
UNSUPERVISED CLASSIFICATION OF PHYSICAL ACTIVITY

FROM IMPLANTED ACCELEROMETER IN

DEEP BRAIN STIMULATION

PATIENTS

A Thesis

Presented to

The Faculty of the Department of Electrical and Computer Engineering

California State University, Los Angeles

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

in

Electrical Engineering

By

Farzana Yasmin Boby

May 2023

 ii

© 2023

Farzana Yasmin Boby

ALL RIGHTS RESERVED

 iii

The thesis of Farzana Yasmin Boby is approved.

Deborah Won, Committee Chair

Curtis Wang, Committee Member

Charles Liu, Departmental Chair and Committee Member

California State University, Los Angeles

May 2023

 iv

ABSTRACT

Unsupervised Classification of Physical Activity from Implanted Accelerometer in Deep

Brain Stimulation Patients

By

Farzana Yasmin Boby

An externally worn Apple Watch is being considered for feedback control to

develop a closed-loop deep brain stimulation (DBS) system to treat Parkinson’s disease

(PD). Here, we investigate whether accelerometers provide sufficient information to

classify different physical activities and compare performance using the implanted

accelerometer versus the Apple Watch. We developed a method to classify physical

activity into 3 classes (rest, tremor, or voluntary activity) based on accelerometry. During

the controlled validation experiments, our clustering algorithm performed with 91%

accuracy with a high-end accelerometer and 89% with the Apple Watch. We applied our

validated algorithm to 48 different datasets from 5 participants’ acceleration streamed

from the implantable pulse generator (IPG) with those based on the Apple Watch during

daily living activities. The classification based on the two accelerometer signals matched

for 83% of the tremor. For the resting activity, there was 30% mismatch; for the

voluntary activity, there was 32% mismatch. Overall, the percentage of activity classified

as tremor was higher with the Apple Watch classification than the IPG. On the contrary,

the percentage of the rest was higher with the IPG than the Apple Watch. The results

point toward feasibility of classifying activity continuously based on data streamed from

an implanted accelerometer integrated in the DBS device as well as the benefit to using

an implanted accelerometer versus an external accelerometer.

 v

ACKNOWLEDGMENTS

At the very beginning I would like to thank my family for their relentless support

both emotionally and financially. I know raising two children after my father’s death was

difficult for my mom, still she always gives her best to us. Without the support from my

husband, it would not be possible for me to study abroad as an international student.

Dr. Won, thank you so much for your mentorship and all the amazing

opportunities I got in my higher education because of you. You are one of the best

mentors and one of the best souls I have ever met. Thank you for all the support and

always inspiring me.

Thanks to my thesis committee, Dr. Wang, and Dr. Liu for willing to help me in

my thesis. I would also like to thank all the faculties at Cal State LA for their continuous

support to the students.

I want to specially thank Erick for working on this project before me and

developing the classification model. Next, I will thank Paris and Calysta for helping me

perform the validation experiments related to this project.

Finally, I would like to thank CATSUS and the Office of Graduate Studies for

supporting my research. Also, I would like to acknowledge financial support for this

work by NSF HRD-1547723 to NSF HRD-2112554 and CSU Instructionally Related

Activities Fund.

