or Dendritic Needle Networks (DNN) methods 

[21]. In terms of reproducing physics, PF is one of the best methods to simulate dendrite 

growth accurately, comparing to front-tracking, boundary integral methods, and CA. 

However, depending on the aspect under consideration, each method has its own 
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strengths and shortcomings. The majority of large-scale simulations of dendrite growth 

use PF and CA methods. The transport phenomena, which consists of either heat transfer, 

diffusion, and fluid flow, can be solved using Finite Element (FE), Finite Difference 

(FD), Finite Volume (FV), or Lattice-Boltzmann (LB) methods. Scalability is 

accomplished using computational approaches that can take advantage of the increasing 

number of processing units. The selected numerical methods need to be scalable, making 

it easier to implement different parallelization techniques, using threads, Message Passing 

Interface (MPI) [13]–[18], and Compute Unified Device Architecture (CUDA) [19]–[22] 

among other methods. Reducing computational time is still a challenge for large-scale 

simulation. Therefore, many strategies have been developed over the years to address 

computational time. Some of the researchers have focused on utilizing parallel computing 

algorithms to speed up the simulation. Others have tried to optimize the meshing method 

and reduce the overall computational time by using the adaptive mesh refinement (AMR) 

strategy [55] or applying different grid size and time step methods [24], [25]. 

From computational power point of view, technology is increasing towards Moore's 

law and the exascale era is already upon us [29]–[31][6]. Supercomputing has provided a 

small deviation from expectations, now known as the post-Moore era [29], [30]. Now the 

strategy for increasing the ability to model dendritic solidification is finding limitations in 

mathematical models and algorithms. This limitation is partly associated with 

interpolation of the quantities around the interface of the dendrite where sharp gradients 

are present. By implementing an adaptive grid refinement model, the code's capability 

will be extended to more accurate prediction of the interfacial region. In the AMR 

algorithm, finer grids are used for sharp gradients regions, such as solid-liquid interface, 
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while the mesh coarsens in the rest of the computational domain. As a result, most 

computation time is spent solving the region occupied by the mushy zone. This method 

has been used by many researchers separately or in combination with other parallelization 

methods to reduce the computational time [12]–[14]. Recently, parallel-GPU AMR has 

shown great promise to combine the effectiveness of the AMR scheme with the power of 

GPU computing [31]–[33]. This allows for high-speed simulations of purely diffusive 

dendrite growth.   

The outstanding large-scale simulations have inspired many researchers to perform 

analysis on realistic grain growth. As an example, Miyoshi et al. [34] conducted a phase-

field simulation study of ideal grain growth in an ultra-large-scale domain. Using a 

supercomputer, TSUBAME 2.5 at the Tokyo Institute of Technology, which consists of 

1408 nodes, the team was able to investigate the number of sample grains that are 

necessary for repeatable results for grain size distributions. The largest domain consisted 

of 25603 grid points, which consisted of 3,125,00 initial grains. After 100,000 timesteps, 

0.4% of the initial grains remained. At this time and scale, it was the largest simulation 

performed by a factor of 10. This was an effective performance for observing and 

quantifying the steady-state growth behaviors. Another impressive simulation of large-

scale was performed by Sakane et al. [38][11] using a quantitative PF model to simulate a 

dilute binary alloy’s (Al-3 wt%Cu) grain growth under the influence of forced 

convection. A directional solidification condition was produced in a system with 

dimensions of 3.072x3.078x3.072 mm3. The computation of 10243 mesh points, during 

60,000 steps, was completed using 128 GPUs within four hours. Their PF model could 
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provide consistent results independent of the interface thickness. An LB model was 

coupled for simulating the melt flow. 

The literature review here aims to highlight important research on large-scale 

simulation of dendritic growth and other microscale solidification features. We will 

discuss numerical methods as well as computational approaches used for producing 

large-scale simulations of solidification microstructure. The actual domain size of these 

simulations depends on the physics considered and the features that are being simulated. 

The structure of the literature review will focus on the increasing complexity of features. 

First, simulating the morphology is discussed in comparison of the methods. Secondly, 

many case studies will be discussed in the following order: dendritic interactions and 

competitive growth, columnar to equiaxed transition, solute transport and segregation, 

natural and forced convection, permeability, and lastly, applications for additive 

manufacturing (AM). The details for each subject are outlined with respect to both the 

mathematical/computational models as well as the physical nature of the simulations.  

Background 

There are many unique use-cases for large-scale simulations of solidification 

microstructure. The original focus of initial works was to provide a large macroscale 

domain for the direct numerical simulation of dendrites. Stochastic-based methods of 

modeling [36], [37] were used to produce larger simulation domains. They had to 

produce special dynamic allocation techniques to minimize the computation costs for the 

large number of cells [38]. The trade-off between 2D and 3D is important for distinct use 

cases. A dendrite growing in a 3D domain versus a 2D domain in the presence of 

convection will experience less effect of flow on its growth and morphology. This is 
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because of the obvious reason that the moving melt can flow around the dendrite arms in 

3D. We studied the comparison of natural convection and forced convection on a single 

dendrite evolution in 2D and 3D using LB [39]. 3D dendrites grow faster than 2D, while 

secondary arms are also more likely to form. Jegatheesan et al. [40] studied the effects of 

distributing nanoparticles in a buoyancy driven convection solidification, using an 

enthalpy-based method. When considering methods for convection, reduction in volume 

from solidification (shrinkage driven flow), was not considered as it was studied only in 

2D. However, adding a third dimension showed improved nanoparticle transport, due to 

the enhanced diffusion.  

 In a 3D space, competitive growth can be studied in detail, which cannot be 

expressed in 2D. When a dendrite enters the space of another, dendritic branches can 

block the growth based on orientation. Sakane et al. [41] studied the dendrite interactions 

in directional solidification of an Al-Cu binary alloy bicrystal using 512 GPUs with 

10243 meshes. Figure 1 shows this interaction at 600,000 steps, where a tertiary arm is 

interacting with a secondary arm. A PF-LB model was utilized with MPI to demonstrate 

that 3D phase field simulations can be performed within reasonable computation time (12 

hours). 
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Figure 1: 3D model of dendrite interaction showing tertiary arm growth for unfavorably oriented dendrite 

[41]. 

Another helpful comparison of 2D and 3D simulations of dendrite growth was 

accomplished by Sun et al. [42], comparing the effectiveness of the multi-component 

(MC) PF model. In this case, a 2D simulation of Ti6Al4V was performed using Al and V 

solute simultaneously, which was the first of its kind. The results showed that the driving 

force and growth are magnified artificially in the pseudo-binary in comparison to the MC 

(ternary) PF model, violating the sharp interface (Figure 2). As a result of the benchmark 

comparisons, the MC PF model was scaled into a 3D model, using a 5123 nodal box with 

a capillary length of 0.840 µm. Using 4 Tesla K80 GPUs for a total of nearly 20k cores, 

the resulting simulation showed that the inhibited growth of the shortest dendrite by 

diluted Al (V) was merged by its surrounding dendrites. This phenomenon has been 

studied experimentally in additive manufacturing for incremental arm spacing and 

coarsening of primary dendrites. Special computational approaches are required to 

capture this detail. 



 

 8 

 

Figure 2: (1) Comparison of pseudo-binary model (a) and MC model (b); (2) 3D Simulation of 99 

nucleation seeds; (3) 2D evaluation of solute concentration [42]. 

In recent years, general-purpose computing on CPUs and GPUs with MPI and CUDA 

has been employed to speed up large-scale simulations of solidification microstructure 

[43]–[49]. When MPI is used for parallelization, the computational domain is 

decomposed into finite subdomains in all directions. The information exchange between 

subdomains is carried through halo regions or ghost nodes. Based on the location of the 

subdomain, ghost nodes are either physical boundary conditions or contain neighbor 

subdomain boundary information. The ghost nodes are updated at each temporal iteration 

using MPI and the intercommunication between the subdomains [50]. Programming with 

CUDA, the CPU is known as the “host”, while the GPU is called the “device.” A 

program written by CUDA programming model consists of a host program or function 

that runs on a CPU and kernel function which is responsible for solving the governing 

equations in parallel on the GPU. The host program divides the computational domain 

into thousands of thread blocks. Each thread block consists of a multiple of 32 threads. 
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The kernel function is executed by total number of threads in parallel in device. It was 

shown that the computation time for a GPU with massive computation capacity and 

bandwidth, is two orders of magnitude faster than compared with a serial CPU core [51]. 

Under certain conditions, CPUs are effective for simulations in comparison to GPUs. 

Sun et al. [42] characterized the accelerated performance quantitatively, based on total 

node points run on a single Intel Xeon E5-2699 v4 core and 4 NVIDIA GPUs. Figure 3 

shows that at a lower number of nodes, the GPU efficiency is low. At 643 nodes, the 

speedup ratio is only 8.83. The data communication between the devices is time 

consuming, while the calculation source of the GPU is largely unoccupied. Furthermore, 

GPU efficiency increases as the number of nodes increases. With greater development, 

acceleration in GPUs can be doubled by using shared memory [81], which is located at 

and shared by the same block. 

 

Figure 3: Speedups of single CPU core serial-programming vs multi-GPU parallel-programming efficiency 

[42]. 

The evolution of technology has given rise to diversity in applications. Computer 

processing for large-scale simulations was improved due to the number of processors. 
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Supercomputers were the source of this amount of computation required, while CPUs 

were soon replaced by GPUs. This allowed for even faster calculations. Eventually, the 

bottlenecks for the speed were determined by the programming. Innovations in the GPU 

technology, such as NVLink, which allows for direct communication between GPUs, 

were assisted with toolkits, such as NVIDIA's CUDA, to program the GPUs directly. The 

TSUBAME3.0 (the most current of the series of supercomputers based in Tokyo Institute 

of Technology) employs this technology allowing four 20GB/s data link per GPU for a 

total of 47.2 PFlop performance in half-precision [53]. MPI has shown effective use 

throughout trials. The combination of techniques and optimizations has proven to show 

significant success in GPU-rich supercomputers. 

 et al. [54] produced a large-scale simulation for 2D dendritic growth, which was 

accomplished through the MPI parallelization. Parallel programming utilizing this type of 

communication between the distributed-memory systems is the standard for large-scale 

simulations. The programming is approached using a Single Program, Multiple Data 

Streams (SPMD) [55]. SPMD uses each processor executing the same program on 

different data for MPI processes. Using a notion of rank to distinguish processes, the 

point-to-point communication is the fundamental primitive for sending and receiving. 

The scalability enabled this type of research to utilize Oak Ridge National Laboratory’s 

Cray XT5 system (Kraken supercomputer) [56], [57].  The dendrites were grown to a 

reasonable size in an “incubation region”, then storing the result for restarting using the 

scalability of 41,472 of the total 112,000 cores of the Kraken supercomputer. Figure 4 is 

the final snapshot of the dendrite incubation domain, where the magnified portion shows 

the flow of alloy melt between solidifying dendrites. 
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Figure 4: Large scale domain of dendrite growth with enlarged composition analysis [54]. 

The parallelization required to have this amount of detail for such a large domain was 

only possible with a technique of spatial domain decomposition. This popular method of 

splitting the spatial domain into equally-sized domains is specific to the number of cores 

used for the computation. The benefit of CA-LB model is that only the subdomain 

boundary values need to be exchanged between the subdomains [54]. Implementing this 

in binary Hierarchical Data Format 5 (HDF5), yielded high efficiency that resulted in a 

50% reduction of memory and computational time required, enabling high scalability.  

Continuing this research, Eshraghi et al. [58] utilized the CA-LB model to simulate 

3D dendrite growth in a macroscale domain of approximately 36 billion grid points 

(1mm3). The scale-up performance (strong scaling), where the number of processors was 

increased with fixed domain size, was compared to the speed-up performance of a fixed 

processor load by scaling the domain size (weak scaling). Using the combination, the 

entire domain was filled with dendrites, as shown in Figure 5. The competition between 



 

 12 

the dendrites shows that the ones with orientations other than 90 degrees are blocked by 

the perpendicular dendrites. 

 

Figure 5: 3D columnar dendritic microstructure [58]. 

Shimokawambe et al. [59] were able to perform the first-ever peta-scale PF 

simulation of dendrite growth. The process was implemented locally on a single GPU 

using CUDA; then using 4000 GPUs, MPI was implemented so host CPUs were used as 

a bridge for the data exchange. They used overlapping techniques to utilize both GPUs 

and CPUs to optimize the scalability, which were defined as Hybrid-YZ and Hybrid-Y. 

First, Hybrid-YZ exploits data independency for array elements by dividing each 

subdomain in five regions, which are computed separately. The CPU cores were used to 

compute four y and z boundary regions, while GPU was used to compute inside the 

region to produce halo regions. Hybrid-Y instead assigns only boundary regions in the y 
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orientation of the boundary to CPUs. The communication between the different protocols 

is illustrated in Figure 6, which depicts the phases of domain designations. 

 

Figure 6: Hybrid-YZ (Top) and Hybrid-Y (Bottom) protocols for parallelization [59]. 

Hybrid techniques for computational simulations have been the focus of research 

since modern high-performance computing (HPC) systems have been introduced to 

simulations. Yamanaka et al. [52] proved that GPU-accelerated PF simulation was faster 

than its CPU counterpart by two orders of magnitude. Heterogeneous computing has 

resulted in the development of many frameworks [60], [61]. These many frameworks are 

developed to enhance the computation and portability of these HPC techniques. 