 vi

TABLE OF CONTENTS

Abstract .. iv

Acknowledgments..v

List of Tables ... viii

List of Figures .. ix

Chapter

 1. Motivation ...1

 1.1. Parkinson’s disease, neurological diseases treated by DBS1

 1.2. Benefits of DBS therapy ...3

 1.3. Limitations of conventional DBS system ...4

 1.4. Closed loop DBS...6

 1.5. Thesis objective statement ..8

 2. Characteristics and Comparison of Acceleration from Extrinsic Sensor vs

 Implanted Sensor ..10

 2.1. Experimental protocol ...10

 2.2. Correlation between Apple Watch and IPG acceleration14

 2.3. Spectral analysis of acceleration signals ...19

 3. Clustering Algorithm ..26

 3.1. Classification with K-means clustering ..26

 3.2. Feature extraction from acceleration data ...28

 3.3. Elbow method of clustering ..31

 3.4. Classifying acceleration data ..33

 4. Validation Experiment ..38

 vii

 4.1. ActiGraph – the hardware, software data acquisition38

 4.2. Apple Watch – the hardware, software data acquisition............................40

 4.3. Experimental protocol ...42

 4.4. Results and analysis ..45

 4.5. Change of classification performance with changing window size and

 number of clusters ..51

 5. Application of Clustering to Patient at Home Data ...54

 5.1. Calculating percentage of each activity and percentage of classification

 match for IPG and Apple Watch ..54

 5.2. Tremor vs. voluntary active movement ..60

 5.2.1. Apple and IPG both detect tremor ...61

 5.2.2. Apple detects tremor while IPG detects voluntary movement 66

 5.3. Voluntary active movement vs. rest ..72

 5.3.1. Apple and IPG both detect rest ..72

 5.3.2. Apple detects voluntary movement while IPG detects rest77

 5.4. Comparing percentage of tremor classification to clinical assessment ..78

 6. Summary of Results ...80

 7. Discussion - Implications for Closed-Loop DBS ..83

References ..86

Appendices

 A. Main MATLAB Script File for Running the data from the PD Patients92

 B. Main MATLAB Script File for Running the Validation Experiment Data108

 C. MATLAB Helper Functions ..122

 viii

LIST OF TABLES

Table

1. Pearson’s correlation coefficient for subject 2 ...17

2. Average correlation between Apple Watch and IPG acceleration18

3. 12-dimensional integral power in four frequency bands22

4. Experimental setup...43

5. ActiGraph confusion matrix ..50

6. Apple Watch confusion matrix ..50

7. True positive and false positive rate of ActiGraph and Apple Watch51

8. Comparison of classification performance with changing window size and

number of clusters ..52

9. Confusion matrix ...57

10. Confusion matrix for three classes ...58

11. Percentage match and mismatch of Apple Watch-based classification with IPG-

based classification ..60

12. Comparison of tremor detection with clinical assessment78

 ix

LIST OF FIGURES

Figure

1. DBS system ..3

2. Open loop DBS system ..5

3. Closed-loop DBS system ...7

4. Experimental protocol ..11

5. Apple Watch available data in Rune Labs ...12

6. IPG available data in Rune Labs ..13

7. Data visualization in the Rune Labs user interface ..13

8. Overlapping acceleration signals for subject 2 ..15

9. Correlation of acceleration envelopes for different window sizes.........................16

10. STFT of IPG and Apple Watch acceleration for subject 2, 10-s window19

11. STFT of IPG and Apple Watch acceleration for subject 2, 20-s window20

12. STFT of IPG and Apple Watch acceleration for subject 2, 60-s window20

13. STFT of IPG and Apple Watch acceleration for subject 2, 600-s window21

14. IPG and Apple Watch integral power in 0-4 Hz band for subject 223

15. IPG and Apple Watch integral power in 4-7 Hz band for subject 223

16. IPG and Apple Watch integral power in 7-12 Hz band for subject 224

17. IPG and Apple Watch integral power in 12-32 Hz band for subject 224

18. Steps of k-means clustering algorithm ..27

19. PC 1 and 2 derived from the 12 original features from 10th dataset for

 subject 2 ..30

20. Integral power in PC space for subject 2 dataset 10 ..31

 x

21. Elbow plot for subject 2 dataset 10 ..32

22. Exponential fit of the distortion array for dataset 10 subject 233

23. STFT of IPG cluster 1-4 for subject 2 dataset 10 ..34

24. STFT of Apple Watch cluster 1-4 for subject 2 dataset 10..................................35

25. IPG Acceleration color coded classification ...36

26. Apple Watch Acceleration color coded classification ...36

27. Actigraph GT9X Link ..39

28. ActiGraph initialization with ActiLife software ..40

29. Apple Watch ..41

30. Acceleration data acquisition from Apple Watch ...42

31. 3-axis acceleration data in the csv file ...42

32. Experimental Protocol ..44

33. Raw acceleration signals from ActiGraph and Apple Watch45

34. Clusters in PC space for ActiGraph and Apple Watch ..45

35. STFT of ActiGraph cluster 1-4 ..46

36. STFT of Apple Watch cluster 1-4 ..47

37. Classification result for ActiGraph and Apple Watch ...48

38. Ground Truth signal for ActiGraph and Apple Watch 49

39. Classification result of ActiGraph Vs Apple Watch with 3 numbers of

 clusters ...53

40. Elbow of distortion matric ...55

41. Assigning each acceleration indices into a cluster ...56

42. Apple Watch detected more tremor (blue) than IPG ...61

 xi

43. Comparison of IPG and Apple Watch classification ...62

44. Clusters of IPG and Apple Watch Classification ...63

45. STFT of IPG cluster 1-4 ..63

46. STFT of Apple Watch cluster 1-4 ..65

47. Tremor (green) detected in both IPG and Apple Watch66

48. Apple Watch detects tremor (green) while IPG detects voluntary movement (red)

for subject E395, dataset 10 ...67

49. Clusters of IPG and Apple Watch Classification for subject NU5U, dataset 2 ...67

50. Comparison of IPG and Apple Watch classification for subject NU5U,

dataset2 ..68

51. Apple Watch detects tremor while IPG detects voluntary movement69

52. Classification result for subject 5 dataset 4 where tremor (blue) was detected ...71

53. Tremor (blue) detected in subject 5 dataset 4 ...71

54. IPG detected tremor (blue) while Apple Watch detected voluntary movement

(green and black), right image more zoomed in ..72

55. Comparison of IPG and Apple Watch classification for subject NU5U,

 dataset 7 ...73

56. STFT of IPG cluster 1-4 for Subject NU5U, dataset 7 ..74

57. STFT of Apple Watch cluster 1-4 for Subject NU5U, dataset 775

58. High and low intensity movement ...76

59. Apple Watch (blue) and IPG (blue) both detect rest..76

60. IPG detects rest (blue) while Apple Watch detects voluntary movement (black

and red) ..77

 xii

61. Average IPG and Apple Watch tremor detection ..79

62. Hardware implementation of the classification algorithm 84

 1

CHAPTER 1

Motivation

1.1 Parkinson’s disease, neurological diseases treated by DBS

Parkinson’s disease (PD) is a progressive neurological disorder characterized by

tremor, rigidity, and slowness of movement, and is associated with progressive neuronal

loss of the substantia nigra and other brain structures [1]. Parkinson’s disease patients

have low brain dopamine concentration. Non-motor symptoms may also arise, including

issues with mental health, memory problems, skin problems, low blood pressure, pain,

fatigue, speech, and communication issues etc. Parkinson’s disease cannot be cured fully,

but medications can help control the symptoms. Traditional PD management primarily

focused on dopamine replacement therapies, namely medications such as levodopa which

increase the dopamine level of the brain. However, after long-term use, on the order of a

decade, most of the patients receive inconsistent therapeutic benefit from the medication

in treating symptoms such as bradykinesia and rigidity [2][3]. Long-term levodopa

therapy in Parkinson's disease may pose various adverse reactions, such as dyskinesia;

wearing-off effect (exposure of Parkinsonian symptoms again as the effect of levodopa

diminishes, normally after 3-4 hours after taking levodopa); on-off effect (On time means

levodopa is working properly to control symptoms, off time means levodopa is not

working properly); mental symptoms such as impaired cognitive function, depression,

apathy, sleep disorder etc.; and frozen gait [4]. Deep brain stimulation is then offered to

medically refractive PD patients.

Deep brain stimulation (DBS) is an invasive electrical stimulation treatment

which has provided remarkable benefits for people with a variety of neurologic

 2

conditions. Stimulation of the ventral intermediate nucleus of the thalamus can

dramatically relieve tremor associated with essential tremor or Parkinson disease (PD)

[5]. Similarly, stimulation of the subthalamic nucleus or the internal segment of the

globus pallidus can substantially reduce bradykinesia, rigidity, tremor, and gait

difficulties in people with PD [5]. It requires a surgical procedure to implant the

stimulating device, called the implantable pulse generator (IPG), the leads, and

electrode(s) to deliver chronic electrical stimulation of brain region(s). DBS is used either

for therapy for disorders affecting the nervous system, especially movement disorders,

and has been approved in most countries for the treatment of Parkinson's disease,

essential tremor, and dystonia [6]. Other diseases treated by DBS include epilepsy and

obsessive-compulsive disorder (OCD).

The implantable pulse generator (IPG) is the most important component of the

DBS system, and it requires programming for setting the stimulation parameters. The

amount of stimulation is controlled by the IPG which is placed under the skin in the

upper chest wall. IPG sends the stimulation to electrodes implanted in the brain via

extension leads, which then deliver the stimulation to the targeted areas.

 3

Figure 1. DBS system [6].

1.2 Benefits of DBS therapy

The human brain consists of billions of neurons. These neurons communicate

with each other by transferring electric ions. Because of various brain diseases, neurons

in different parts of the brain can be less active than other parts. As a result, those brain

cells do not work perfectly. Depending on the part of the brain affected, one can have

disruptions in the abilities controlled in that area. DBS stimulates those inactive or less

active areas of the brain through electrical stimulation, often activating regions which are

responsible for inhibiting pathological brain activity. This disruption of pathological

neural signals helps manage symptoms of several brain conditions. As a clinical tool,

DBS offers several advantages over other surgical approaches for neuromodulation.

These advantages include the non-lesional nature of DBS, the capacity to titrate

stimulation parameters to maximize benefit and reduce adverse effects and the

opportunity to directly interface with the circuit pathology that drives overt symptoms

[7].

 4

DBS therapy can help patients with Parkinson’s disease improve their symptoms

such as tremors, stiffness, slowness, and dyskinesias. It can also decrease the dose of

medication the patient needs to manage their PD. In a pivotal study conducted in 2009

[8], 255 people with advanced Parkinson’s disease were randomized into two treatment

arms: 1) DBS or 2) the best alternative care doctors were able to recommend. By 6

months after surgery, patients receiving deep brain stimulation had gained an average of

4.6 hours per day of good symptom control without troubling involuntary movements,

called dyskinesia. In contrast, patients receiving standard medical care showed no

change, on average, in hourly symptom control.

New features of the implantable pulse generator (IPG) allow fractionation of the

electric current into variable proportions between different contacts of the multi-polar

lead [9]. Another design consists in leads that allow selective current steering from

directionally placed electrode contacts that would deliver the stimulation in a specific

direction or even create a directional shaped electric field that would conform to the

anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side

effects [9].

1.3 Limitations of conventional DBS system

Over 160,000 patients worldwide have undergone DBS for a variety of

neurological and non-neurological conditions, with numbers increasing each year [10].

Despite well-developed interface technology, the clinical success of brain stimulation is

dependent on variables such as quality of stimulation and exact electrode location

[11][12]. Conventional deep brain stimulation instruments use open-loop control. In these

systems, stimulation is continuous and parameters such as amplitude, frequency, and duty

 5

cycle are fixed. Although these systems are useful and practical in some cases, they have

some drawbacks. The brain structures of different people are not quite identical to each

other [12]. As a result, using a common program of stimulation in the treatment of

different people does not bring the same answer, even in some cases leading to severe

complications [13]. In an open-loop DBS system stimulation parameters currently need a

lengthy trial and error process and can be set or modified only at the time of clinical

visits. Once stimulation parameters are set to a specific setting, how the patient responds

with that stimulation is examined. Patients needed to undergo the same process as long as

they respond well with the stimulation setting. Therefore, the main limitation of current

DBS device is its open-loop control which results in frequent clinic visits for stimulation

programming and missing the maximal quality of life improvements that a closed-loop

DBS could afford [14].

Figure 2. Open loop DBS system.

 6

In the open-loop DBS system, after stimulation amplitude and duration is set

once, if the patient needs any adjustment, she or he must wait until the next clinical visit.

In reality, patients may need stimulation of more or less amplitude/duration. Adjustments

of stimulation parameters are not conducted in real-time based on the ongoing

neurophysiological variations in the brain; therefore, adverse effects on the patient may

be induced due to brain overstimulation [16].

1.4 Closed loop DBS

Closed-loop DBS systems (also known as adaptive) can be used to solve the

mentioned limitations. In these systems, stimulation current can be changed automatically

proportional to the recorded brain physiological signals [15]. Closed-loop DBS employs a

sensor to record a signal linked to symptoms while open-loop DBS does not use a sensor

for recording the brain condition; therefore, stimulation parameters including duration,

amplitude, and frequency of the pulse train remain constant in open-loop DBS regardless

of fluctuations in the disease state [16]. The recorded signal which contains the

information about the disease state is known as a biomarker. In the closed-loop DBS, the

stimulation pulses are delivered when the brain is in an abnormal state, or they are

automatically and dynamically adjusted based on the variations in the recorded signal

over the time [16].

 7

Figure 3. Closed-loop DBS system.

In closed-loop DBS systems, programming of the stimulation parameters is done

automatically based on biomarkers. Closed-loop DBS adaptively activates and

deactivates stimulation based on brain states. On the contrary, open-loop DBS continues

to stimulate regardless of the state of the patient.

To complete the loop of the closed-loop DBS, it is important to find out a

potential biomarker for providing the feedback signal. Some examples of

electrophysiological biomarkers considered in the feedback loop of adaptive DBS

systems are action potentials (APs) [16][17], ECGs [18][19], LFPs [20][21],

electroencephalogram (EEGs) [22], electromyogram (EMG) [23] and biochemical [24]

signal. Kinematic data [25] such as acceleration signals can also be used as biomarkers.

One advantage of using acceleration as a closed-loop feedback signal is the process is

 8

non-invasive [25]. Each of these signals needs more research to find out which approach

is more feasible, effective, and efficient.

1.5 Thesis objective statement

Medtronic, Inc. (Minneapolis, MN) developed the Summit RC+S, approved for

research purposes to aid in the development of closed-loop deep brain stimulation (DBS).

The Summit RC+S system consists of two surface or depth leads that are implanted in the

brain and a neurostimulator (INS) implanted in the chest. The system is capable of

sensing neural activity, acceleration, performing on-board computations, and delivering

open-loop or adaptive stimulation based on user-programmed parameters [26]. In this

thesis, we analyze acceleration data streamed from Medtronic’s RC+S DBS device

(intrinsic accelerometry) and externally worn wristwatch (extrinsic accelerometry). We

investigate how well accelerometry works as a feedback signal to the adaptive DBS in

detecting Parkinson’s tremor as well as other daily living activities and compare activity

classification results using intrinsic accelerometry with those using the externally worn

wristwatch.

Our goal is to detect Parkinson’s tremor and other physical activities using

acceleration as feedback, so that DBS can be controlled more efficiently and effectively.

Parkinson’s tremor is considered to happen at 4-7 Hz [27] frequency range. A machine

learning algorithm can detect the activity as tremor when the frequency range of the

tremor is 4-7 Hz. After tremor is detected, the stimulation parameters could be set

automatically to start stimulation at that moment but keep it off during sleep or rest.

Similarly, other physical activities such as walking, running, cooking, and so on can also

 9

be detected and this information could be used to set the stimulation parameters precisely

in real-time.

The objective of this thesis is to demonstrate feasibility of an accelerometer-based

physical activity classifier that could be used to close the loop in DBS and determine

whether an implanted accelerometer or an externally worn accelerometer can work better

in providing a feedback signal to the closed-loop DBS device.

 10

CHAPTER 2

Characteristics and Comparison of Acceleration from Extrinsic Sensor vs Implanted

Sensor

In this chapter we are going to discuss the experimental paradigm and data

collection process from extrinsic and intrinsic accelerometers. We will be analyzing the

correlation between the envelopes of the acceleration signals from both accelerometers

by changing the window size of the moving average filter. We will also analyze the

spectral power of the acceleration signals by changing the window size used for

calculating the Short Time Fourier Transform (STFT).

2.1 Experimental Protocol

A unique aspect of our study was that data was streamed during daily living

activities in their everyday life environment, typically from the participants’ homes. Data

collection was carried out by Dr. Dennis Turner and Dr. Warren Grill’s research

laboratory at Duke University in accordance with approved protocol from the Duke

Institutional Review Board. Six Parkinson’s disease patient participants were recruited

for this study at Duke University Medical Centre. All 6 participants have severe

Parkinson’s disease and were eligible for DBS therapy and were implanted with the

Medtronic Summit RC+S closed-loop DBS device. This device is developed for research

purposes and is not FDA-approved. The RC+S device is capable of both providing

stimulation and acquiring acceleration signal, LFP (Local Field Potentials) signal and the

stimulation settings. Data was collected from only 5 of the 6 enrolled participants thus

far. There was no data available for the sixth subject. We examined 10 datasets from each

 11

of the subjects available except subject 4, because there were only 8 overlapping datasets

available for subject 4.

The IPG of the RC+S device can record the data while the DBS is on, and data is

downloaded from the device by clinicians during the monthly clinical visit; then data is

uploaded to Rune Labs’ server where it is available to download.

Another way of acquiring the acceleration data is using Apple Watch. All the

patients are instructed to wear Apple Watch as often as possible. Apple Watch data is

streamed automatically to Rune Labs’ server. From Rune Labs’ server the data from IPG

and Apple Watch is available to download for the researchers, according to the approved

IRB protocol.

Figure 4. Experimental protocol.

In Rune Labs’ web user interface, we can choose the subject, date and time, and

the type of data which we want to download. There are several options for Apple Watch

data to download, such as: acceleration with and without gravity, heart rate, dyskinesia

probability, tremor probability, tremor probability by severity, etc.

 12

Figure 5. Apple Watch available data in Rune Labs.

Similarly, there are several options of data to download from the IPG such as

LFPs, acceleration, adaptive stimulation, adaptive stimulation state, therapy etc. In this

project we focus only on the acceleration data from both IPG and Apple Watch.

 13

Figure 6. IPG available data in Rune Labs.

Figure 7. Data visualization in the Rune Labs user interface.

 14

The data can be downloaded using Rune Labs’ graphical user interface (GUI)

application. For downloading large data which contains hours of data, the file size

becomes too large to be downloaded using the GUI. To download larger files, we used

Rune Labs’ python API (Application Programming Interface), called from a Python

notebook. In the Jupyter notebook, the device ID, patient ID, start and end time of the

data etc. are specified. The Jupyter notebook file can be found in their GitHub [31]. After

downloading the data, we analyzed and processed the data using MATLAB.

2.2 Correlation between Apple Watch and IPG acceleration

For this project we need overlapping data simultaneously streamed from IPG and

Apple Watch at the same time. The data from Apple Watch and IPG had different

sampling frequencies. Apple Watch had a sampling frequency of 50 Hz and IPG had a

sampling frequency of 65 Hz. We performed linear interpolation on the Apple Watch

data to synchronize the data to the sampling frequency of IPG data (65 Hz).

After data synchronization, we compared the Apple Watch with the IPG

acceleration data by superimposing the two accelerometer signals on each other. Fig. 8

shows overlapping signal content and correlation between the two acceleration signals.

 15

Figure 8. Overlapping acceleration signals for subject 2.

From Fig. 8 we can see that both the acceleration signals have higher intensity

activities and lower intensity activities or relatively quiet signal at the same time. At the

time when IPG signal has high amplitudes, Apple Watch also has high amplitudes. But,

at the time when IPG signal has relatively low amplitude, Apple Watch still shows some

high amplitude at the same time. Apple Watch signal is quite noisier than IPG.

To quantify the correlation between the two acceleration signals, we calculated

the envelope of each signal and compared the two envelopes. Although the overall

activity intensity could be correlated to each other, the high frequency changes of the

signals are not expected to be correlated. For getting the envelopes of the signals, we

calculated the magnitude of the three axes acceleration signal using the following

formula-

 16

 𝑚(𝑡) = ට𝑎௫(𝑡)ଶ + 𝑎௬(𝑡)ଶ + 𝑎௭(𝑡)ଶ

Where, m(t) is the magnitude of acceleration a, ax is the acceleration in the x

dimension, ay is the acceleration in the y dimension and az is the acceleration in the z

dimension. The magnitude was convolved with a rectangular window to obtain the

envelope. Different window sizes were used for the rectangular window, namely 10

seconds, 1 minute and 10 minutes to determine the window size for which the envelopes

are mostly correlated.

Figure 9. Correlation of acceleration envelopes for different window sizes.

From Fig. 9 visually it looks like a 10-minute window shows the highest

correlation of the acceleration envelopes. Then we calculated the Pearson’s correlation

coefficient using the following formula-

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Oct 07, 2021

0

0.05

0.1

0.15

G

10 sec
apple
ipg

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Oct 07, 2021

0

0.05

0.1

G

1 min

apple
ipg

10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30
Oct 07, 2021

0.02

0.04

0.06

G

10 min
apple
ipg

 17

𝑟 =
𝛴(𝑥 − �̅�)(𝑦 − 𝑦ത)

ඥ𝛴(𝑥 − �̅�)ଶ𝛴(𝑦 − 𝑦ത)ଶ

Where:

 r = correlation coefficient

 xi = value of variable x in a sample

 �̅� = mean of all the values of variable x

 yi = value of variable y in a sample

 𝑦ത = mean of all the values of variable y

A Pearson’s correlation coefficient value 0 means there is no correlation between

the signals, +1 means there is perfect positive linear relationship between the two signals

and -1 means there is perfect negative linear relationship. We used MATLAB command

𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓 to calculate the Pearson’s correlation coefficient.

Table 1 shows the Pearson’s correlation coefficient values for all 10 datasets for

subject 2 using 10-second, 1-minute and 10-minute windows.

Table 1. Pearson’s correlation coefficient for subject 2.

Dataset 10s 1 min 10 min

1 0.59 0.64 0.89

2 0.42 0.42 0.59

3 0.59 0.67 0.96

4 0.59 0.63 0.74

5 0.5 0.6 0.83

6 0.61 0.72 0.66

7 0.6 0.64 0.79

 18

8 0.41 0.33 0.38

9 0.51 0.71 0.9

10 0.53 0.61 0.72

Average 0.54 0.6 0.75

For most of the datasets, the 10-minute window gave us the highest correlation

coefficient values. For subject 2 the average correlation coefficient value was 0.54, 0.6

and 0.75 respectively for 10-second, 1-minute and 10-minute window size. As the

window size increased, the correlation between the two acceleration signals also

increased. This was true for the other subjects as well. Table 2 shows the average

correlation of all five subjects for different window sizes.