“Multiphysics Object-Oriented Simulation Environment” (MOOSE) [62], FEniCS [63], 

“Portable, Extensible Toolkit for Scientific Computation” (PETSc) [64], Mesoscale 

Microstructural Simulation Project (MMSP) [65], and Structured Adaptive Mesh 

Refinement Application Infrastructure (SAMRAI) [66] are a few resources that have 
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been built upon the models discussed before. High performance interconnection networks 

[67] have optimized research regarding many of the features below. 

 

 

Methods for Simulating the Morphology 

The process of capturing the interface morphology in simulations can be 

accomplished with CA, PF, DIT, or LS methods. Each method has its unique advantages 

and deficiencies. CA, which is relatively simple, stands alone from the others because of 

its local structure and will be discussed first. PF is probably the most powerful and will 

be analyzed with respect to some of the most notable case studies.  Third, DIT will be 

discussed to feature the differences using a couple research examples. Lastly, LS method 

will be reviewed, which is similar to DIT but requires the knowledge about the 

temperature gradients at the interface. By simulating the morphology of dendrites, 

complexity in geometry can be incorporated for large-scale domain for manufacturing 

purposes. 

Cellular Automaton 

CA is ideal for large-scale modeling simulations, as its structure is considered 

local with respect to the objective domain. The ability to approach the morphology 

naturally, in a localized manner, allows for easy scalability on many processors. In the 

1940s, the CA method was developed by John von Neumann using simple microscopic 

laws to model complex, macroscopic phenomena physically [68]. With a successful 

application in metallurgy, the CA method can accurately simulate processes, such as 

grain growth, cracking, diffusion, or mechanical deformation. By superimposing a grid of 

cells on the area of interest, these physical processes’ evolution can be reproduced. State 
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indices and variables are attributed to cells that evolve based on transition rules. Cagigas-

Muñiz et al. [69] performed an efficient study of CA transition rules, such as Game of 

Life, a Forest Fire model, a cyclic CA, and the WireWorld CA, which outperform the 

standard GPU implementations. This is effective for scalability as interactions of cells 

can be defined in three dimensions. Advantages over PF include being able to develop a 

spatial resolution by the order of magnitude of the smallest microstructure feature size 

[70]. CA is highly parallelizable, making it two orders magnitude faster than alternative 

PF methods [71].  

One of the largest strictly CA methodologies was recently performed by Zhang et 

al. [72]. The study focused on simulation of Fe-C alloy during isothermal and directional 

solidification, while using the CA model to simulate the columnar-to-equiaxed transition 

(CET). Using the CA model, in combination with GPUs and MPI, the maximal speed-up 

ratio was measured to be 153.19. They were able to study the effects of increasing the 

cooling rate, which promotes the occurrence of equiaxed dendrites ahead of the 

solidification front. The CA code was able to process 7683 grids within 27.42 min for 

8000-time steps. They were able to solve the problem of data race in the CA model by 

introducing an additional field variable with a modification to the capture rule. CA is 

regularly coupled with solute transport methods, for its functional, elemental nature that 

allows it to scale [36], [37], [73]. The CA algorithm accounts for heterogeneous 

nucleation, the preferential growth directions, and growth kinetics of the dendrites [38]. 
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Figure 7:  Directional solidification of Fe0.6wt.%C alloy in a domain consisting of 400x100x1000 cells and 

a grid size of 5 μm [72]. 

Phase-field 

The PF method is a powerful and versatile tool to model microstructural dynamics 

[74], [75]. Many phenomena can be represented using a simple set of differential 

equations [76]. Using continuous fields to describe the interfaces, discontinuities of 

properties and boundary conditions are represented by a variation of one or more 

auxiliary fields. These phase fields across a diffused interface are solved by integrating 

partial differential equations for the whole domain. Free-boundary problems with 

arbitrary complex interfaces are notoriously challenging [77].    

Kobayashi [78] first brought the PF modeling of dendritic growth to the public’s 

attention in 1993, showing a simple simulation for one component melt growth. He 

showed its ability solve the free-boundary problem. PF solves the time evolution equation 

of the PF variable, Ø. This was introduced to express the phase state (solid or liquid) of 

the material, in which the sharp interface is replaced by a diffuse interface. With a finite 

thickness, the PF variable has a smooth, but steep change. The versatility of the PF 



 

 17 

method allows for the simulation of the interface migration without tracking of the 

interface [79]. By simply solving an equation, PF can solve for solid concentration, 

curvature of interface energy, and capture the interface based on computationally 

tracking. Kobayashi had produced movies of grain growth simulation in 3D prior to 1990 

[80]! This has inspired researchers to reproduce this method for larger scale domains.  

PF is very computationally taxing, where the meshes for the interface require high 

density.  AMR has been implemented in large scale under certain conditions [81], such as 

3D modeling [82]–[84] (but mostly 2D conditions due to limitations), as computational 

efficiency decreases as the volume fraction of the interface increases [85]. Therefore, 

parallel computational schemes are necessary for very large-scale simulations using a 

quantitative PF model. Shibuta et al. [86] utilized a supercomputer and PF to simulate the 

competitive growth of dendrite assemblages. They discussed convergence behavior that 

enables the use of a large interface thickness. At the time (2011), it was the largest 

reported simulation of dendrite growth for a domain of 3.072 mm3 for a total time of 100 

s, using 768 GPUs on the supercomputer TSUBAME2.0 (TSUBAME 2.5’s predecessor). 

It is computationally oppositional to obtain a realistic looking microstructure and an 

extremely thin interface [87]. PF parameters are derived at a thin interface limit [88], 

which is competitively being pushed further. 

Two years later, Takaki et al. [89] used the TSUBAME2.0 for a very-large-scale 3D 

PF simulation of directional solidification of 3.072 x 3.078 x 3.072 mm3, which was 

equivalent to 4096 x 4104 x 4096 meshes. This research produced interesting results 

(Figure 8), where unfavorably oriented dendrites and highly complicated interactions 

could survive. As a result, controlling microstructures in terms of crystallographic 
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structures has been considered for more complex structures. This was important as it 

expanded on both the domain size and complexity that was previously discussed by 

Shibuta et al [86]. 

 

Figure 8: Columnar dendrite growth where inclination angle is indicated by color at the following time 

steps in order: 5.4 s, 10.7 s, 53.6 s, and 107.1 s [79]. 

In order to simulate large-scale microstructures using PF models, the PF interface is 

required to be scaled up much larger than the physical interface to remove several 

artifacts that step from the thickness of the interface [90]. Using interpolation functions 

for average diffusivities and grand potentials of the bulk phases, the interface stretching is 

eliminated. The interface also faces (unrealistic) movement from the relaxation that can 
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be countered by asymptotic analysis. Lastly, artificial solute trapping can be mitigated by 

anti-trapping formulations [91]. These conditions need to be met in order to scale to 

higher resolutions while maintaining accuracy using PF methods. PF’s advantage over 

the other methods lies within the field variables, which eliminate the need to identify and 

track the interface.  

Direct-Interface-Tracking 

DIT, a front tracking method, is a successful methodology for solving the energy 

equation, as well as momentum and mass conservation equations. This requires treating 

the interface as incompressible. Since it requires the calculation of the temperature 

gradients at the interface, in combination with the normal velocity and curvature of the 

interface, DIT is less powerful in comparison to the other techniques mentioned [92]. N 

the mesh size is refined. It has been observed that the mesh dependency is influenced By 

the methods of curvature and solid fraction calculations [93]. The simulated columnar 

dendrite evolution of an Al-4 wt.% Cu alloy was calculated in a domain of 600 x 1200 

meshes on a single CPU in about 11 hours of computational time. Figure 9 shows 

 Zhu et al. [94] used a quantitative virtual front tracking model, which is 

characterized by its mesh independency, for simulating a 2-D dendrite growth in the low 

Pėclet number regime. This means that the results converge to a finite value whe the 

evolution of the dendrites after 12 s, comparing the grain boundaries and solute map. The 

equilibrium composition was compared in good agreement to the LGK model.  
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Figure 9: Evolution of directional solidification with thermal gradient after (a) 2 s, (b) 3.2 s, (c) and (d) 12 

s, (a-c) shows grain boundaries and (d) solute map [94]. 

This process is considered with direct numerical simulations of flows with phase 

change. Tryggvason et al. [95] expanded on a multiphase flow model, where different 

material properties in each phase were added at the phase boundaries. These techniques 

have been widely used for sharp front solidification processes. Juric et al. [96] used this 

method to observe complex dendritic structures, such as liquid trapping, tip-splitting, side 

branching, and coarsening. This efficiently handles discontinuities in material properties 

between liquid and solid phases. DIT produces a method for simulating the morphology 

that can be further defined based on tracking criteria. Front Tracking explicitly provides 

the location of the interface at all times. 

Level-set 

Tracking the interface can be accomplished either explicitly or implicitly. Explicit 

tracking, such as front tracking, requires special care for topological changes (i.e. 

Merging or breaking) [97]. Overcoming this is difficult in 3D; however, implicit 
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representations, such as LS or PF, can handle these topological changes in a 

straightforward manner. They represent the front as a level set of continuous functions. 

LS simulations are simple to an advantage, especially when computing the curvature. LS 

is similar to PF [98], as it also interchanges the interface with a field variable; however, it 

requires the knowledge of the direction in which the solid front is advancing (along with 

its velocity and calculation of the normal vector from the interface) [99]. 

Tan et al. [100] utilized a level set simulation that combines the features of front-

tracking and fixed-domain. A domain decomposition of 8 domains was performed using 

the Cornell CTC supercomputer [101] for 5 hours, while the 3D simulation of a single 

dendrite required 12 hours with 16 nodes (each of the nodes consisted of two 2048 MHz 

CPUs). They were able to prove the method provides accurate tracking of the interfaces, 

computation of heat/mass/momentum transport avoiding boundary conditions, adaptive 

meshing, and capability of multiple solid phases. The research involved a reasonable 

mesoscale value for a mesh width of 12.2 µm for the diffused interface for a full mesh of 

1024 x 2048. In another study, Tan et al. [102] modeled multiple dendrite interaction 

with undercooling in the front using a LS method in a 3D domain. A solidification speed 

of 3000 μm/s and thermal gradient of 1400 K/cm was required for nucleation and is 

shown in the simulation below (Figure 10). 
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Figure 10: Solute Concentration of Ta without (left) and with convection (middle) [9] and 3D crystal 

growth with front tracking and required undercooling for nucleation 7k (right) [102]. 

LS method is a helpful alternative to PF, to avoid the asymptotic analysis needed for 

PF method [103], [104]. It is an extension of front-tracking methods, where energy 

conservation issues derive from discretization errors. This is based on the direct 

application of temperature boundary conditions and the computation of heat fluxes, 

which was first addressed in Stefan problems [77], where the interface velocity is 

calculated from interpolation of the heat flux nodes near the interface. The LS method is 

useful for a direct calculation of the growth and shape of the solidification of dendrites 

without the need to apply the boundary condition explicitly at the freezing interface. 

Using a fixed FE grid, LS avoids the need for moving or adaptive griding, while 

providing an explicit and accurate tracking of the interface front [105]. 

Dendritic Needle Network 

DNN is another novel method that is featured with respect to simulating the 

complex structure of dendrites. A mesoscale simulation resolution is needed for this, as 

each branch of the dendritic grain is considered a thin needle crystal, modeled as a 

network. Phase-field and CA simulations are used to predict the dynamics of the 
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individual branches for solidification or complex dendritic networks at a scale much 

larger than the diffusion length. Tourret and Karma [106] created a 2D multiscale model 

for DNN for both isothermal and directional solidification that is validated through the 

comparison with analytic solutions. This DNN approach allows for investigation into the 

dynamics and stability of spatially extended dendritic arrays. The optimization of this 

model proves to be four times faster than normal phase-field simulations. A 3D DNN 

simulation was scaled from 2D by defining the flux intensity factor (FIF), which is the 

strength of the concentration gradient at the tip of the needle. This is comparable to 

calculating the stress factor of a crack’s tip, which is calculated using a contour integral 

and modeled as a parabolic tip. The main discrepancy for a 3D analysis is caused by the 

Laplace’s equation having no solution for a line terminating at a single point, which was 

accounted for by considering the solute flux intensity for a needle of finite thickness. The 

results were compared with microscopy of a sample from NASA’s microgravity 

solidification experiments, which showed a similar characteristic scale of the array 

spacing. Tourret and Karma [107] elaborated on this 3D DNN model using the same 

parameters with isothermal and directional solidification. Al-7wt%Si alloy that was 

modeled in the previous microgravity experiment was analyzed with more scrutiny. They 

utilized a new 2D formulation for thick branches with paraboloidal tips. The comparison 

of the 3D simulations to samples from the Columnar-to-Equiaxed Transition (CET) in the 

Solidification Processing project (CETSOL) [108] is shown in Figure 11. The simulation 

results of DNN, featured in white, follow a similar primary dendritic spacing to the 

markers of the samples featured in purple. This research has provided a basis for 
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predicting quantitatively fully 3D microstructure spacing of individual branches, which 

determine the mechanical strength of the structure. 

 

Figure 11: Comparison of simulation to polished microgravity sample [107]. 

Tourret et al. [58] expanded on the DNN research by focusing on isothermal 

growth of an equiaxed grain in a supersaturated liquid in 3D. Using PF, needle-based, 

and envelope-based approaches, benchmarks for an undercooled isothermal equiaxed 

growth were used to compare steady-state growth predictions. The theoretical Ivantsov 

solution provided the Péclet number that formed the basis of comparison, scaled with 

respect to the tip radius and velocity. The comparison of the model types is shown in 

Figure 12. While the lack of truncation radius bounding was apparent in the shapes, the 

coarseness of the dendrites had caused the velocity to decrease due to the effect of the 

boundary conditions. 