Table 2. Average correlation between Apple Watch and IPG acceleration.

10 sec 1 min 10 min

Subject 1 0.23 0.35 0.57

Subject 2 0.53 0.59 0.75

Subject 3 0.38 0.56 0.59

Subject 4 0.57 0.64 0.77

Subject 5 0.46 0.64 0.81

Average 0.43 0.56 0.70

The average correlation of Apple Watch acceleration with IPG acceleration for

among all the datasets was 0.43, 0.56 and 0.7 respectively for 10-second, 1-minute and

10-minute window.

 19

2.3 Spectral analysis of acceleration signals

After analyzing the correlation between the acceleration signals, we analyzed the

spectral behavior of the signals to see at which frequencies the activities occurred. The

Short Time Fourier Transform (STFT) of the signal was performed using MATLAB

command 𝑠𝑡𝑓𝑡. After that for visualizing the frequency content coordinated time axis, we

used MATLAB command 𝑖𝑚𝑎𝑔𝑒𝑠𝑐. We used hamming window of 10 second window

size with 50% overlap because it gave us the best temporal resolution compared to 20

second, 1 minute and 10 minutes. We got the following plots with different window

sizes.

Figure 10. STFT of IPG and Apple Watch acceleration for subject 2 with window

size of 10 sec, x-axis is segment windows in seconds and y-axis are the frequencies in

which the activities occurred in logarithmic scale.

 20

Figure 11. STFT of IPG and Apple Watch acceleration for subject 2 with window

size of 20 sec, x-axis is segment windows in seconds and y-axis are the frequencies in

which the activities occurred in logarithmic scale.

Figure 12. STFT of IPG and Apple Watch acceleration for subject 2 with window

size of 60 sec, x-axis is segment windows in seconds and y-axis are the frequencies in

which the activities occurred in logarithmic scale.

 21

Figure 13. STFT of IPG and Apple Watch acceleration for subject 2 with window

size of 600 sec, x-axis is segment windows in seconds and y-axis are the frequencies in

which the activities occurred in logarithmic scale.

If we compare Fig. 10-13, we can see that with increasing window size we lose

some information with higher window. After comparing the Apple Watch STFT plots

with that of IPG STFT plots, we can say that the activities sensed by Apple Watch are

more spread with wider frequency range than that of IPG. To obtain better frequency

resolution, we chose a 10-second window for our analysis.

Then the integral power was calculated in four different frequency bands from the

spectral power. 0-4 Hz band represents the typical normal movements, 4-7 Hz band

represents Parkinson’s tremor band, 7-12 Hz band represents the physiological tremor

band, and 12-32 Hz band represents the beta oscillations which increases as the clinical

symptoms worsens.

To find the power in each band at first, we found all the indices in each band (0-4

Hz, 4-7 Hz, 7-12 Hz, 12-32 Hz) and stored the indices of these frequency bands in an

array. Then we calculated the absolute value of the spectral power (power we got using

𝑠𝑡𝑓𝑡), 𝑆(𝑡, 𝑓). After that MATLAB command 𝑡𝑟𝑎𝑝𝑧 is applied to the absolute value of

 22

spectral power across each frequency band to compute power in each band using the

following formula.

𝑃ି௫(𝑡) = න 𝑆(𝑡, 𝑓)𝑑𝑓
௫

Where, 𝑓𝑚𝑖𝑛 is the minimum frequency in each band and 𝑓𝑚𝑎𝑥 is the maximum

frequency in each band.

We stored this result in a 12-dimensional array, where each row indicates integral

power in different frequency band in each three axes. Table 3 shows how the integral

power is stored in the 12-dimensional array.

Table 3. 12-dimensional integral power in four frequency bands.

 Dimension Frequency band Integral power in each

column

Row 1 A-x 0-4 Hz P0-4, start – P0-4, end

Row 2 4-7Hz P4-7, start – P4-7, end

Row 3 7-12 Hz P7-12, start – P7-12, end

Row 4 12-32 Hz P12-32, start – P12-32, end

Row 5 A-y 0-4 Hz P0-4, start – P0-4, end

Row 6 4-7Hz P4-7, start – P4-7, end

Row 7 7-12 Hz P7-12, start – P7-12, end

Row 8 12-32 Hz P12-32, start – P12-32, end

Row 9 A-z 0-4 Hz P0-4, start – P0-4, end

Row 10 4-7Hz P4-7, start – P4-7, end

Row 11 7-12 Hz P7-12, start – P7-12, end

 23

Row 12 12-32 Hz P12-32, start – P12-32, end

Here, Pfmin-fmax, start – Pfmin-fmax, end represents the values in each column in a specific

row for each time segment from start to the end.

After getting the integral power for each band, we plotted them. Fig. 14-17 shows

the integral power in each band.

Figure 14. IPG and Apple Watch integral power in 0-4 Hz band for subject 2.

Figure 15. IPG and Apple Watch integral power in 4-7 Hz band for subject 2.

 24

Figure 16. IPG and Apple Watch integral power in 7-12 Hz band for subject 2.

Figure 17. IPG and Apple Watch integral power in 12-32 Hz band for subject 2.

Fig. 14-17 shows that different plots have bursts at the same time we got bursts in

the raw acceleration signals. Also, in between bursts there are rest or less amplitude

oscillations. Looking at all the plots of all frequency bands it is visible that the 0-4 Hz

plot (Fig. 14) has the highest amplitude, which indicates there is more general activity

and power in this band for both IPG and Apple Watch. The next highest amplitude can be

seen in the 4-7 Hz plots (Fig. 15), which is the Parkinson’s tremor band. Apple Watch

acceleration has more energy compared to that of IPG acceleration for all frequency

bands. In places where IPG integral power seems to be rest (less amplitude variation),

 25

Apple Watch has more amplitude variations in the same place. We hypothesize that these

amplitude oscillations might be noise. From the integral plot it is clear that IPG has more

rest than Apple Watch. Since Apple Watch 4-7 Hz band (Fig. 15) has more power than

that of IPG, it is expected that Apple Watch may detect more tremors than IPG.

Parkinson’s tremor appears mostly in hands. Because of the Apple Watch’s location on

the wrist, it may also happen that some of the high intensity voluntary active movement

can be misclassified as tremor. How we used the integral power in different frequency

bands to classify different activities will be discussed in the next chapter.

 26

CHAPTER 3

Clustering Algorithm

3.1 Classification with K-means clustering

Classification is a machine learning algorithm which categorizes a set of data into

discrete classes. There are many biomedical applications of classification methods.

Classification can be used to diagnose diseases, to detect certain conditions for which

alerts, or notifications would be needed, or to determine patient states for administering

the appropriate therapy. For example, based on features such as blood glucose

concentration, frequency of urination, presence of ketones in the urine, blurred vision,

and levels of fatigue, individuals can be classified into two classes i.e., with diabetes and

without diabetes. For the purpose of this thesis, we use classification to identify the type

of physical activity of a participant at any given time. Knowing their physical activity

may potentially allow for adaptive closed-loop control of their deep brain stimulation

therapy. To create a successful classification algorithm, it is important to provide

identifying feature sets to predict a class or category.

Clustering means classifying data points in feature-space, depending on

similarities with or closeness with data points in the same cluster. K-means clustering is a

popular clustering algorithm for unsupervised learning. K-means clustering picks out k

centroids in an n-dimensional feature-space and assigns each data point to the nearest

cluster based on identifying features. This method uses the Euclidean distance formula to

determine the distance of a data point from each of the centroids. Then the data point is

assigned to the cluster that minimizes the distance between the data point and the

cluster’s centroid. There are several steps in this algorithm, as outlined here:

 27

Step 1: Selecting a value of k i.e., number of clusters and then selecting random

centroids

Step 2: Allocating each data points to the nearest cluster by calculating the

distance from the centroid

Step 3: Calculating the new centroid of all the data points assigned to each cluster

Step 4: Re-calculating the distances from each data point to every centroid and

assigning the data points to the cluster with the nearest centroid

Step 5: Repeating step 3 and 4. If the centroid doesn’t change from the previous

iteration, these centroids will be the final centroids.

Figure 18. Steps of k-means clustering algorithm.

In this project we used k-means clustering algorithm to classify different physical

activities of the patient as well as Parkinson’s tremor so that the stimulation parameters of

DBS can be automatically set according to the specific need at specific time.

 28

3.2 Feature extraction from acceleration data

Feature extraction is the most important step in any machine learning model. In

our case it is important to determine features from the acceleration signal which are

distinct for different physical activity states of the patients. We extracted our features

from the spectral power in four different frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-

32 Hz) in each axis of the acceleration [32]. Thus, we extracted 12 total features from the

acceleration signal.