Nonetheless, this illustrates the effectiveness of DNN and Grain Envelope Models 

(GEM) at reproducing PF results with reasonable accuracy. This comparison of models 

features an operational compromise between resolution and computational efficiency. 

While accuracy is important for large scale simulations, multiscale models enable 

predictions of primary dendritic spacings, similar to industrial casting processes  [109]. 
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This is a large step towards creating realistic models; however, the computation required 

for DNN is still dependent on compute intensive models of PF or CA. Therefore, much 

research has been deployed to scale these models.  

 

Figure 12: Comparison of model simulation types [110]. 

 In context with PF, DNN solves a broad range of phenomenon, where strong 

assumptions are made for the meso-scale models. Normally, these models don’t account 

for the detailed evolution of the solid/ liquid interface. DNN’s representation of the 

dendritic structure as an array of needles, allows for both steady-state and transient 

growth regimes to be described, while accounting for the diffusive interactions between 

them. This bridges the PF approach with coarse grained stochastic models. Multiscale 

DNN allows for convective effects to be more effectively studied. Most recently, Isensee 

and Tourret [111] compared the oscillatory growth behavior to X-ray in-situ imaging, 

identifying the fundamental mechanisms in which the gravity-induced buoyancy alters 

the dynamics of the crystal growth. DNN is a helpful approach for scaling simulations of 

morphology; however, in order to predict realistic microstructural evolution, 

incorporating fluid flow is crucial.  
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Features and Applications 

 The applications of large-scale simulations are as diverse as the features that are 

observed. The following sections provide a general understanding of the top areas of 

focus for simulating dendritic growth evolution, which include the follow: dendrite 

interactions and competitive growth, columnar to equiaxed transition, solute transport and 

segregation, natural and forced convection, permeability, and additive manufacturing 

processes. Competitive growth and dendrite interactions provide insights into how 

orientation and spacing can influence evolution. Columnar to equiaxed transition focuses 

on how the transition can be predicted using processing parameters. Solute transport and 

segregation highlight interesting phenomena such as freckle formation and solute plumes. 

Natural and forced convection explain growth phenomena from different flow dynamics. 

Permeability provides insight toward both experimental and inspiration for the research 

shown in the second half of this manuscript.  AM Processes give context to 

manufacturing processing parameters used by simulation techniques. Together they 

provide a comprehensive understanding for the basis of this research.   

 

Dendrite Interactions and Competitive Growth 

The dendritic growth is dependent on many factors that can generate many 

different phenomena. These effects need to be understood in detail to be able to   predict 

the changes in the microstructure. Traditionally, Walton and Chalmers competitive 

growth model [123] is utilized for the selection of growing multiple dendrites. Nickle-

based superalloys have shown some astonishing growth phenomenon [124]–[126], which 

cannot be simulated using the conventional model. First, this section will highlight the 



 

 27 

traditional model, then will expand on the phenomenon and other effects associated with 

competitive growth. 

In 2017, Yang et al. [127] used PF simulation to create a 3D dendrite growth in a 

nickel-based superalloy. The results were generated using a single NVIDIA GTX1080 

GPU for a total of 774.292 GFLOPS (giga floating-point operations per second). From 

dendrite arm spacing to inclination angles, the dendrite morphology evolution during this 

superalloy's casting can be understood to optimize the mechanical properties. The 

simulation was accomplished using a simplified approach by assuming the alloy as a 

pseudo-binary alloy, which was first popularized by Raghavan in 2012 [128]. PF has the 

capacity to simulate both isothermal and non-isothermal dendrite growth, which makes it 

versatile for applications, such as asynchronous concurrent GPU computations. This 

allowed Yang et al. to show the interactions between the dendrites in an equiaxed multi-

dendrite domain, which caused the dendrite arms to grow with a deviation from their 

initial crystal orientations [129]. As they fill the entire domain, the dendrites coarsen and 

coalesce causing the melting of the secondary arms.  

The comparison was accomplished using directional grain growth, allowing for 

the height to be competitive. This illustrated that the growth is dependent on both the 

inclination angle and the positions of the adjacent dendrites. This simulation shows how 

the favorably oriented (FO) dendrites outperformed the unfavorably oriented (UO) 

dendrites. This simulation was performed using an asynchronous concurrent algorithm to 

show that 774.29 GFLOPS were obtained in 5123 computational grids on a single 

NVIDIA GTX1080 GPU. The growth of the dendrites obtained a height of 6.42 mm. 
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However, in contrast to this study, the following study illustrates conditions where the 

opposite is true (UO outgrows FO). 

Takaki et al. [130] published a study focused on simulating the competitive 

growth with converging grain boundaries in a large domain of 3.072 × 6.144 mm2. The 

directional solidification of 3D dendrites was simulated to compare the effect of 

unfavorably oriented (UO) grain inclination angles. Using the Walton-Chalmers model 

[123] Takaki modeled a contrasting phenomenon. Where at the grain boundaries, the UO 

dendrites overgrow the favorably oriented (FO) dendrites!  This unusual overgrowth is 

more common when the thickness of sample and the UO grain inclination angle are 

small.  The secondary arms have higher growth at boundaries. Tertiary arm growth is 

enlarged at the convergence with the domain boundary.  

Takaki used this competitive growth model for 3D analysis, where a collision of 

FO and UO grains occurred in the middle of the domain to form a straight GB. The FO 

and UO grains shared different properties, where the arrangements of the dendrites 

become gradually ordered [131]. The FO grains form a hexagonal arrangement, while the 

UO grain migrates in a lateral direction. This occurred as the UO dendrites penetrated 

deeper into the FO grains with respect to the reduction of angle of orientation. This 

interaction, termed “space-to-face interaction” [131]. Figure 13 shows the convergence of 

the differently oriented grains with respect to different degrees of orientation. This 

perspective from above the columnar dendrites shows that the UO dendrites with a lesser 

degree of orientation have a greater convergence, which is expected from previous 

competitive growth patterns. 
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Figure 13: Dendrite Interactions comparing different angles of UO dendrites of 5˚ and 15˚ at time (a) 1.3s 

and (b) 187.5s [130]. 

In large-scale grain growth, the Walton-Chalmers model is largely accepted as the 

general competitive-growth model for grain selection. In this model, favorably oriented 

(FO) grains block unfavorably oriented (UO) grains. In contrast, when analyzing primary 

arm spacing, Fourier Transformation (FT), Voronoi decomposition, and minimum 

spacing tree have been employed to evaluate the arm arrays [38]. This has been the basis 

for new models to be developed for more accuracy. Voronoi Tessellation (VT) has been 

applied to approximate the morphology of equiaxed dendritic grains. The dendrites are 

formed from a mesoscale domain, where Voronoi grains are formed in a triangulation 

technique exemplified below (Figure 14) forming a polyhedral structure. These 

assumption models allow for complex model domains to be generated. For example, 

Feng et al [132] simulated a 3D semi-solid microstructure using 1000 grains, where VT 

was used to approximate the final grain morphology to compare the volumetric inflow 

caused by shrinkage. Permeability will be discussed in more detail in the next section. 
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Figure 14: Voronoi grain from Meso-scale simulation [132]. 

In order to evaluate arrays, ordering and spacing of primary arms, especially in 

3D directional growth, different methods have been employed historically, such as 

minimum spacing tree [133], Fourier transformation [134], Voronoi decomposition [135], 

and many others [136]–[139]. Using a modified Voronoi decomposition technique, where 

the small sides are removed from the Voronoi cells, the primary arm array was evaluated 

by Takaki et al [140]. The hexagonal pattern showed typical-hepa defects that decreased 

with respect to time for tilted columnar dendrites in a computational domain of 1.152 × 

1.152 × 0.768 mm3. These enabled predictions of the primary arm spacing which is 

crucial for the integrity of the material. This was ultimately possible through a 

convergence analysis of the tip undercooling of the dendrite/ cell.  

The ability to predict dendrite spacing is important for permeability research, as 

fluid flow can only be researched under certain conditions. Porosity, which is an 

important type of defect that can form from casting, can be caused mostly by either 

shrinkage, where the volume changes upon solidification with a restricted feeding of the 

liquid, or condensation of dissolved gases in the melt upon freezing. This has a strong 

negative effect on ductility and fatigue life, where internal pores create initiation sites for 
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cracks and local stress concentrators [141]. As convergence occurs, permeability is 

another condition that requires much research for consideration of realistic predictions. 

 

Columnar to Equiaxed Transition 

In context of design, columnar or equiaxed grains may be desired depending on the 

expected properties. The transition between columnar and equiaxed has been investigated 

for many years, where heterogeneous nuclei are used commonly to promote equiaxed 

grains. An example where equiaxed grains are preferred is for processes of direct-chill 

casting of aluminum alloys [142]. However, its high angle grain boundaries can reduce 

creep rapture life. Therefore, it is important to control the grain structures using 

conditions, such as high thermal gradients and low growth rates. We recently performed a 

3D PF simulation of columnar to equiaxed transition (CET) for Inconel 718 alloy in a 

domain of 0.2 x 0.1 x 0.4 mm3. A CET solidification map was created to compare growth 

rates and temperature gradients for the evolution of dendrites in equiaxed, columnar, and 

mixed regimes as depicted in Figure 15. A model was developed to predict primary 

dendrite arm spacing (PDAS) of columnar growth in a wide range of temperature 

gradient, solidification rate, and initial grain sizes. This novel approach is effective for 

optimizing process parameters for melting and solidification on a preexisting substrate, 

such as in AM or welding applications. 
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Figure 15: Evolution of (a) equiaxed (b) columnar (c) mixed dendrites and (d) solidification map for 

Inconel 718 alloy  [15].  

Studies to determine the mechanisms behind CET have been a popular focus for 

research. Hunt [144] proposed an analytical model to predict CET based on the potential 

for equiaxed grains to nucleate ahead of the columnar front’s undercooled region. The 

solid fraction was calculated using the truncated Scheil equation empirically to relate the 

cooling rate to the tip undercooling. Then, it was modified by Gӓumann, Trivedi and 

Kurz (GTK model) [145] to include non-equilibrium effects of rapid solidification. The 

Hunt’s model shares the same relationship for CET based on key parameters of pulling 

velocity, thermal gradient, and composition.  

The process of predicting the CET has been demonstrated using a stochastic 

model for alloy 718 [146]. This meso-scale experiment was performed in 2D and 

compared to 3D computation to illustrate the competition of nucleation and growth for 
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the equiaxed and columnar morphologies. The visualization shows that the CET begins 

earlier in 3D than 2D, because the grain growth isn’t confined in the third (z) direction. 

There are also more nucleation sites available in the 3D simulation, where some dendrites 

are cut from a different plane. Again, in mesoscale, the model predicted a larger 

segregation pattern in the 2D compared to 3D.  In microscale, the 3D columnar dendrites 

showed finer detail than the 2D observations. Modeling the CET evolution provided an 

efficient methodology of simulating microstructural features in a mesoscale domain using 

a stochastic model with relatively low computational resources. The simulations of 

microstructure cross sections are shown below (Figure 16) comparing 2D and 3D, where 

the CET begins earlier in the 3D simulation. The domain size was 10 × 30 mm2 in 2D 

and 10 × 30 × 2 mm3 in 3D. 

 

Figure 16: Simulations of CET evolution comparing 2D (a) and (c) and 3D (b) and (d) during the 

unidirectional solidification of alloy 718-5 wt. % Nb [146].  

Dong et al. [147] showed a situation where equiaxed grains were placed ahead of 

the growth of columnar front during solidification of Ni-based superalloys. This real-life 

situation results in casting defects, such as stray grains or "tree rings" [148] This was the 



 

 34 

precursor of the CET simulations, where it showed the gradual transition, realistic 

dendrites, and complex solute concentration profiles. The size of the domain was 

2.5×4mm2 for a total of 500×800 cells in the domain. In another work, Dong et al. [142] 

focused on the solute interactions within the CET modeling. It was a unique finding that 

the solute interactions were strong in the secondary and tertiary arms, while a weak 

interaction between solute and arms was observed in the columnar tips. Figure 17 

illustrates the simulation for inoculating a melt with heterogeneous nuclei while reducing 

the activation barrier and increasing the density of the nuclei (right to left). The change in 

temperature ranges from 1K (a) to 10K (d), simulating the change in undercooling in a 

large-scale domain. 

 

Figure 17: Undercooling on simulated grain structures range of mean nucleation undercooling (ΔTN ) (a) 1 

K; (b) 2 K; (c) 5 K; and (d) 10 K. (V= 5.5·10 -4m/s, G= 3000 - 100tK/m [142]. 

DNN provides a promise for describing the transient growth dynamics of higher 

order branches, which normally relies on strong assumptions. Geslin et al. [149] 

effectively simulated the CET in 2D, using DNN in a large domain of 22.5×30 mm2 size. 

Using a sharp-interface model for directional solidification, they were able to observe 
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complex phenomena, such as: “circular growth” (branchless growth) (Figure 18), abrupt 

and progressive transitions with different grain structures. Therefore, when casting large 

samples in a crucible, the columnar front that progresses towards the inside of the sample 

is accurately simulated, where the slower solidification rates favor the nucleation of 

equiaxed grains [141].  

 

Figure 18: CET simulation and initial circular germ regime transition to four branches grain. [149]. 