We performed Principal Component Analysis (PCA) to visualize the data in

feature space. Principal Component Analysis is a dimensionality reduction method in

machine learning, used to reduce the number of features to avoid data redundancy. The

first step in PCA is normalization. In this step the range of the continuous initial variables

are being normalized so that each of them contributes equally. After normalization all the

variables will be in the same scale which will prevent biased results. The second step is to

compute the covariance matrix. In order to find the correlation among variables it is

important to compute the covariance matrix. Covariance matrix can be calculated using

the flowing formula.

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐶 =
𝑋்𝑋

𝑁

Where:

X = Normalized input matrix

N = Number of observations

The third step is to compute the eigen vectors and eigen values of the covariance

matrix to find the principal components. From the rule of eigenvalue and eigenvector we

can write the following equation.

 29

𝐶𝑥 = 𝜆𝑥

(𝐶 − 𝜆𝐼)𝑥 = 0

Where:

C = Covariance matrix

x = Eigen vectors

λ = Eigen values

I = Identity matrix

By solving the above equation, we can get the eigen values and eigen vectors. The

eigenvectors corresponding to the eigenvalues represent the principal component vectors.

The first principal component vector is the eigenvector associated with the maximum

eigenvalue which contains the highest amount of information. Similarly, the eigenvector

associated with the second maximum eigenvalue is the second principal component

vector and so on.

We used the pca command in MATLAB which returned the principal component

(PC) coefficients and the PC scores. The PC scores are the representation of the

observations in PC space. PC coefficients tell us how much of the original 12 features

make up the new PC feature. The first two principal components have the highest

variance and thus least redundancy and are typically used to represent the new features in

PC space.

 30

Figure 19. PC 1 and 2 derived from the 12 original features from the 10th dataset

for subject 2.

In Fig. 19, index 1 is the x dimension of the 0-4 Hz band. Index 2 is the x

dimension of the 4-7 Hz band. Index 3 is the x dimension of the 7-12 Hz band. Index 4 is

the x dimension of the 12-32 Hz band. Index 5 is the y dimension of the 0-4 Hz band.

Index 6 is the y dimension of the 4-7 Hz band. Index 7 is the y dimension of the 7-12 Hz

band. Index 8 is the y dimension of the 12-32 Hz band. Index 9 is the z dimension of the

0-4 Hz band. Index 10 is the z dimension of the 4-7 Hz band. Index 11 is the z dimension

of the 7-12 Hz band. Index 12 is the z dimension of the 12-32 Hz band.

From Fig. 19, we can see that for IPG, index 1, 5 and 9 indicates 0-4 Hz band

plays most important role in PC1. Index 4, 8 and 12 i.e., 12-32 Hz band has the lowest

role in PC1. For PC2 other bands play a significant role. Let us see how the points cluster

in the first two PC spaces.

 31

Figure 20. Integral power in PC space for subject 2 dataset 10.

3.3 Elbow method of clustering

A fundamental step of any unsupervised classification algorithm is to determine

the optimum number of classes into which data will be clustered. We used the “elbow

method” for determining the optimum number of clusters in our clustering algorithm

[33]. The elbow method is a popular method of finding the optimum value of k in k-

means clustering. We computed distortion, defined according to the following Equation.

Distortion is the average squared distances from the cluster centers of the respective

clusters.

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =
ඥ(𝑐 − 𝑥ଵ)ଶ + (𝑐 − 𝑥ଶ)ଶ+. +(𝑐 − 𝑥ே)ଶ

𝑁

Where:

 c = Location of cluster center

 x1, x2………..., xN = Locations of the corresponding samples

We calculate this distortion metric for varying numbers of clusters from k = 1 to k

= 10. If we plot the distortion array with the clusters, we get the following plots in Fig.

21.

 32

Figure 21. Elbow plot for subject 2 dataset 10.

From this figure, we can see that there is no clear elbow for both IPG and Apple

Watch. Then we determined the exponential fit of the curve using the following Equation

which is shown in Fig. 22.

𝑦௧ = 𝑒𝑒௫ + 𝐵

Where:

 yhat = Exponential fitted curve

 c = Intercept of the linear regression model

 a = Slope

 x = Number of clusters from 1 to 10

 B = Offset

We performed linear regression on the data (x, log(y)). Where:

𝑦 = 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑎𝑟𝑟𝑎𝑦 − min(𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑎𝑟𝑟𝑎𝑦) + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒

 33

Figure 22. Exponential fit of the distortion array for dataset 10 subject 2.

Instead of manually trying to figure out the number of clusters, we attempted to

automate it. We downloaded a function named knee_pt.m by Dmrity Kaplan from

MATLAB file exchange which finds a location of "knee" of a curve and provides a

consistent and mathematically justifiable answer when there is no obvious location along

the curve where the curve "turns". The function uses as a definition of a "knee" the point

where the curve is best approximated by a pair of lines. This function applied to our fitted

exponential curve returned 4 as the optimal number of clusters for both the IPG and

Apple Watch.

3.4 Classifying acceleration data

After getting the optimum number of clusters, we applied k-means clustering

algorithm on the integral power in four frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-32

Hz) in each axis of the acceleration [32]. Using the MATLAB function kmeans, we got

an array ipg_idx and apple_idx which gave information regarding which data point

consisted of which cluster. For subject 2 dataset 10, we got ipg_idx and apple_idx of size

 34

2694X1. This indicates there are 2694 data points (segment windows) and each of the

data points are assigned to either cluster 1,2,3 or 4 based on the features.

To determine the spectral characteristics, we plotted the STFT of each cluster. It

appears, as expected, that the spectral characteristics (relative distribution of power

across the axes and frequency bands) were consistent within clusters and differ across

clusters, as seen in Fig. 3.6.

Figure 23. STFT of IPG cluster 1-4 for subject 2 dataset 10.

Starting from top of the plot, row 1 is the x dimension of the 0-4 Hz band, row 2

is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band, row

4 is the x dimension of the 12-32 Hz band. Row 5-8 is the y dimension of the four

frequency bands and row 9-12 are the z dimension of the four frequency bands.

 35

Figure 24. STFT of Apple Watch cluster 1-4 for subject 2 dataset 10.

From the STFTs of the clusters for IPG and Apple Watch, there is more power in

the 0-4 Hz band (1st, 5th and 9th row) for both accelerometers. After getting the cluster

numbers for each window segment, we can get our classification of the acceleration

signal as Fig. 25 and 26. The final classification result is color coded according to the

cluster number, cluster 1 = red, cluster 2 = green, cluster 3 = blue, cluster 4 = black,

cluster 5 = magenta etc.

 36

Figure 25. IPG Acceleration color coded classification, cluster 1 = red, cluster 2

= green, cluster 3 = blue.

Figure 26. Apple Acceleration color coded classification, cluster 1 = red, cluster

2 = green, cluster 3 = blue, cluster 4 = black.

 37

This is an unsupervised classification where we have no idea about the patients’

activities and their timing. So, which cluster indicates which activity must be determined

from the spectral power of the clusters and the signal characteristics. We will discuss how

to determine which cluster determines which activity in Chapter 5.

 38

CHAPTER 4

Validation Experiment

Data was collected from patient subjects while they were at home, and they were

free to do any daily living activities. No information is provided regarding what activities

were performed at any given time by the subjects. Thus, having no ground truth data

posed a challenge to validating the proposed classification model.

Therefore, we designed and conducted a controlled experiment to validate the

classification algorithm. In our experiment, we acquired acceleration data from two

commercial accelerometry devices: the ActiGraph GT9X link (ActiGraph Corp.,

Pensacola, FL), commonly used in research studies on acceleration, and the Apple SE

Watch, which is previously was the chosen candidate for providing the accelerometry

feedback in the proposed closed-loop DBS system. The subject wore both the ActiGraph

GT9X link and Apple Watch on the same wrist and performed predefined activities,

which included: 1) tapping fingers on a table at 4-7 Hz with to simulate tremor, 2) laying

down, 3) jumping up and down, 4) standing, 5) writing, 6) sitting, 7) moving arm in

circular motion to simulate cooking, 8) walking, and 9) typing. The duration, starting and

ending time for each activity was recorded. We acquired the 3-axis acceleration data from

the Apple Watch using the HemiPhysioData mobile application (HemiPhysio Apps), and

data was then transferred to the PC via an iPhone. Acceleration data from ActiGraph was

acquired using ActiLife software.

 4.1 Actigraph - the hardware, software data acquisition

The ActiGraph GT9X Link captures and records three axes raw acceleration data.

The ActiGraph GT9X Link consists of an inertial measurement unit (IMU) which

 39

contains a gyroscope, magnetometer, and 3-axis accelerometer, and a programmable

LCD display [28].

Figure 27. Actigraph GT9X Link [28].

ActiLife is a software which is used for actigraphy data analysis ActiLife’s robust

screening and analysis toolkit allows users to extract, process, and score collected data

[29]. ActiLife software is a licensed program, and we purchased an ActiLife license.