Solute Transport and Segregation 

Solute transport is a phenomenon that is very flow-dependent. This can have 

effects on the development of the dendrites under well-defined thermal conditions. 

Effects on dendrite spacing and symmetry have been notably studied [169], [170].  Wang 

et al. [36] were able to utilize a CAFE model to simulate a controlled solute diffusion in 

the solidification of a binary alloy. Using a 2D model, they simulated a tertiary dendritic 

arm growth from a secondary dendrite arm, which was then blocked by another 
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secondary dendrite. This was helpful in predicting the primary dendrite arm spacing. The 

average primary arm spacing was found to be dependent on the current growing 

conditions and the way those conditions were reached. Figure 19 shows the measurement 

technique to predict dendrite spacing. With large-scale simulations that utilize higher 

resolution, tertiary dendrite grain growths can be visualized. 

 

Figure 19: Tertiary arm dendrites used to predict spacing in 2D [36].  

These features for prediction models serve as a helpful analysis to develop a real-

life understanding of the grain interactions. From interactions of both equiaxed and 

directional grain growth, the competition models show a clear understanding of the 

evolutional interactions. Even highlighting the transition between the two phases, 

comparing the mesoscale interactions on a microscale level requires a manageable 

distribution of resources. The prediction models for spacing utilize innovative techniques 

that give a new understanding of competitive grain growth, even within the same primary 

arm. The features for this analysis have provided the foundation for more progress to be 

made with more complexity in the dendritic evolution. Solute plumes are a resulting 

situation that occurred in a directional solidification of Ga-In alloys. This solute-rich 

liquid that flew up is believed to be a crucial factor that causes, during solidification, a 
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freckle defect [171]. Takaki et al [172] studied the effects of natural convection in both 

2D and 3D simulations. Performing a series of simulations where gravity is changed, they 

were able to show that as the gravity decreases in the negative region, primary arm 

spacing increases. Furthermore, the downward flow enhances growth of secondary arms, 

as unstable dendrite growth is caused by a large upward flow. Figure 20 shows the 

differences in the dendrite tips in 3D, while 2D shows plume and freckle-like 

solidification defects forming. Using PF-LB simulations on the TSUMBAME 2.5, they 

were able to simulate a domain of 0.384 × 0.384 × 1.536 mm3 with 95 hours of 

computation time. 

 

Figure 20: Dendrite morphologies and solute concentration distributions for 3D (a) and (b) and 2D (c) and 

(d), comparing different forms of gravitational acceleration [172]. 

The flow influences both solute transport variations and the upstream-downstream 

dendritic growth. The effects of convection can limit the downstream growth, while the 

up-stream dendrites are promoted by the convection-induced anisotropy. The solute 
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plumes are the result of gravity assisting in the direction of the dendrite growth. The 

presence of convection can change both time- and length-scales, which can result in 

differences in morphologies from the purely solute transport. Our team studied the 

buoyancy-induced flow during directional solidification of 3D thin domains, comparing 

Al-Cu and Pb-Sn alloy systems [173]. Sn is lighter than Pb, where more solute is rejected 

into the melt and its concentration around the interface increases. Upward buoyant force 

is caused by the resulting from the decrease of density of the liquid mixture around the 

interface. This large solute boundary layer that forms with a peak at the center is shown 

below (Figure 21) and is also referred to as a chimney. This phenomenon has the 

potential to be stable during the solidification process, which carries solute up, forming a 

recirculating flow form. This can lead to decreased growth or remelting in this region 

during later stages of solidification and can form a freckle defect once completely 

solidified. 
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Figure 21: Chimney formation and solute concentration field during directional solidification of Pb-10 wt% 

Sn alloy [173]. 

Macrosegregation is the solute composition inhomogeneities at a macroscopic 

scale of a casting [174]. Heat treatment can remove these imperfections; however, spatial 

variations of mechanical properties can occur with respect to the nature, amount, and size 

of these defects. Gross compositional defects, such as the formation of freckle or 

segregated chimneys, is caused by macrosegregation. This is associated with the 

following causes: solidification shrinkage [175]–[178], natural and forced convection 

[179]–[181], grain movement [182], mushy deformation [181], and cavitation bubbles 

[183]. Fragmentation has been researched as an important phenomenon using large-scale 
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simulations, as it is responsible for grain refinement [181]–[187]. It is undesirable for 

certain manufacturing processes, such as single crystal turbine blade casting [188] or AM 

of Metastable β-Ti alloys [189], [190]. Process parameters can define the formation of 

freckles that can be caused by remelting, where there is a sudden rise in temperature, 

deceleration of a growth front, or a change in flow conditions. Simulations are an 

effective method to study this capillary force driven phase transformation process. [59] 

Kao et al. [191] developed a large-scale model to simulate freckle formation for 

the casting of Ga-25 wt% In. Freckles form due to remelting and fragmentation of 

dendrite arms by thermosolutal fluid flow, especially for alloys where the partitioned 

solute is lighter than the bulk fluid. Examples of such phenomena include Ni-based 

superalloy and Ga-25 wt% In. They utilized the LB method for fluid flow and CA to 

simulate solidification growth. The coupling between these two main equations is 

achieved by natural convection force and energy and solute transport equations at each 

node. They utilized MPI parallel algorithm to accelerate the large-scale simulation [192]. 

The formation of the freckles in the simulation is shown in Figure 22. The domain for the 

numerical model was a total of 32 × 32 × 0.16 mm3, which was equivalent to 164 million 

cells. 
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Figure 22: Freckle formation for Ga-25 wt% In binary alloy (a) to (c) Simulation, (d) to (f) experimental 

result, for G=250 K/m in the vertical direction at different times [191]. 

Zang et al. [177] studied a comparison of forced and natural convection 

simulations in both equiaxed and columnar dendrite evolution. Understanding the effects 

on Al-Cu alloy, using PF-LB in an AMR algorithm, they were able to illustrate some 

unique phenomena. Dendritic fragmentation, angulation of dendrite arms, and splitting 

are dendritic growth behaviors that were subjects of interest for the forced convection 

simulations, where the direction and intensity of the convection had a significant 

influence. Fragmentation occurs regardless of orientation type for columnar dendrites, but 

instead dependent on convection type. 

 Freckle formation, also known as channel segregation, is a unique byproduct of 

vacuum arc remelting (VAR). At the final stage of the casting process, this is employed 

to assist in the quality of casting. Solute is ejected upward and solidifies as freckles. 

Research has been conducted in understanding the segregation defects on the VAR 

process, simulating the ingot evolution under different arc distribution [193]. However, 
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much detail can be obtained employing large-scale simulations of the microstructure, 

where solute transport is a driving factor. 

Natural and Forced Convection 

Forced convection has been a subject of interest for large-scale simulations, as it 

has a lot of influence on solute distribution. Research has provided context for dendritic 

growth and compared the effects with and without convection. Another helpful 

comparison is between natural convection and forced convection, which is designated by 

boundary conditions for the walls and velocity conditions. Convection was originally 

solved using NS solutions [194]. Simulations of dendrite growth with melt flow was first 

possible in the 90s using PF [195]–[197], while being limited to 2D [198], [199]. Early 

simulations of 3D were limited to a single dendrite [203], however, it is important to 

scale these algorithms for complex microstructures. Yuan et al. [201] studied the effects 

of dimensionality on dendritic growth simulations for convection, using a modified 

projection method of NS. When 2D flow has a blockage from the primary dendrite arms, 

the 3D flow has the ability to wrap around the primaries. Therefore, it demonstrated that 

3D simulations are necessary to correctly predict unconstrained solidification 

microstructures. Forced convection has been studied by Jakhar et al. [202] in combination 

with thermal isotropy, where pressure fields are solved using the SIMPLER algorithm. 

The model was extended to multi-dendritic simulations with random distributions and 

orientations in order to study microstructural evolution. Takaki et al. [203] performed a 

large-scale PF and LB simulation (0.384 × 0.384 × 1.536 mm3) studying the effects of 

natural convection during directional solidification. Comparing 2D and 3D, the effects of 

gravity are smaller for 3D, while average primary arm spacing increases as gravity 
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decreases; similar for both. Downward flow enhances growth of secondary arms, while 

upward flow, larger than a critical value, can produce plumes and freckle-like 

solidification defects. Using the TSUBAME 2.5 supercomputer, the computation took 

about 95 hours for 1.5 × 106 computation steps in 3D.  

Computational cost has been a limiting factor for research on convection, where LB is 

most efficient for multi-GPU computation, as the growth is able to be simulated with solid 

motion, liquid flow, collision and coalescence of multiple solids, and subsequent grain 

growth. However, much effort has been made to enhance this ability. Sakane et al. [204] 

created a 2D simulation for a large number of dendrites (350) utilizing PF and LB methods. 

Figure 23 shows the evolution of solute concentration and flow velocities, where a 

sedimentation path forms from the dendrites. Assuming inelastic collisions, the 

coalescence of the grains is observed. The nuclei generated at the top of the domain settle 

downward, while growing equixially. The ability to scale performance was widely studied 

in this research, utilizing Active Parameter Tracking (APT) [205], [206]. Tracking the 

execution time with and without APT was compared to grains with and without motion, 

proving the efficiency of the model, where APT excels with convection. The parallel 

efficiency of the model showed that a simulation can be performed in a 64x larger domain 

with only twice the amount of time compared to a single GPU. The simulation was 

performed with 2048 × 2048 grid points and 5 grains per one GPU. APT algorithms are 

employed to simulate coalescence-free grain growth within a reasonable computation time 

[207]. 
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Figure 23: (a) ATP Efficiency comparison; (b) evolution of solute concentration and flow velocities 

simulated by LB method; (c) parallelization efficiency with scaling GPUs [204]. 

Zhang et al. [208] combined the PF and LB with a parallel AMR algorithm to for 

several studies of convection, both natural and forced, in 2D and 3D. They quantified the 

effect of both convection and undercooling, comparing the length ratio of dendrite arms. 

The investigation showed that as the undercooling decreases and the effect of convection 

increases, the length ratio has a peak value. This is due to crystal size decrease 

comparative to a higher undercooling.  Secondly, the effect of gravity with a lateral force 

of convection was studied, where columnar dendrites grow anti-parallel to gravity. The 

accumulation of the solute from gravity stunts the growth; however, with the convection, 

the primary trunks of the dendrites show a constant deflection angle until reaching a 

critical value. Sun et al. [209] used a 2D LB model to show that asymmetrical dendrites 

grow faster in an upstream direction, while slower downstream. Studies like this can help 

to optimize the solidification conditions for manufacturing, by analyzing the convection’s 

effects on dendrite growth. 

Permeability 

Permeability predictions have produced an effective method to analyze the 

distinct solidification conditions of the liquid flow through a mushy zone. Anisotropic 
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porous media uses Darcy’s law, which is derived from the Navier-Stokes equation using 

an averaging procedure [150].  Interfacial stresses occur when the solid fraction is high 

enough for the solid to form a continuous structure.  In a mesoscale domain, the solute 

distribution is limited by the permeability of the solidification, with consequences for 

grain refinement [151]. 3D interdendritic flow simulations have been performed using 

microtomography mappings to measure permeability in Al-Cu [152]. However, the 

compromise between resolution and sample size is limited to the camera. Therefore, 

simulations have provided a solution with parallel programming, simulating both the 

morphology and the fluid flow. The complexity of the transport phenomena has resulted 

in interesting studies in large-scale, such as, cross-permeability [153], where experiments 

measuring permeability has a limitation of experimental volume fraction [154].  

Permeability research has been characterized both numerically and 

experimentally. Permeability simulations have been validated in hypoeutectic aluminum 

alloys by Khajeh et al. [155], where the simulated microstructures for a dendritic network 

were modeled using CA technique. The Brinkman-Darcy equation was used as the 

mathematical expression for the permeability, while an X-ray microtomography scan of a 

solidified Al-20 wt.% Cu alloy was used to generate the computational domain with a 

solid fraction of 0.73. The model was validated using a large-scale analog of the 

simulated structures 3D printed using selective laser sintering (SLS), as shown in Figure 

24. The results showed that the dimensionless parameter, 𝜃, determines the permeability 

behavior of the dendritic/eutectic structure. The large values are controlled by the active 

dendrite network, while the smaller values are controlled by the permeability of both the 

dendritic and eutectic networks in a dual fashion. 3D Printing has been a helpful tool to 
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perform experimental measurements from a simulated model. Most recently, Berger et al. 

[156] used a fused filament fabrication (FFF) technique to scale a PF model from 150 

µm3 to 5 cm3 of an Al-Si-Mg alloy sample with a fraction solid varying from 0.61 up to 

0.91.  

 

Figure 24: (a) Surface-based representation for Al–20 wt.% Cu for Nucleation Density, (Nv=90mm3) (b) 

3D printed dendritic network [155]. 

Validation of these models requires more detail to ensure the correct physics is 

being modeled [190]. Mitsuyama et al. [157] performed an analysis on permeability of a 

large domain of 1.152 × 1.152 × 0.768 mm3, using PF, LB, and approximated using the 

Kozeny-Caman (KC) equation [158], which is used most frequently to express 

permeability. Alternatively, the Poirier-Heinrich (PH) [159] equation can be used, but 

with uncertain accuracy due to its derivation from 2D simulations and experimental data 

[160]. Therefore, much research has gone into validating these models. Such discrepancy 

has invoked studies based on different types of flow and growth patterns. In parallel flow, 

a solid fraction can change in dimensions with respect to the liquid that flows through the 

entire columnar dendrites, as shown in Figure 25. The simulations validated the use of a 
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KC coefficient of Kc = 3 and the permeability tensor for this use case. Thus, the 

permeabilities in arbitrary directions for columnar solidification structures can be 

calculated without simulation. The main area of interest regards the specific interface 

areas and the temporal changes, described by the solid fraction.  

 

Figure 25: Domain of 1.152 × 1.152 × 0.768 mm3 with 51 dendrites, extracting red part illustrating 

arbitrary direction flow [157]. 

While approximation for equiaxed dendrites is effective, the KC equation is not as 

certain for directional solidification [161], [162]. Takaki et al. [163] utilized a new 

permeability prediction method [164]–[168] using a parallel process of GPUs. They 

performed an analysis on permeability for columnar solidification structures with a 

periodic regular hexagonal array simulated using PF and LB. They were able to develop 

smooth variations of the qualities of solidification morphologies, which the permeability 

was shown to be independent of the array ordering of a consistent primary arms structure. 

This dimensionless permeability for a specific interface area is attributed to the parallel 

GPU computing that performed this large-scale simulation. This reiterates the importance 

of large-scale simulation to study what normally is not possible in real time. 
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Additive Manufacturing Processes 

Additive Manufacturing (AM) is an important application where solidification 

microstructure and related phenomena can significantly alter the material properties 

[112], [113]. Porosity, propagation of cracks, or precipitation of second phases can have 

unique effects on the mechanical properties of the material. Many factors can contribute 

to this, where this section elaborates on different types of AM methods and studies that 

produce advances in understanding of these processes. The molten pool is an interesting 

area of focus, where different dendrite morphologies can be obtained by controlling the 

thermal gradient and cooling rates. As an example, a FE-CA model was used by Yin et 

al. [114] to simulate dendritic growth in the molten pool of the laser engineered net 

shaping (LENS) process, studying laser moving speed, layer thickness, and substrate size. 

Comparing simulation to experimental results are an effective measure for success. Yu et 

al.[115] researched a multigrid CA model to simulate these properties from an Electron 

Beam Selective Melting (EBSM) of a Ni-based superalloy, Inconel 718. Using 

experimental data, the growth of tertiary dendrite arms was validated. This 48 thermos-

fluid model was compared to experimental results of single-track scans, as shown in 

Figure 26. By studying how primary dendrite arms grow in the melt pool in mesoscale, 
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this research provided a promising approach for studying shrinkage porosity and 

propagation of hot cracking. 

 

Figure 26: (a) Comparison of experimental and simulated microstructure by liquid solute 

concentration in the interfacial cells (b) Simulated melt track showing temperature gradient (top) and 

cooling rate (bottom) compared with the experimental solidified melting pool region [115]. 

 The complexity of AM requires many components to efficiently model the processes. 

An interesting aspect of AM processes is the potential for location-specific 

microstructure control. Shi et al. [116] studied the effect of laser beam shaping on 

morphology, size, and crystallographic texture for laser powder bed fusion (L-PBF) of 

stainless steel. First, they used a process modeling code, ALE3D, for solving continuity, 

momentum, and energy equations, which was developed at Lawrence Livermore National 

Laboratory using a hybrid finite element and finite volume formulation [117]. The output 

of the ALE3D was the temperature field for all nodes through time. The transient 

temperature field was then imported to a simplified CA model to capture grain structure. 
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The ALE3D solver needed a coarser grid compared to the CA model. Therefore, the 

output temperature field from the ALE3D solver was projected on a finer CA mesh. They 

utilized the DREAM 3D software [118] and experimental measurement for the initial 

grain structure required in the CA model. The output of the CA model, shown in Figure 

27, was the grain structure and crystallographic texture during L-PBF. 

 

Figure 27: (a) 3D simulation orientation map (b) Longitudinal cross-section (c) Evolution of grain structure 

during a single-track L -PBF AM of 316L- SS at section located at 8 μm below the substrate surface [119] 

GB: Grain Boundary. 

The properties of AM builds are highly dependent on the process parameters. 

Lian et al. [120] proposed a 3D CA-FV method to study the process parameters including 

laser scan speed and laser power to predict the grain structure for the single track directed 

energy deposition (DED) AM process of the Inconel 718 alloy. They also presented the 

grain growth for a multiple-layer deposition process with different raster patterns. The 

comparison of 3D simulation results and electron backscattered diffraction (EBSD) and 

pole figure experimental results is shown in Figure 28. In their proposed method, the 
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cellular automaton method enriched with grain nucleation scheme was used to predict 

columnar, equiaxed and mixed grains, while the FV method was used to solve heat 

transfer and thermocapillary flow. 

 

Figure 28: Simulation of grain structure for multi-layer AM builds with a unidirectional raster pattern. (a) 

Midsection EBSD; (b) 3D grain structure; (c): 3D pole figure of these simulations [120]. 

Laser powder-bed fusion (L-PBF) is the most popular process for manufacturing 

functional parts for different applications.[165]–[168]. The simulation of L-PBF requires 

considering localized phenomena that are highly transient, making the simulation very 

complex. Marangoni convection in the melt pool, rapid solidification, topological 

depression of the melt, and thermal cycling are examples of such complex phenomena 

[116]. Elahi et al. [121] recently presented a computational framework for this type of 

simulation, using a combination of CALPHAD calculations for alloy properties, 

macroscale FE thermal simulations, and microscopic PF models for the melt pool 
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solidification. They were able to calculate a billion grid points on a single cluster node of 

eight GPUs, providing insight into grain texture selection with detail of dendrites for a 

realistic multiscale SLM simulation.  

The large-scale simulations have enabled innovative melting strategies for AM, such 

as localized melt-scanning to control the grain size and spacing of the primary dendrite 

arms. Raghavan et al. [122] produced predictions for grain sizing for a corresponding 

qualitative texture plot. This process allows for consistent solidification microstructure 

across the build. The comparison of the simulations is shown below with different types 

of grains and spacings (Figure 29). By comparing experimental results with simulation, 

context for the types of microstructures is validated with the types of melt strategies.  

 

Figure 29: Grain size simulation with respect to different localized melt strategies comparing simulation 

(top) and experimental pole figures (bottom) [122]. 
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CHAPTER 2 

Methodology 

The complex physics associated with the solidification process requires solving a 

number of differential equations for heat transfer, diffusion, fluid flow, and phase 

transformations. The numerical methods for solving these equations often include finite 

element (FE), finite difference (FD), finite volume (FV), and lattice Boltzmann (LB). The 

first three are compared with respect to each other, due to the many similarities shared 

between them, while LB is featured separately. Solving the transport phenomena can be 

accomplished in either mesoscale (FE, FD, FV) or microscale using molecular dynamics 

(MD). Solving a large-scale problem is impossible using this MD method; however, LB 

bridges the gap between the two by not considering each particle’s behavior in isolation, 

as per MD. LB uses a distribution function to represent behavior properties of a 

collection of particles. 

The conventional method for mesoscale is usually divided into two approaches, 

continuous or discrete. Using the continuous approach, an infinitesimal control volume 

and the conservation of energy, mass, and momentum are used to obtain partial 

differential equations, which is difficult to solve with complex geometry, boundary 

conditions, and nonlinearity. This problem is solved by discretizing the domain into finite 

elements, grids, or volumes in a macroscopic scale. Physical properties, such as 

temperature, pressure, and velocity are represented at nodal points or averaged or 

assumed linearly/bilinearly across a finite volume/ nodal point [210]. This section covers 

the methodology used to simulate dendrite growth. 
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Finite Element/ Difference/ Volume 

Many scholars have used FE, FD, FV method for solving the governing partial 

differential equations. Time and space are structured in a grid, where a continuous field 

variable is approximated at discrete grid points [141]. When extending into higher 

volumes, FV methodology enables conformation to an irregularly shaped grid, compared 

to FD method’s cartesian grid. FE method divides a domain into discrete units, which is 

distinguished by the connectivity between the nodes and suited for irregular structures. 

The trade-off between resolution and computational speed is dependent on the 

methodology chosen. 

FE method is also used to solve the governing equations for solute transport. Feng et 

al. [132] used FE to implement a fluid flow model for a mesoscale simulation. Utilizing 

the Galerkin FE method [211], an elemental matrix was developed and solved using an 

open access program C++ library (IML++), for solving both systematic and 

nonsystematic linear systems [212]. These resources have been helpful in developing 

models for many uses, such as quantitatively predicting the fluid flow behavior induced 

by solidification shrinkage [132]. 

FV, on the other hand, is functionally designed to work in a 3D environment. Finite 

volume works as an integral scheme across an area, similar to FE, in which the chance for 

error is minimized. Integral schemes are computationally slower than differential 

schemes (FD), but this is dependent on the boundary conditions. FV is a conservative 

formulation that allows for a mesh to apply boundary conditions for a flow [108]. Krane 

et al. [213] coupled the CA method with FV to study the development of artificial 

anisotropy in growth kinetics. For CA, the domain was divided into finite cells, where the 
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coupled technique tracks the solid-liquid interface in a simple capture model for various 

crystallographic orientations. The FV model solves the solute diffusion in 2D, while the 

CA tracks the growth. Coupling the growth and diffusion is effective as they are 

interdependent. The diffusion along the composition gradients causes departures from 

equilibrium in liquid composition near the interface, which drives the growth (and 

remelting in this case). This process is difficult as many dependent factors are necessary 

for consistencies, where the time step and grid size depend on both the steady state value 

and the composition of the alloy. The morphology with respect to time is shown below 

(Figure 30) featuring a grid size of 1μm. Much effort has been made to simplify this 

repeated process in mesoscale [214], such as creating a framework for FV [215] for 

casting processes (OpenCast) or integrating with sharp solid-fluid interfaces with the 

Eulerian-Lagrangian framework [216]. Navier-Stokes is unable to simply combine 

thermodynamics with the source term, therefore, FV is a common strategy for integrating 

these extra physics. LB, however, can naturally inject complex physics of combining 

thermodynamics with the source term into the model, such as phase changes. 
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Figure 30:  Comparison of identical 2D, FV morphologies of Pb-5 wt% Sn alloy simulations using different 

time steps: (a) 0.3 ms and (b) 0.8 ms [213]. 

As an alternative to LB, finite methods have provided useful integrations for 

modeling fluid flow with respect to meshing. Research has shown it to be robust and 

computationally efficient, allowing for simplification of tracking the movement around 

the interface. Integration has been applied as a moving mesh algorithm for quantitative 

PF equations by Karma et al. [217]. The sharp interface equations define the dendrite 

evolution in terms of the diffusion equation, which is expressed in a moving frame. Li et 

al. [218] expanded on the moving mesh framework for 3D multiphase flows. This 

adaptive grid method is useful for the disparity between the relatively small thickness and 

global length scale, which requires a locally refined grid inside the interface. This 

research has inspired others to utilize these methods for greater potential. Wang et al. 

[219] used these adaptive FE methods to measure the scalability of these domains. 

Comparing the tip velocities for undercooling cases, complex dendrites were studied for 
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the potential to simulate more realistic physical problems (with a CPU that required about 

60 hours of time for 47,905 nodes). This numerical technique presents a framework for 

multicomponent (MC) alloys. The previously stated research has its limitations with 

respect to computation and time. FE has been used historically to model the transient 

thermal stresses and residual stresses from laser heat treatments [220]. With this context, 

it requires a higher degree of computation for realistic models. 3D finite element models 

provide a model for scalability [221]–[223], where other algorithms can enable multiscale 

complexity. 

To solve the FD mathematical model, a 1-D heat conduction equation (1) is obtained 

and then extended to higher dimensions. The PF equation is solved with FD, where the 

temperature field is represented as a series of grid points in space. 

𝜕𝑇

𝜕𝑡 
= 𝛼

𝜕2𝑇

𝜕𝑥2
      0 ≤ 𝑥 ≤ 𝐿;  𝑡 > 0 

(1) 

 In discrete time steps, we define spatial and temporal increments, where spatial 

derivatives are constructed using Taylor series expansions about 𝑇𝑖
𝑛 at a particular fixed 

time. Using linear interpolation between values at 𝑡𝑛 and 𝑡𝑛+1, while separating the terms 

to opposite sides, producing an equation (2) for the grid Fourier number (𝐹𝑜𝑔). There are 

three common schemes (Figure 31) for choosing the domain of dependence (𝑇𝑖
𝑛+1), 

which is obtained by choosing different values of ζ: Explicit (ζ = 0), Crank-Nicolson      

(ζ = ½), and Fully Implicit or Backward Euler (ζ = 1). Each method for selecting nodes 

further simplifies the equation below. 
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𝑇𝑖
𝑛+1 − 𝐹𝑜𝑔𝜁 (𝑇𝑖−1

𝑛+1  −  2𝑇𝑖
𝑛+1  +  𝑇𝑖+1

𝑛+1)

=  𝑇𝑖
𝑛  +  𝐹𝑜𝑔(1 −  𝜁)𝑇𝑖−1

𝑛 −  2𝑇𝑖
𝑛  +  𝑇𝑖+1

𝑛 + 
1 − 2𝜁

2
  (
𝜕2𝑇

𝜕𝑡2
  ∆𝑡 

+  𝒪(∆𝑡2 , ∆𝑥2)  

(2) 

 

Figure 31: The three common FD schemes: Explicit (left), Implicit (middle), and Crank-Nicolson (right) 

[141]. 

 

 Expanding the FD scheme to higher dimensions is straightforward, where the time 

derivatives are evaluated in the same way as in the one dimension. The FD representation 

of the Laplacian is new, which can expand using techniques such as the five-point stencil 

(3). 