After installing the software, ActiGraph needs to be initialized. For initializing we

connected Actigraph to the computer through a USB and initialized ActiGraph. While

initializing the device we set the sampling rate to 70 samples/s. After that we set the start

time and stop time of the experiment.

 40

Figure 28. ActiGraph initialization with ActiLife software.

Our subject wore ActiGraph on the wrist and performed some predefined

activities. After the selected duration was over, ActiGraph automatically stopped

recording. Then, the subject took off the ActiGraph from the wrist and set it to the

ActiGraph case which is connected to the computer through USB for acquiring the

recorded data. After that using ActiLife software we acquired a .csv file which contained

3-axis acceleration data.

 4.2 Apple Watch - the hardware, software data acquisition

We used Apple Watch SE for acquiring the 3-axis acceleration signal. Apple

Watch has gyroscope and accelerometer which can supply data about the movement in

the physical world.

 41

Figure 29. Apple Watch [30].

We used the HemiPhysioData Apple Watch mobile application for acquiring 3-

axis acceleration data. HemiPhysioData is an application developed by Moez Ur Rehman

for acquiring raw and processed data from built-in Apple Watch sensors. At first, we

installed the HemiPhysioData app in Apple iPhone and then installed it in Apple Watch.

There are several features to select before recording data such as sampling frequency,

dominant side, to which wristwatch was worn, move type, start time, end time, haptic

feedback etc. When haptic feedback is enabled it’s possible to select the start in time and

duration. We can also manually click on start and stop. We clicked start and stopped

manually for our experiment. After recording an activity, it was logged in to the Watch.

When we clicked on the logged files in the app there was a list of csv files which

included the recorded acceleration data. After recording the data, we sent the file from the

Apple Watch to the Apple iPhone which is connected to the Watch. Then for processing

the data we transferred the data from iPhone to the computer.

 42

Figure 30. Acceleration data acquisition from Apple Watch.

The Actigraph output processed metrics, such as roll, pitch, yaw, rotation rate is 3

axes, gravity in 3 axes etc. and wrote them to the output .csv file in addition to the raw 3-

axis acceleration data (AccelroX, AccelroY, AccelroZ).

Figure 31. 3-axis acceleration data in the csv file.

After acquiring the csv file into the iPhone, we transferred the data from iPhone to

computer and processed the data using MATLAB software.

 4.3 Experimental protocol

For validating the classification algorithm, we selected activities which are

commonly performed in daily living: lying down; jumping; standing; walking; typing;

writing; pretending to cook; and simulated hand tremor. To simulate tremor at the 4-7 Hz

 43

frequency, the subject tapped her finger on the table at 4-7 Hz frequency range (at 300-

450 beats per minute). The subject wore both the ActiGraph and Apple Watch on the

same wrist and performed these activities sequentially according to table 4. The sampling

frequency for both ActiGraph and Apple Watch was 70 Hz.

Table 4. Experimental setup.

Activity Duration (Minutes)

400 BPM tapping 1

350 BPM tapping 1

300 BPM tapping 1

Lying Down 6

Jumping up &down 3

Standing 6

Writing 3

Sitting 6

Pretending to cook 3

Standing 6

Walking 3

Sitting 6

Typing 3

For the first minute, the activity was creating tremor in 6.67 Hz (400 BPM)

frequency. The frequency of tremor for the second minute was 5.83 Hz (350 BPM) and

 44

finally for the third minute the tremor frequency was 5 HZ (300 BPM). Then other

activities were also done according to the sequence given in table 4.

Figure 32. Experimental Protocol.

At first, we ran total 48 minutes of experiment at a time and acquired 48 minutes

of data from ActiGraph. We noticed that there were a lot of data packet loss in Apple

Watch data acquisition. Because of data packet loss during streaming with the Apple

Watch for recordings in the order of an hour, we had to break the experiment into short 3-

or 6-minute recordings according to each activity. The data for each activity was written

to a separate csv file. Then, the csv files were serially appended to each other according

to the sequence of the activities. On the contrary, ActiGraph recording was a continuous

48-minutes recording. For Apple Watch 3- or 6- minute recording we just clicked start

and stop button of the HemiPhysioData app to get separate csv files for each activity.

Data was recorded at the same time for both the accelerometers. By doing this data loss

for Apple Watch decreased, but there was still some data packet loss. Instead of getting

48-minutes of data, we got 30 minutes of data from Apple Watch.

 45

4.4 Results and Analysis

We applied our clustering model to the acquired data to validate the model. Fig.

33 shows the raw acceleration data from ActiGraph and Apple Watch.

Figure 33. Raw acceleration signals from ActiGraph and Apple Watch.

With a 10-s window and 50% overlap we took the STFT of the signals and

extracted the features by integrating the power in four different frequency bands (0-4 Hz,

4-7 Hz, 7-12 Hz and 12-32 Hz). We got 4 numbers of clusters for both the accelerometers

using elbow methods of clustering.

Figure 34. Clusters in PC space for ActiGraph and Apple Watch.

Let us analyze the spectral power for both the accelerometers.

 46

Figure 35. STFT of ActiGraph cluster 1-4.

Starting from the top of the plot, row 1 is the x dimension of the 0-4 Hz band, row

2 is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band,

row 4 is the x dimension of the 12-32 Hz band. Row 5-8 is the y dimension of the four

frequency bands and row 9-12 are the z dimension of the four frequency bands. Cluster

3’s 0-4 Hz band is brighter than that of cluster 1. Therefore, we identified cluster 3 as

corresponding to voluntary movement and cluster 4 corresponding to rest activity.

We can see from the 4-cluster plot in Fig. 4.8 that in cluster 2 and 4 the 6th row (y

dimension 4-7 Hz) is the brightest of all which means cluster 2 and 4 has the highest

power in 4-7 Hz band. Therefore, we determined cluster 2 and 4 to be the tremor class.

By analyzing the signal characteristics, we observed that the difference between cluster 2

and cluster 4 is that cluster 2 contains higher frequencies within the tremor band than

 47

cluster 4; therefore, we identified cluster 2 as high frequency tremor and cluster 4 as low

frequency tremor.

Let’s analyze the spectral power in each cluster for Apple Watch.

Figure 36. STFT of Apple Watch cluster 1-4.

Apple Walch shows similar characteristics as ActiGraph. Also, for Apple Watch

cluster 2 and 4 indicates tremor, cluster 3 indicates voluntary activity and cluster 1

indicates rest.

The classification result for ActiGraph and Apple Watch is shown in Fig. 37.

 48

Figure 37. Classification result for ActiGraph and Apple Watch.

Classification results for ActiGraph and Apple Watch look similar. We compared

the classification result with the ground truth data to compute the accuracy of our model.

We noticed that rest activities, where there was no whole-body movement, were

classified as a common category; these included lying down, standing, and sitting.

Included in this category were writing and typing, in which the body is also stationary,

although they require higher degrees of arm movement. Walking, jumping up and down,

and pretending to cook, which all involve voluntary movement of the whole body to a

much greater degree, tended to be categorized into a common class. High intensity tremor

and lower intensity tremor tended to be categorized each in their own separate class.

Therefore, we designated 3 major categories into which data could be classified by our

algorithm: 1) rest; 2) voluntary movement; and 3) tremor, which is an involuntary

movement that typically does not entail movements of the whole body. We used the

elbow method (described in Section 3.3) to determine how many classes the data should

be clustered into. The optimal number of clusters was consistently 3 or 4. When the

 49

number was determined to be 4 clusters, the tremor category was split into high intensity

tremor and low intensity tremor; or sometimes high intensity voluntary movement

(walking or jumping) and low intensity voluntary movement (typing and writing and

pretending to cook).

Fig. 38 shows the ground truth signal for ActiGraph and Apple Watch where

tremor = 1, rest = 2 and voluntary movement = 3. We prepared the ground truth signal

with the start time and end time of each activity for both the accelerometers.

Figure 38. Ground Truth signal for ActiGraph and Apple Watch.

Following the ground truth data, we assigned a value of 1 for clusters which

indicate tremor (cluster 2 and 4), value of 2 for cluster 1 which indicates rest and value of

3 which indicates voluntary movement. Then we calculated true positives, true negatives,

false positives, and false negatives for both ActiGraph and Apple Watch.

 50

Table 5. ActiGraph confusion matrix.

Table 6. Apple Watch confusion matrix.

TP FN FP TN

Tremor 28 5 1 324

Rest 206 6 47 99

Voluntary

Activity 111 48 11 234

Total 345 59 59 657

After that we calculated the true positive rate (TP rate), false positive rate (FP

rate), and overall accuracy for both ActiGraph and Apple Watch.

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 × 100%

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 × 100%

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑒𝑠
 × 100%

TP FN FP TN

Tremor 34 5 3 536

Rest 352 8 65 150

Voluntary

Activity 111 68 13 386

Total 497 81 81 1072

 51

We got true positive rate and false positive rates for ActiGraph and Apple Watch

as follows-

Table 7. True positive and false positive rate of ActiGraph and Apple Watch.

Accelerometer True positive rate False positive rate

ActiGraph 86.43% 6.78%

Apple Watch 83.52% 8.24%

Overall accuracy for ActiGraph classification = (497+1072) / (497+81+81+1072)

X 100% = 90.64%

Overall accuracy for Apple Watch classification = (345+657) / (345+59+59+657)

X 100% = 89.46%

Therefore, we can say that our algorithm is validated to have 91% overall

accuracy for ActiGraph with slightly less accuracy with Apple Watch. In a nutshell, all

the rest activities were perfectly detected with both ActiGraph and Apple Watch. Tremor

activity was also perfectly detected for both devices except some low frequency tremor

data points were classified as voluntary movement. Some low voluntary movement such

as typing, and writing was misclassified as rest activity for both the accelerometers.

Overall, misclassification was slightly more in Apple Watch classification.

 4.5 Change of classification performance with changing window size and number of

clusters

We have checked the classification performance by changing the window size

(10s, 20s and 60s) in calculating the short time Fourier transform and by changing the

number of classes in the k-means clustering to be either 3 or 4. Window size and cluster

 52

number plays a significant role in the classification performance, especially with the

Apple watch data.

Table 8. Comparison of classification performance with changing window size

and number of clusters.

Device

10s

win, 3

clusters

20s

win, 3

clusters

60s

win, 3

clusters

10s

win, 4

clusters

20s

win, 4

clusters

60s

win, 4

clusters

ActiGraph

True

positive

rate

83.65% 85.02% 86.31% 86.43% 88.85% 87.36%

False

positive

rate

8.17% 7.50% 6.84% 6.78% 5.58% 6.31%

Apple

Watch

True

positive

rate

74.86% 76.65% 72.41% 83.52% 76.40% 75.86%

False

positive

rate

12.57% 11.67% 13.80% 8.24% 11.80% 12.07%

For ActiGraph the highest true positive rate was achieved with 20 sec window

and 4 number of clusters, and the True positive rate is 88.85%. On the contrary, Apple

Watch True positive rate was highest for 10 sec window and 4 clusters in the

 53

classification. The performance was more consistent using the ActiGraph data and

consistently higher than the results when using the Apple Watch data. For both cases, 4

clusters yielded greater accuracy. With three clusters, for both the devices, around 40% of

tremor activity was detected as voluntary active movement. Also, some voluntary active

movement is misclassified as rest. With 4 clusters, most of the tremor activity was

classified perfectly.

Figure 39. Classification result of ActiGraph Vs Apple Watch with 3 numbers of

clusters, green = tremor, red = rest, blue = voluntary activity.

With the Apple Watch data, walking was misclassified as rest for all window

sizes and cluster numbers except 10-second window with 4 clusters. We hypothesize that

smaller window sizes yielded greater accuracy because it provided better frequency

resolution.

 54

CHAPTER 5

Application of Clustering to Patient at Home Data

5.1 Calculating percentage of each activity and percentage of classification match for IPG

and Apple Watch

After validation of the algorithm, it was applied to the data streamed from

Parkinson’s disease patient. Six patient subjects who all have severe PD were enrolled in

the study; data has been collected from only 5 of the 6 thus far. We applied our model to

48 different datasets from 5 subjects during their daily living. From this point forward,

participants will be referred to by codes: NU5U for subject 1, E395 for subject 2, RZCH

for subject 3, 6KOZ for subject 4 and AC27 for subject 5. There has been no data

available for the sixth subject BOI0. The participants were free to do any daily living

activities and were not required to log their activity; therefore, there is no ground truth

data for the activities the participants were doing at the time of recording of data. Thus,

before we applied our unsupervised classification algorithm to the patient subject data,

we validated our algorithm with controlled experimental data, as described in Chapter 4.

We had applied our algorithm to the patient subject data previously, and based on

those initial results, we identified 3-5 possible activity categories. The classifications

from applying our algorithm were mapped onto the time-domain acceleration signals

using a color-coding scheme (see Fig. 4.10 and 4.12, for example). Based on these

results, it seemed clear that the acceleration data could be classified into 3 major activity

categories: 1) tremor, 2) voluntary movement, and 3) rest. For finer resolution, there

could be up to 5 major activity categories: 1) high intensity tremor, 2) low intensity

tremor, 3) high intensity voluntary active movement, 4) low intensity voluntary active

 55

movement, or 5) rest. According to the distortion metric and knee method discussed in

chapter 3, section 3.3, the number of clusters for k-means clustering is specified. An

example of the distortion curve used to identify the number of classes for a specific data

set is shown in Fig. 40. As can be seen for this particular case, the elbow of the distortion

metric occurs between 3 and 4 clusters but closer to 4.

Figure 40. Elbow of distortion matric.

Our clustering algorithm classifies different activities based on the spectral power

in four different frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-32 Hz) in each axis of

acceleration. Each index in the acceleration signal is assigned to a cluster based on the

spectral features. Fig. 41 shows an example how the clustering was done-

 56

Figure 41. Assigning each acceleration indices into a cluster [32].

In Fig. 41 we can see there are three clusters where the black cluster indicates

very high intensity movement as there are more oscillations in the acceleration signal. On

the other hand, the portion of the acceleration signal which has lower oscillation than the

previous one is clustered as a different cluster (green). The signal which has the lowest

oscillation is assigned to red cluster as well. We calculated the total number of indices in

each cluster, then divided that by the total number of indices to get the percentage of each

activity cluster.

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 × 100%

For instance, if we want to calculate the percentage of black cluster the equation

will be-

 57

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

=
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑔𝑟𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑟𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

× 100%

Following this procedure, we calculated the percentage of each activity cluster in

the classification result for both the IPG and Apple Watch classification.

For getting the percentage match of the Apple watch classification with the IPG

classification, we considered IPG classification as the reference and calculated true

positive, true negative, false positive and false negative rates for all the activities. For a

given activity A, table 9 describes how each case was accounted for in the confusion

matrix. If IPG and Apple Watch both classify an activity as category A, it will be

counted as a true positive. If IPG classifies an activity as A, but Apple Watch does not, it

will be counted as a false negative. If IPG does not detect an activity as A (i.e., as B or C),

but Apple Watch classifies it as A, it will be counted as a false positive. Finally, if IPG

and Apple watch both classify it as not A, it will be counted as a true negative. We

calculated these for all the indices present in the acceleration signal.

Table 9. Confusion matrix.

 Apple watch

 Activity A Not Activity A

IPG
Activity A TP FN

Not activity A FP TN

Next, we calculated the percentage of classification match of the Apple Watch

with the IPG classification.

 58

Table 10. Confusion matrix for three classes.

 TP TN FP FN

Tremor NTT N~T~T NT~T N~TT

Rest NRR N~R~R NR~R N~RR

Voluntary

active

movement NVV N~V~V NV~V N~VV

Where:

NTT = Number of datapoints for which Apple Watch and IPG both detected tremor

N~T~T = Number of datapoints for which Apple Watch and IPG both didn’t detect

 tremor

NT~T = Number of datapoints for which Apple Watch detected tremor, but IPG

 didn’t

N~TT = Number of datapoints for which Apple Watch didn’t detect tremor, but

 IPG detected

NRR = Number of datapoints for which Apple Watch and IPG both detected rest

N~R~R = Number of datapoints for which Apple Watch and IPG both didn’t detect

 rest

NR~R = Number of datapoints for which Apple Watch detected rest, but IPG didn’t

N~RR = Number of datapoints for which Apple Watch didn’t detect rest, but IPG

 detected

NVV = Number of datapoints for which Apple Watch and IPG both detected

 59

 voluntary movement

N~V~V = Number of datapoints for which Apple Watch and IPG both didn’t detect

 voluntary movement

NV~V = Number of datapoints for which Apple Watch detected voluntary

 movement, but IPG didn’t

N~VV = Number of datapoints for which Apple Watch didn’t detect rest, but IPG

 detected

We calculated Percentage of tremor match by adding all the NTT and N~T~T for all

48 dataset, then dividing it by the sum of all NTT, N~T~T, NT~T, N~TT for all 48 dataset. We

also calculated rest match and voluntary activity match of Apple Watch-based

classification with IPG-based classification for all 48 datasets as follows-

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑎𝑡𝑐ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑁்் + 𝑇𝑜𝑡𝑎𝑙 𝑁~்~்

𝑇𝑜𝑡𝑎𝑙 𝑁்் + 𝑇𝑜𝑡𝑎𝑙~்~் + 𝑇𝑜𝑡𝑎𝑙 𝑁்~் + 𝑇𝑜𝑡𝑎𝑙 𝑁~்்
× 100%

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑎𝑡𝑐ℎ

𝑅𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ =
𝑇𝑜𝑡𝑎𝑙 𝑁ோோ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ோ~ோ

𝑇𝑜𝑡𝑎𝑙 𝑁ோோ + 𝑇𝑜𝑡𝑎𝑙~ோ~ோ + 𝑇𝑜𝑡𝑎𝑙 𝑁ோ~ோ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ோோ
× 100%

𝑅𝑒𝑠𝑡 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑅𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ

𝑉𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑐ℎ

=
𝑇𝑜𝑡𝑎𝑙 𝑁 + 𝑇𝑜𝑡𝑎𝑙 𝑁~~

𝑇𝑜𝑡𝑎𝑙 𝑁 + 𝑇𝑜𝑡𝑎𝑙~~ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ + 𝑇𝑜𝑡𝑎𝑙 𝑁~
× 100%

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑉𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑐ℎ

Table 11 shows the percentage of classification matches and mismatches for each

class.