𝛻2𝑇 =  
𝜕2𝑇

𝜕𝑥2
 +  

𝜕2𝑇

𝜕𝑦2
 =  

𝑇𝑖−1,𝑗 − 2𝑇𝑖,𝑗 + 𝑇𝑖+1,𝑗

∆𝑥2
    + 

𝑇𝑖,𝑗−1 − 2𝑇𝑖,𝑗 + 𝑇𝑖,𝑗+1

∆𝑥2
  +  𝒪(∆𝑥2 ) 

(3) 

 The algorithm for the simulations consists of a combination of PF and LB 

methods. The solute transport/diffusion equations are solved using FD method, whereas 

the fluid flow equation is solved using the LB method. The PF variable, which describes 

the evolution of the solid/liquid interface, is either represented as φ = 1 for a solid region 
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or φ = -1 for a liquid. PF can be solved using the method described above, which is used 

to solve differential equations (4).  

 

𝜏
𝜕𝜑

𝜕𝑡
 =  𝛻 ·  (𝑊2𝛻𝜑) +

𝜕

𝜕𝑥
 [𝑊

𝜕𝑊

𝜕𝜃
 |𝛻𝜑|2]   +

𝜕

𝜕𝑦
 [ 𝑊

𝜕𝑊

𝜕𝜃
 |𝛻𝜑|2 ]  

+  𝜕 𝜕𝑧 [ 𝑊
𝜕𝑊

𝜕𝜃
 |𝛻𝜑|2 ]  −

𝑑𝑓(𝜑)

𝑑𝜑
 –  𝜆

𝑑𝑔(𝜑)

𝑑𝜑
 𝑢 

(4) 

  

 

Lattice Boltzmann 

LB method is a relatively newer approach for solving the solute transport and fluid 

flow. It is different from conventional modeling techniques, as the system is modeled as a 

collection of particles moving on the discrete computational space’s lattices. It is powerful 

for simulating both single and multiphase flows in complex geometries, which gives it 

advantage over the conventional Navier-Stokes solvers [224]–[227]. It is very efficient in 

describing the fluid flow computationally [228] and coupled with different interface 

capturing methods. Interesting observations about the movement of dendrites can be made 

using large-scale LB models, such as translation and rotation [131], [229]–[231].  

LB has been an important tool for our research on large-scale simulation of dendritic 

solidification. Jelinek et al. [232] were able to visualize the flow of Al-3 wt% Cu alloy melt 

in 2D (Figure 32). The arrows represent the velocity vectors of the melt, while the contours 

represent temperature, where cooling occurs at the front and back as heat is applied at the 

sides. By incorporating effects of melt convection, solute diffusion, and heat transfer, LB 

was able to be scaled using MPI and matched to CA using an identical mesh. LB’s simple 

formulation is split into two steps: collision, which is completely local, and streaming, 

where MPI is used to transfer the distribution functions. 
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Figure 32: 2D simulation of flow melt around solidified dendrites, where colors represent solute 

concentration and contours represent temperature. [232]. 

LB is very suitable for parallel processing, as this method doesn’t rely on the assembly 

of a large global matrix, which makes CA a natural approach for coupling. However, LB 

has been coupled with PF too [143], [229], where the equations of motion are solved for 

tracking the translational and rotational motion of the solid phase. Medvedev et al. [233] 

proposed a mesoscopic scheme to simulate dendritic solidification with both motion and 

rotation of grains, which laid the framework for larger-scale simulations. This scheme was 

translated into 3D for multiple solid particles by Subhedar et al. [234], which optimized 

the diffuse interface-flow simulations. Software such as OPENPHASE [235] utilize PF and 

LB methods to grow spherical seeds and rotate in a simple sheer flow.   

LB has advantages that are clear; computations are local, and easy to handle in terms 

of complexity. It is efficient for parallelization, while handling accuracy, numerical 

stability, and constitutive versatility. Therefore, the transport phenomena can be 

computed in a variety of use cases outside of fluid flow, such as reaction systems, phase 
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changes, material processing, as well as heat transfer. Typically, simple simulations are 

performed using LB; however, with greater computation power, LB can be utilized for 

more than one use-case in a single simulation, such as studying phase change in 

combination to heat transfer. Ren et al. [236] verified this with experimental temperature 

profiles. After decoupling, a negative relationship formed between the re-molten volume 

of the temperature difference, where the influence of dispositive position and relative 

position of the adjacent component were observed and analyzed for metal droplets 

deposition method (MDDM) under heat conduction. LB was used to predict the heat 

transfer and phase change in the multi-layer deposition. Sakane et al. [237] used a domain 

decomposition method to simulate the free growth of an equiaxed dendrite in a domain of 

2×2×6 mm3. This allows for multiple-GPU parallelization, where the boundaries moved 

to divide the dendrite evenly. 

When the heat transfer equation is solved in large-scale simulation for most metals, 

since thermal diffusivity is 100–1000 times larger than solute diffusivity, the temporal 

resolution required for the solute diffusion equation is too fine for energy equation [57]. 

If all the numerical models for simulating microstructure growth are explicit, then 

separate spatial scale and temporal scales for each physics can be employed to alleviate 

the problem and reduce the computational time. In other words, unique grid sizes and 

time steps can be used for different physics. The grid size and time steps are selected 

through the Courant–Friedrichs–Lewy condition [238] for each physics. However, the 

length scales should be fine enough to capture secondary dendritic arm spacing (SDAS) 

and inter-dendritic flow for fluid flow and solidification growth features. This will result 

in a much coarser grid for fluid flow that reduces the overall computational cost [291]. 
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This method has been successfully applied by many researchers to reduce the 

computational time of large-scale simulation [24], [25], [191], [239]. Nabavizadeh et al. 

[239] studied the accuracy and computational efficiency of a multiples grid and time step 

scheme for a natural convection benchmark problem. They showed that by appropriate 

selection of the grid and time step, computational savings up to ten-fold could be 

obtained compared to when the same time step and grid size is used. The model is also 

accurate and only loses 9% accuracy for the worst case [239].  

LB is based on a probabilistic method of the meso-scale, using an average length 

scale of particles to discretize an entire system. The Boltzmann equation solves for the 

transport of these particles, which is explained by a distribution function 𝑓(𝑟, 𝑐, 𝑡). The 

number of particles is tracked at time (𝑡) at positions between 𝑟 and 𝑟 + 𝑑𝑟, along with 

the velocities between 𝑐 and 𝑐 + 𝑑𝑐. When setting the number of particles equal before 

and after an external force is applied, this can result in 2 different equations, depending 

on if collisions between particles takes place. 

𝑓 (𝑟 +  𝑐𝑑𝑡, 𝑐 +  𝐹𝑑𝑡, 𝑡 +  𝑑𝑡)𝑑𝑟𝑑𝑐 −  𝑓 (𝑟, 𝑐, 𝑡)𝑑𝑟𝑑𝑐 =  0 

(5) 

 If collisions take place, the rate of change between the final and initial status of 

the distribution function is substituted with a collision operator, Ω. Applying Newton’s 

second law to solve for acceleration, which is derived by dividing by dt. Therefore, the 

Boltzmann transport equation is derived (equation (6)), where the vector r can be 

expressed in the 3-D Cartesian coordinate system. 

𝜕𝑓

𝜕𝑡
 +  𝑐 ⋅  

𝜕𝑓

𝜕𝑟
 +

𝐹

𝑚
 ⋅  
𝜕𝑓

𝜕𝑐
 = 𝛺  

(6) 
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 The collision term is complicated, which makes the Boltzmann equation difficult 

to solve. Therefore, BGK (Bhatnagar-Gross-Krook) approximation is used to simplify the 

collision operator, substituting with new coefficients, ω (collision frequency) and τ 

(relaxation factor). 

𝛺 =   𝜔( 𝑓𝑒𝑞  −  𝑓 ) =
1

𝜏
 ( 𝑓𝑒𝑞  −  𝑓 ), 𝑤ℎ𝑒𝑟𝑒 𝜔 =

1

𝜏
  

(7) 

 Discretizing along specific directions, called linkages, rewrites the Boltzmann 

equation. This form is without external forces and is the workhorse for the LB method, 

replacing the conventional Navier-Stokes in Computational Fluid Dynamics simulations.  

 
𝜕𝑓𝑖
𝜕𝑡
 + 𝑐𝑖𝛻 𝑓𝑖  =

1

𝜏
 . ( 𝑓𝑖

𝑒𝑞  −  𝑓𝑖  ) 

(8) 

 Applying this to LB can be accomplished in various lattice arrangements up to 3 

dimensions. For 1D lattices, D1Q2, D1Q3, and D1Q5 (Figure 33) are determined based 

on the orientation of the central node with respect to the neighboring nodes. D1Q2 has no 

particle residing on the site, which is opposite to D1Q3 (most popular) and D1Q5.   

 

Figure 33: 1D lattice schemes: D1Q2 (left), D1Q3 (middle), and D1Q5 (right) [210]. 

 For a 2D lattice scheme, there are three options: D2Q5, D2Q4, and D2Q9 (Figure 

34). D2Q5, which is more stable than D2Q4, has four velocity vectors issuing from the 

central node but cannot be used to simulate fluid flow. D2Q9 is the most common for 
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solving fluid flow problems, having nine velocity vectors and a central particle speed 

equivalent to zero. 

 

 

Figure 34: 2D lattice schemes: D2Q4 (left) D2Q5 (middle), and D2Q9 (right) [210]. 

For 3D problems, two models are more commonly used to simulate the lattice 

scheme: D3Q15 and D3Q19.  Each has a central distribution function with a central 

vector of zero speed. D3Q15 uses 15 velocity vectors, while D3Q19 has 19 velocity 

vectors. Less lattice links can be used for energy and species conservation; however, for 

fluid flow, a higher number of lattice links must be used. Weighting factors are an 

Important consideration when choosing a lattice scheme. In comparison to FD, velocity 

and temperature are unknown for each node, but for LB, the distribution functions or 

Particles depend on the dimension and nature of the problem. For example, the isotropy 
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of lattices must be conserved in the selection of the weighting factor for each lattice 

direction. 

 

Figure 35: 3-D lattice schemes: D3Q15 (left) and D3Q19 (right) [210]. 

 The PF can be combined with the LB method for solute diffusion. Colliding in 

three dimensions (D3Q15), this is represented as the following equation (9). 

𝑒𝑖  =  𝑐 ×   {(±1, 0, 0),

(0, 0, 0)                              𝑓𝑜𝑟 𝑖 =  0 
(0, ±1, 0), (0, 0, ±1)                𝑓𝑜𝑟 𝑖 =  1 −  6
 (±1,±1,±1)                              𝑓𝑜𝑟 𝑖 =  7 −  14

  

(9) 

 The BGK approximation (10) is used to solve for the distribution function (𝑔𝑖) 

and its evolution for the solute concentration at a particular location in space. The lattice 

speed (𝑐) is calculated by using the lattice spacing (∆x) and time step (∆t), where 𝑐 =

∆x/∆t.  

𝑔𝑖(𝑥 + 𝑒𝑖∆𝑡, 𝑡 +  ∆𝑡) − 𝑔𝑖(𝑥, 𝑡) =  −
1

𝜏𝑐
 (𝑔𝑖(𝑥, 𝑡)  −  𝑔𝑖

𝑒𝑞 (𝑥, 𝑡)) 

(10) 
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The solute transport model’s relaxation time (τc) and equilibrium distribution 

function (g𝑖
eq

) are used to further approximate the diffusion equation using the diffusion 

coefficient of liquid (𝐷𝑙) (11). 

𝐷𝑙 =
𝑐2∆𝑡

6
 (2𝜏𝑐 − 1) 

(11) 

 Thus, the equilibrium distribution gi
eq
 =  wiCl is solved using the weight 

coefficients (𝑤𝑖) associated for a D3Q15 lattice (12). The liquid’s solute concentration 

(𝐶𝑙) can be recovered using the summation of the distribution function 𝐶𝑙 = ∑ gi
14
i=0 . 

𝑤𝑖  =  

{
 
 

 
 

  

16

72
         𝑓𝑜𝑟 𝑖 =  0,            

8

72
         𝑓𝑜𝑟 𝑖 =  1 −  6,   

1

72
          𝑓𝑜𝑟 𝑖 =  7 −  14

 

(12)  

 

 The solute is redistributed between the solid and liquid phases as the dendrite 

solidifies, where the amount of the redistributed solute is determined using the following 

equation (13).   

∆𝐶𝑙  =  𝐶𝑙(1 − 𝑘𝑒)∆𝑓𝑠 
(13) 

The fraction of solid (𝑓𝑠) can be solved using the PF variable (𝜙),  fs  = (φ +

 1)/2, which can be used to define the microstructural evolution for modeling the 

solidification. The following approach is computational to enable scaling and efficiency.   

Computational Approaches 

First, simulations were performed on a smaller scale (0.2 × 0.2 × 0.6 mm3), which 

was used to determine the parameters to scale to a larger domain (0.2 × 0.2 × 8 mm3). 
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This was accomplished by comparing two of the main parameters, Epsilon and Omega   

(Table 1), which affects the morphology of the dendrite growth. These parameters were 

selected in means of variation for both high and low values to ascertain which was most 

valuable in terms of simulating grain growth. A larger value of epsilon will produce a 

needle-shaped growth, while a smaller value produces a cauliflower-shaped growth 

evolution. Omega, on the other hand, is more closely related to timestep sizing. 

Table 1: Simulation Parameters Comparison 

Case Number Epsilon Omega 

Case 1 0.085 1.0 

Case 2 0.04 1.0 

Case 3 0.085 1.7 

 

Optimization was a large focus of the research, as parallel programming can specify 

which GPU can be used during specific processes of the simulation. The process for 

parallelization is accomplished by specifying threads in kernels using the CUDA 

programming language. CUDA is traditionally written in C++ but can also be wrapped in 

Python using PyCUDA. The code consists of parameters, which are declared using 

Python, while the kernel code is written in C++. The parameters consist of number of 

particles per lattice row (for x, y, and z directions), mesh size (dxx), Peclet number (time 

frequency), omega, and epsilon. The process used the nohup command to run the process 

to completion in the background. The CUDA framework is parallelized, which means 

when the kernels are deployed into the GPU. This frees the CPU for general 

computations, such as initiating another kernel execution in another GPU.  
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Measuring permeability was performed using several techniques, to validate the 

predictions. First, permeability must be measured using simulated morphology. As part of 

the process, a dendrite was simulated in evolution. For the first measurement, an 

equiaxed dendrite was simulated in a simplified form, as a sphere. This sphere was 

simulated in an evolution by using various sizes form 1.5 - 120 µm. The measurement of 

permeability was performed using COMSOL and a LB method using two different 

domain sizes: large (300µm) and small (30µm).  

For the second simulation, the large-scale, columnar dendrites that were simulated 

from the prior experiments were used. The output from the simulations produced a 

visualization toolkit (vtk) file that contained information about the solute concentration, 

temperature, and the phi. To validate the predictions, the outputs need to be converted to 

stereolithography (stl) file format. This was accomplished using Paraview, which allowed 

triangulation on the contour of the phi. The resulting output was imported into 

Solidworks, which was used to create a bounding box, which serves as the domain for the 

fluid flow. This was also imported into COMSOL to measure the permeability using an 

alternative method for validation purposes.  
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CHAPTER 3 

Results And Discussions 

The procedure for measuring permeability of a solidifying alloy required three 

main stages, which will be discussed in more detail in the following sections. First of 

which, simulating the dendritic growth was the most time consuming. Secondly, 

optimizing computations was a requirement to scale. Lastly, measuring permeability was 

the goal, which required the previous stages. 

 

Simulating Dendritic Growth 

Results 

The simulations were performed on a GPU server, equipped with an Intel C620 CPU 

and 3 GPUs: Tesla V100S 32GB. Each GPU has 5120 cores, which clocks at 1245 MHz 

frequency. The material modeled was Al-3wt%Cu alloy, where the material properties 

are shown below in Table 2.  

Table 2: Al-3wt%Cu material properties 

Symbol Definition Value 

𝜌 Density (kgm−3) 2475 

µ Viscosity (m2/s) 0.00014 

Dl Solute diffusion in the liquid (m2 s −1) 3.0 × 10-9 

ml Liquidous slope (Kwt%−1) -2.6 

k Partition coefficient 0.14 

Γ Gibbs-Thomson coefficient (Km) 2.4 × 10-7 

Tm Melting Temperature of pure Al (K) 933.47 
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 The first series of simulations was of the smaller scale (0.2 × 0.2 × 0.6 mm3), which 

demonstrated the efficiency of the simulation. However, due to the scale of the 

simulation, higher-order dendrite arms failed to form, which is shown below (Figure 36). 

 

Figure 36: Simulation of smaller scale showing secondary dendrite arms forming tertiary arm growth at 

approximately 5.96 seconds. 

Both small- and large-scale simulations were performed on a single dedicated GPU. 

The large-scale simulation was scaled up from the small-scale simulation in the z-

direction by a magnitude of 13.3x (0.2 × 0.2 × 8 mm3).  For a total of 634,000,000 time-

steps and a time-step size of 0.125 microseconds, which equals 79.25 seconds of physical 

time, the simulation produced 1585 outputs. The total amount of compute time for 
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performing the simulation for Case 1 was approximately 487.5 hours. Initially, 

TECPLOT (tec) files needed to be converted to vst format manually; however, after 

modifying the code, the outputs were automatically exported in readable format (vst). A 

second constraint was the pickle (pkl) files, which were used to serialize the file on disk 

for a quicker runtime, were necessary to start the next iteration, which saved the 

parameters. This accumulated and consumed valuable space, which required the code to 

be modified to delete the previous output’s predecessor pkl file. Afterwards, the process 

for completing an iteration required little intervention, except to modify the shell script 

with the previous output number to direct the code to the correct pkl filename.  

The results have been compiled from many hours of simulation time. The simulations 

produced details that are shown below. Case 1 features images of both solute 

concentration and phi. The first image (Figure 37) features solidification at 131,172,413 

iterations with secondary dendrites visibly formed around the primary arm. The 

simulation shows holes in the bottom as the solidification has a phi value not within the 

range, which is an artifact of the visualization. This is due to solid touching the domain 

walls. 
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Figure 37: Case 1: Visualization of (a) Solute Concentration profile (b) Phi at the 131,172,413th iteration, 

approximately 16.4 seconds. 

The second figure (Figure 38) compares the full-size image to a close-up of the 

Case 1 dendrite at the 240th output, which is equivalent to approximately 262,344,827 

iterations. The dendrite features a coarse surface with solidified secondary dendrites. The 

top appears flat rather than pointed as seen in early stages of Case 1. Many of the 

secondary dendrites that were visible in the earlier stages have solidified into the primary 

dendrite.  
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Figure 38: Case 1: 0.2 × 0.2 × 8 mm3 Visualization of Phi at 262,344,827 iterations (32.8 seconds) (a) Full 

size (b) Close-up. 

 The solidification at 634,000,000 time-steps of Case 1 (Figure 39) produced 

simulation results similar to the first image, but to a larger extent. The domain has nearly 

doubled in size over 79.25 seconds. When interpreting the results, the levels of phi can be 

adjusted to change the visual appearance, which is featured in the full-size image. The 

more solidified portion is highlighted on the right, while the left showcases the mushy 

zone towards the top. 
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Figure 39: Case 1: 0.2 × 0.2 × 8 mm3 Visualization of Phi at 524,689,654 iterations (79.25 seconds) (a) Full 

size at upper level of Phi (b) Close-up at lower level of Phi. 

At the 166th output of 181,455,172 iterations, Case 2 presents some interesting 

results. Case 2 represents an epsilon of 0.04 (smaller than Case 1) and Omega of 1.0 

(same as Case 1). The first image below (Figure 40) compares the phi and solute 

concentrations for both full size and close-up. The right image shows solute 

concentration, in which solute is in higher concentration down the middle. This is 

distinctly different from the evolution of the microstructure of the first case.  
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Figure 40: Case 2: 181,455,172 iterations (22.7 seconds) comparing (a) phi and (b) full scale C and (c) 

close-up of concentrations of solute. 

At about 268th output for the second case (292,951,724 iterations and 36.6 

seconds), the results showcase the phi visualization, which (Figure 41) shows secondary 

dendrites with tertiary dendrites protruding around the top. This visualization serves as a 

good comparison to the previous visualizations, as setting the limits for the phi value can 

produce uniquely different visualizations as the artifacts of the visualization software. 
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Figure 41: Case 2:  292,951,724 iterations (36.6 seconds) simulation output of Phi measuring the upper 

limit and exhibiting tertiary dendrites. 

At the 380th output (415,379,310 iterations and 51.9 seconds) of the Case 2 

simulation, the phi was compared with the solute concentration (Figure 42). This showed 

a similar pattern as shown at 22.7 seconds. The color of the phi shows a lighter blue, 

which is expected as solidification is more progressed. The full-scale image shows the 

progression of the solidification towards the top of the domain. The close-up shows the 

solution concentration being high towards the middle. 
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Figure 42: Case 2:  415,379,310 iterations (51.9 seconds) of dendrite growth comparing (a) phi, (b) full-

size and (c) close-up of solute concentration. 

 The final image series of 550,924,137 iterations and 68.9 seconds (Figure 43) for 

Case 2 shows a similar comparison of phi and solute concentration. First, the phi 

produces similar solidification microstructure, as shown in the previous image; however, 

the gaps have fully solidified, showing a smoother exterior. The full-scale image of the 

solute concentration shows the domain nearly solidified. The close-up shows the gradient 

more clearly, where the characteristic red is slicing through the middle, representing the 

mushy zone.  
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Figure 43: Case 2: 550,924,137 iterations (68.9 seconds) simulation of dendrite growth comparing (a), (b) 

full-size and (c) close-up of solute concentration. 

 Lastly, case 3 took an extensively longer amount of time, as the simulation was 

only commenced for about 100 outputs (109,310,344 iterations and 13.6 seconds). The 

output was visualized using a phi method. The dendrite is yet to form, while the results of 

the previous cases produced larger formations nearly 5x the rate, which is due to 

selection of omega that affects the time step size. The phi simulation results (Figure 44) 

shows a gray seed forming into a dendrite. 



 

 79 

 

Figure 44: Case 3: Solid formation (Phi) from seed at 109,310,344 iterations (13.6 seconds). 

 

Discussion 

As mentioned before, in comparison, the 3 cases were compared to illustrate the 

differences between the values of omega and epsilon. In this progression, case 3 has only 

just begun to form, while the two others have shown more progress. The first case shows 

a sharper front (as expected for a larger epsilon value), while the second case has a flatter 

front. This comparison illustrates the effectiveness of each of the parameters, which is 

shown below (Figure 45). The solid front is circled as the main focus of comparison. 
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Figure 45: Comparing the solute concentration for each of the cases (a) Case 1, (b) Case 2, (c) Case 3 at 

approximately 16 seconds. 

Optimizing Computations 

Results 

By optimizing resources, scaling to larger supercomputers is possible. It was 

attempted to utilize 3 GPU concurrently. However, this requires understanding of how to 

specify the kernel operations for the modeling of the dendrite morphology and the solute 

transport. In order to visualize the operations, NVIDIA Visual Profiler (NVVP) was used 

to understand the current kernel distribution, shown below (Figure 46). The runtime API 

shows which processes are being run, while the streams show the concurrent kernels. 

However, only one thread is deployed, which means only one API is running at a time. 

By specifying additional threads and deploying kernels across GPUs, then scalability is 

achieved.  
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Figure 46: NVIDIA Visual Profiler output for visualizing simulation process. 

Discussion 

Research into programming each of the GPUs to work in parallel was considered 

using NVLINK, which is a new technology for high-speed GPU-to-GPU interconnect. 

This was introduced with the Nvidia RTX GPU series, which removes the blocking that 

occurs with inter-GPU communications. However, this provides little utility for shared 

threading for the algorithms. The shared processes would require combined compute 

power, which is obtained using the MPI programming method. MPI requires 

understanding of programming using C# and was planned for future optimizations. 

However, integrating CUDA with MPI is compatible and would be ideal for future 

development. 
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Measuring Permeability 

Results 

Prior to performing the analysis on permeability, in collaboration with a research 

group in Germany, a csv file was provided for a simulating a LB flow through a 

microstructural surface. This was modified using Python (Figure 47) and inserted into the 

LB code, and then, converted into a stl, which was imported into Paraview to visualize 

the relationship between the flow and the solid. The results were recorded in the image 

below (Figure 47). The higher density flow (red) shows the flow having higher 

magnitude towards the center of the object. This is expected, as the object curves away 

from the center. The blue color of the flow extends around the edges, closer to where the 

solid is blocking the flow.  

 

Figure 47: Permeability visualization of a simple spherical dendrite. 

 A solidified porous medium (240 × 240 × 120 μm3) was obtained to perform an 

analysis of the permeability.  After completing the simulation, the results were visualized 
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in Paraview. The results (Figure 48) show a flow (red and blue lines) moving horizontally 

in the x-direction through pores of a solidification microstructure. The visuals show 

similar results as expected, as the velocity is higher in places where less blockage is 

caused by the solid. This was accomplished with the goal to implement a stl conversion 

for the LB simulation. 

 

Figure 48: Visualizing permeability through a porous media in the x-direction. 

Discussion 

Permeability was measured using two methods: COMSOL and a lattice 

Boltzmann Method (LBM) generated solution. This was used to compare permeability 

around a sphere. Using a range of sizes for the sphere with consistent mesh size of 1 μm, 
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the permeability was compared for two different domain sizes: large (300µm) and small 

(30µm). The first, which is featured below (Table 3), shows the inverse relationship 

between the permeability and radius. The data used for permeability using LBM was 

adjusted to match the units in COMSOL. The difference between the two was measured 

and recorded. 

 

Table 3: Large Domain Dataset Comparison of COMSOL and LBM 

Radius (µm) LBM (m2) COMSOL (m2) Difference (%) 

15 2.99E-09 1.67E-09 44.35 

30 2.06E-09 1.36E-09 34.22 

60 8.66E-10 7.90E-10 8.82 

75 5.09E-10 5.61E-10 -10.16 

80 4.18E-10 4.93E-10 -18.06 

90 2.69E-10 3.74E-10 -39.28 

100 1.60E-10 2.74E-10 -71.11 

120 3.92E-11 1.29E-10 -229.12 

 

The results are also shown below in Figure 49. The results compare the radius of 

the equiaxed dendrite to permeability. As the dendrite grows in a fixed domain size of 

300 μm, the permeability is measured in comparison between COMSOL and LB method. 

The results show a high difference at the largest value of radius, which is deceiving from 

the chart. As the permeability values decrease, the difference grows substantially as the 
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chart does not account for incremental changes in scale. However, validating with the 

table above, the closest approximation is at 60 μm. 

 

 

Figure 49: Permeability Comparison for a Large Domain (L=300 µm). 

 The results from the small domain (30µm) are shown below (Table 4) with 

similar comparison of COMSOL and LB method as the large domain. The difference is 

the greatest at the smallest radius, while a larger radius performs best, which is contrary 

to the smaller domain size comparison.  
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Table 4: Small Domain Dataset Comparison of COMSOL and LBM 

Radius (µm) LBM (m2) COMSOL (m2) Difference (%) 

1.5 3.95E-11 1.67E-11 136.43 

3 2.60E-11 1.36E-11 91.36 

6 1.23E-11 7.91E-12 55.73 

7.5 8.20E-12 5.62E-12 46.07 

8 6.41E-12 4.94E-12 29.76 

9 4.36E-12 3.76E-12 16.06 

10 2.94E-12 2.75E-12 6.60 

12 1.12E-12 1.30E-12 -13.87 

 

 The figure below (Figure 50) compares the results of the small domain datasets 

from the table above. The chart shows a similar exponential decay as the large domain 

datasets. However, the results converge towards the larger radius. If the domain size is 

too large for the object, the results show a greater difference in permeability between the 

two methods.    
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Figure 50: Permeability Comparison of COMSOL and LBM for a Small Domain Dataset. 

The process for determining the permeability was a challenging exercise for the 

procedure we chose to use, which required methods to import a stl format as a 

Solidworks part (sldprt) format. COMSOL required a bounding box for producing a flow 

around a solid, therefore, the supported file format for importing the two solids was 

restricted to Initial Graphics Exchange Specification (IGES) format. This wouldn’t be an 

issue if the conversion of the stl to a sldprt was possible. However, under much effort, the 

“stl” was only able to be imported as a surface part. This doesn’t allow for modifications 

to the imported part; therefore, the bounding box was unable to perform the cavity, which 

would conform the negative space from the dendrite into the bounding box. Alternative 

methods include joining or combining the two bodies and removing the dendrite. The 

normal parameters were removed from the vtk format when exporting the dendrite from 

Paraview. Additionally, to reduce the memory consumption to import the stl, the dendrite 

was split into 16 equal parts along the z-axis (top segment shown below in Figure 51). 
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Figure 51: Dendrite split into segments (top segment isolated). 

 

 The import continued to have the same error. Therefore, it was concluded that 

algorithmically inserting the results into the simulation is the most suitable method for 

performing the calculation of phi. This was attempted without full completion, where the 

algorithm was included in the appendix (Code A 2). For demonstration, an “stl” of a cat 

(Figure 52) was converted to points, which can be interpolated into a machine-readable 

format for the LB code. 
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Figure 52: “Stl” cat conversion to points for LB flow analysis. 

Alternatively, the stl conversion was completed using another opensource 

voxelization software called “binvox” [240], which used a simplified polygon model 

using volumetric technique [249]. The application produces a bounding box 

automatically, while the output can be specified in vtk format. This is effective for 

importing directly into the LB algorithm. This process needs more validation to be 

implemented; however, it shows great promise to automate the implementation of flow 

analysis using LB method.  
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CHAPTER 4 

Conclusion 

The applications of simulating the evolution of microstructure during solidification 

are as diverse as the observable features. The large-scale simulations require extensive 

computing power; therefore, a combination of hardware and numerical techniques are 

necessary to enable scaling. Employing the most efficient numerical methods together 

with communication techniques over a large number of processing units, the research into 

solidification simulations resulted in innovative methodologies enabling investigation of 

various features during alloy solidification. 

To enable efficient simulation of solidification microstructure, various numerical 

methods have been developed to improve the simulation results over larger domains. 

Cellular automaton, with its simplicity and computational efficiency, was featured for 

simulating dendrite growth in large 2D and 3D domains. Phase field, being the most 

popular, has been utilized for reproducing the physics more accurately. Although more 

computationally demanding compared to CA, PF has been used in the largest dendrite 

growth simulation to this date. Direct interface tracking and level set methods are less 

popular for large-scale simulations.  Scaling with dendrite needle network method allows 

for analytical and coarse-grained models to be used in combination. 

 Several manufacturing and materials processing techniques can take advantage of 

the prediction capabilities offered by large-scale simulations of solidification 

microstructure. The modeling approaches still have a lot of future improvements to 

innovate upon, with promising developments in machine learning and computing power. 
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In addition, the research performed in this thesis provides much opportunity for future 

development.  

 Utilizing Cal State LA’s GPU server, large-scale simulations were performed by 

simulating both the morphology and the transport phenomena. The results were compared 

using different parameters. The simulated dendrite was then used to measure the 

permeability of the dendrite using the lattice Boltzmann (LB) method. This was also 

performed using a simulated equiaxed dendrite comparing the LB results with COMSOL 

simulation results. This validation provided agreeably similar results for equiaxed 

dendrite permeability within a relative domain size.   

Future Developments 

There are many potential considerations to improve in the development of this 

research. First of which, the study of permeability can be improved by measuring the 

evolution of the permeability in a growing dendritic network. This can be accomplished 

by combining the outputs from the first code (PFLB) and the last code (LB) to calculate 

the permeability at different stages. This can be further enhanced using a regression 

technique to scale.  

An interesting concept of utilizing machine learning for simulating grain growth 

has potential for development in the future. In 2017, Hu et al. [241] used a CA method, 

along with machine learning, to simulate the grain and pore growth in aluminum alloys. 

The back-propagation neural network (BPNN) was used to create a correlation between 

the solidification parameters and pore growth; however, the domain was restricted to a 

size of 200 x 200 µm. Machine learning has a unique potential to assist in the modeling 

of dendritic features and has been implemented in the prediction of secondary arm 
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spacing in aluminum alloys [242]. While deep learning has been used for prediction of 

porosity defects in aluminum alloys [243], applications with simulations have been 

limited. Most recently, Hu et al. [244] has used recurrent neural networks to accelerate 

PF predictions. By comparing different dimensionality-reduction methods, such as linear 

(principal component analysis (PCA) [245]) and nonlinear embedding (isometric feature 

mapping (Isomap)) [246] and Uniform Manifold Approximation and Projection (UMAP) 

[247] techniques, the latent space can preserve PF input parameters. The autocorrelation 

based PCA proved to be the most efficient, while a computation speedup of 3x was able 

to be implemented using recurrent neural network (RNN) models with fewer number of 

cells and a gating mechanism, such as gated recurrent unit (GRU) [248] or long short-

term memory (LSTM) [249]. Figure 53 shows the implementation of the RNN model. 

This model can be utilized in application with our current codebase to enable predictions.  

Future development shows promise with integration of mesoscale simulation systems.  

 

Figure 53. RNN model to predict microstructural evolution in latent space for PF modeling [244]. 
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Another potential area for development is implementation of remelting in the 

simulations. The evolution of dendrite remelting consists of 4 stages, while the last stage 

consists of fragmentation [250] that enables further discretion of large-scale realistic 

simulations. An interesting phenomenon, where secondary arms remelt at the roots, 

detaching from the primary trunk, and moving toward unsolidified melt can be better 

understood in larger domains [251]. The combination of improved physics models and 

computational algorithms with thermodynamic databases would enable calculation of 

multicomponent phase equilibria, allowing for more reliable simulations for real-world 

industrial applications. Remelting with the study of permeability can provide higher 

predictability for post-processing techniques for reducing defects, such as freckling.  
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APPENDIX 

Code A 1 

# Permeability Conversion 

 # This code inputs an csv of data points that represents a permeable solid for the LB code 

import numpy as np 

import pandas as pd 

import csv 

 

# READ CSV 

import os 

path = 'C:\\<PATH>\\Documents' 

output_file = os.path.join(path,'vel.csv') 

 

df = pd.read_csv (output_file, index_col = [0]) 

print (df) 

 

 

# importing the csv library 

import csv 

  

# opening the csv file by specifying 

# the location 

# with the variable name as csv_file 
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with open(<PATH>/vel.csv') as csv_file: 

  

    # creating an object of csv reader 

    # with the delimiter as , 

    csv_reader = csv.reader(csv_file, delimiter = ',') 

  

    # list to store the names of columns 

    list_of_column_names = [] 

  

    # loop to iterate through the rows of csv 

    for row in csv_reader: 

  

        # adding the first row 

        list_of_column_names.append(row) 

  

        # breaking the loop after the 

        # first iteration itself 

        break 

  

# printing the result 

print("List of column names : ", 

      list_of_column_names[0]) 
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#df.set_index(['v_x', 'v_y','v_z']) 

 

for x, y in df.iteritems(): 

  print(x) 

  print(y) 

 

#Parameters 

mew = 0.001 #Pa/s 

g_p = 100   #Pa/m 

 

#v_g = k*g_p/mew 

# solving for k 

#  k = v_g*mew/g_p 

#    = v_bar_x*mew/(dp/dx) 

 

#Average velocity 

 

for i in range (len(v_x)): 

 

    v_bar_x = sum(v_x)/i 
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for i in range (len(v_y)): 

    v_bar_y = sum(v_y)/i 

 

for i in range (len(v_z)):   

    v_bar_z = sum(v_z)/i 

 

for i in range (len(v_y)):     

    k_xx =  v_bar_x*mew/(dp/dx) 

    k_xy =  v_bar_x*mew/(dp/dy) 

    k_xz =  v_bar_x*mew/(dp/dz) 

 

    k_yx =  v_bar_y*mew/(dp/dx) 

    k_yy =  v_bar_y*mew/(dp/dy) 

    k_yz =  v_bar_y*mew/(dp/dz) 

 

    k_zx =  v_bar_z*mew/(dp/dx) 

    k_zy =  v_bar_z*mew/(dp/dy) 

    k_zz =  v_bar_z*mew/(dp/dz) 

    print(k_xx,k_xy,k_xz,k_yx,k_yy,k_yz,k_zx,k_zy,k_zz) 

#K = [k_xx, k_xy, k_xz; k_yx, k_yy, k_yz; k_zx, k_zy, k_zz] 

 

#np.savetxt('scores.csv', K, delimiter=',', fmt='%s') 
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Code A 2 

 

In [12]: 

#Steps to take an stl input and create a bounding box for the LB code 

#1 - Create bounding box for stl part - import box to stl part (using insert)  

#2- make negative from using insert->features->combine->subtract 

#3 - Convert from Binary to ASCII using code below (1) 

#4 - Convert ASCII STL to CSV using stl-to-csv.exe or .py 

#5 - Make coordinate integers and positive values using code below (2) 

#6 - calculate phi by taking difference of csvs using code below (3) 

In [10]: 

#!/usr/bin/python 

 

from struct import unpack 

file = "<PATH>/tree1" 

fileNew = file + "ASCII" 

f = open(file + ".stl","rb") 

 

header = f.read(80) 

numfacets = unpack("<I",f.read(4))[0] 

 

 

 

with open(fileNew + ".stl", 'w') as fw: 
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        fw.write("solid stock" + "\n") 

        for i in range(1,numfacets): 

            a1 = unpack("<f",f.read(4))[0] 

            a2 = unpack("<f",f.read(4))[0] 

            a3 = unpack("<f",f.read(4))[0] 

 

            v11 = unpack("<f",f.read(4))[0] 

            v12 = unpack("<f",f.read(4))[0] 

            v13 = unpack("<f",f.read(4))[0] 

 

            v21 = unpack("<f",f.read(4))[0] 

            v22 = unpack("<f",f.read(4))[0] 

            v23 = unpack("<f",f.read(4))[0] 

 

            v31 = unpack("<f",f.read(4))[0] 

            v32 = unpack("<f",f.read(4))[0] 

            v33 = unpack("<f",f.read(4))[0] 

 

            attribs = unpack("<H",f.read(2)) 

            fw.write("facet normal " + str(a1) + " " + str(a2) +" " + str(a3) + "\n") 

            fw.write("  outer loop" + "\n") 

            fw.write("    vertex " + str(v11) + " " + str(v12) + " " + str(v13) + "\n") 

            fw.write("    vertex " + str(v21) + " " + str(v22) + " " + str(v33) + "\n") 
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            fw.write("    vertex " + str(v31) + " " + str(v32) + " " + str(v33) + "\n") 

            fw.write("  endloop" + "\n") 

            fw.write("endfacet" + "\n") 

        fw.write("endsolid stock" + "\n") 

In [13]: 

import pandas as pd 

df = pd.read_csv (r'<PATH>tree2ASCII-table.csv',index_col=False) 

df2=pd.DataFrame([df["x_coord"]-df["x_coord"].min(), 

df["y_coord"]-df["y_coord"].min(), 

df["z_coord"]-df["z_coord"].min()]) 

df3 = df2.round(0).astype(int).transpose() 

df3 = df3.assign(frac0='1') 

df3.to_csv("C:/<PATH>/tree2c.csv", index=False)  

In [17]: 

import pandas as pd 

df4 = pd.read_csv (r'C:\<PATH>\tree1ASCII-table.csv',index_col=False) 

df5=pd.DataFrame([df["x_coord"]-df["x_coord"].min(), 

df4["y_coord"]-df4["y_coord"].min(), 

df4["z_coord"]-df4["z_coord"].min()]) 

df6 = df5.round(0).astype(int).transpose() 

df6 = df6.assign(frac0='1') 

df6.to_csv("<PATH>/tree1c.csv", index=False)  

In [15]: 
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print(df3.shape) 

(13005, 4) 

In [18]: 

print(df6.shape) 

(14517, 4) 

 
 

 

 