 60

Table 11. Percentage match and mismatch of Apple Watch-based classification

with IPG-based classification.

Percentage

match

Percentage

mismatch

Tremor 83.27% 15.93%

Rest 69.67% 30.32%

Voluntary active

movement 68.36% 31.63%

From the table we can see that most of the mismatch of the Apple Watch-based

classification with the IPG-based classification was for the rest and voluntary active

movement. 83.27% of tremor activity of the Apple Watch classification got matched with

the IPG classification.

5.2 Tremor vs. voluntary active movement

While investigating the classification result, we noticed there is 15.93% tremor

mismatch between Apple Watch and IPG classification. In most cases, Apple Watch

detected more tremors. In the following figure, Apple Watch detected continuous tremor

(blue), while IPG detected some voluntary movement (red) during tremor activity.

 61

Figure 42. Apple Watch detected more tremor (blue) than IPG.

5.2.1 Apple and IPG both detect tremor

In cases where IPG classified tremor and the tremor amplitude was strong, Apple

Watch also classified the activity as tremor. As an example of such a case, let us discuss

the following dataset 10 for subject E395.

 62

Figure 43. Comparison of IPG and Apple Watch classification.

According to the elbow method, we identified the optimal number of clusters to

be four clusters both in the IPG classification and Apple Watch classification. As seen in

Fig. 44, a couple outliers were selected as cluster 4 (black) in the IPG classification; thus,

the meaningful categories in this instance were tremor, voluntary movement, and rest.

 63

Figure 44. Clusters of IPG and Apple Watch Classification.

Let us determine which cluster indicates tremor, rest, and voluntary movement.

To find that out let us analyze the power spectral density in four different frequency

bands in each axis for IPG.

Figure 45. STFT of IPG cluster 1-4.

 64

Starting from top of the plot, row 1 is the x dimension of the 0-4 Hz band, row 2

is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band, row

4 is the x dimension of the 12-32 Hz band. Row 5-8 are the y dimension of the four

frequency bands and row 9-12 are the z dimension of the four frequency bands.

In all the clusters the first row which is 0-4 Hz band in x axis is the brightest row.

That means the 0-4 Hz band has the highest energy. Among all the clusters, cluster 1 and

cluster 3 has a brighter 0-4 Hz band which means that cluster 1 and cluster 3 can be

voluntary movement or rest cluster. Referring to Fig. 43, according to the signal

characteristics cluster 1 (red) has more oscillation and higher amplitude compared to

cluster 3 (blue). So, we can consider cluster 3 (blue) as rest and cluster 1 (red) as

voluntary active movement. The 4-7 Hz band (2nd, 6th and 10th row) has the highest power

in cluster 2 as this band is brighter in cluster 2 than any other cluster. 4-7 Hz band is the

tremor band, so cluster 2 (green) can be tremor.

Similarly, to detect the activities let us analyze the power spectral density in four

different frequency band in each axis for Apple Watch.

 65

Figure 46. STFT of Apple Watch cluster 1-4.

Among the four clusters, cluster 2 has brighter 4-7 Hz (2nd, 6th and 10th row) band

compared to other clusters. Cluster 2 (green) can be considered as tremor. Based on

signal characteristics (Fig. 43), cluster 3 (blue) can be rest, cluster 1 (red) can be high

intensity active movement and cluster 4 (black) can be some low intensity active

movement in Apple Watch classification.

 66

Figure 47. Tremor (green) detected in both IPG and Apple Watch.

In both IPG and Apple Watch green (cluster 2) is tremor. Fig. 47 illustrates an

example of IPG, and Apple watch-based classifications generally agree on the occurrence

of tremor. When IPG detects tremor (green) at any instance, Apple Watch also detects

tremor (green) at that instance.

5.2.2 Apple detects tremor while IPG detects voluntary movement

There are cases where Apple Watch detected an activity as tremor while that

activity was detected as voluntary active movement in IPG. Overall, tremor percentage

was higher in Apple watch classification than IPG. For the same dataset analyzed above

Apple Watch detected more tremors than IPG. Fig. 48 shows Apple Watch detected

tremor while IPG detected voluntary movement. When the activity was classified as

tremor (green) in Apple Watch, in some places the same activity was detected as

voluntary movement (red) in IPG.

 67

Figure 48. Apple Watch detects tremor (green) while IPG detects voluntary

movement (red) for subject E395, dataset 10.

Let us analyze another dataset, dataset 2 for subject NU5U. According to elbow

method of clustering, both IPG and Apple Watch have 4 numbers of clusters including

one outlier in IPG.

Figure 49. Clusters of IPG and Apple Watch Classification for subject NU5U, dataset 2.

 68

Figure 50. Comparison of IPG and Apple Watch classification for subject NU5U, dataset

2.

 69

Based on the power spectral density and signal characteristics we can predict that

that blue (cluster 3) indicates tremor, black (cluster 4) indicates voluntary active

movement and green (cluster 2) indicates rest in both the IPG and Apple Watch

classification. In Apple Watch classification red (cluster 1) indicates low intensity

voluntary active movement. The percentage of tremor is higher in Apple Watch

classification than IPG. IPG detected 9% of the activity as tremor while Apple Watch

detected 15% of the activity as tremor. Fig. 51 shows Apple Watch detected tremor while

IPG detected voluntary movement.

Figure 51. Apple Watch detects tremor (blue) while IPG detects voluntary movement

(black).

For this dataset, blue (cluster 3) was tremor for both IPG and Apple Watch. We

can see that from 16:56:00 to 16:57:30 Apple watch classified the activity as cluster 3

i.e., tremor. On the contrary, in IPG besides tremor (blue), voluntary activity (black) was

also detected at that time frame. We hypothesize that the subject was having tremor while

doing some active body movement.

 70

From Fig 52 it can be seen that overall tremor detection is higher in Apple Watch

classification for all subjects except AC27. For subject AC27 IPG detected more tremor.

 71

Figure 52. Classification result for subject 5 dataset 4 where tremor (blue) was

detected.

After analyzing the power spectral density and signal characteristics we found

that blue color (cluster 3) indicates tremor for both IPG and Apple Watch. After zooming

in on the result, the tremor was more visible.

Figure 53. Tremor (blue) detected in subject 5 dataset 4.

 72

From Fig. 54 we can see that tremor is detected in both IPG and Apple watch for

only a few seconds. Tremor is more strongly visible in Apple Watch; yet the percentage

of data classified as tremor was greater in IPG than Apple Watch for this particular

subject.

Figure 54. IPG detected tremor (blue) while Apple Watch detected voluntary

movement (green and black), right image more zoomed in.

If we zoom in the signal of the first ellipse, we can see from the right figure that

from 10:08:37 to 10:08:40 the signal could be tremor, since the signal corresponds to 4

Hz frequency. So, IPG can detect tremors which last only for 2-3 seconds. On the

contrary, Apple Watch can’t detect such tremors.

 5.3 Voluntary active movement vs. rest

Overall Apple Watch detected more voluntary movement while IPG detected

more rest. Some activities which are classified as rest in IPG are classified as rest in

Apple Watch classification. Because of the external position of the Apple Watch, it

detected arbitrary hand movement while resting as voluntary active movement.

5.3.1 Apple and IPG both detect rest

There were also cases in which detection of both voluntary movement and rest

matched between IPG and Apple watch classification. Fig. 55 shows the classification

 73

result for subject NU5U, dataset 7 and illustrates one case where such a match for

voluntary movement and rest occurred.

Figure 55. Comparison of IPG and Apple Watch classification for subject NU5U, dataset

7.

 74

According to the elbow method of clustering, there are four clusters for both the

Apple Watch and IPG classification. Let us analyze the STFTs of the clusters to figure

out which cluster indicates which activity.

Figure 56. STFT of IPG cluster 1-4 for Subject NU5U, dataset 7.

From the STFT of the clusters it’s visible that the 4-7 Hz band (2nd,6th and 10th

row) is brighter in cluster 2 (green) and cluster 5 (magenta). That means these two

clusters have higher power in the 4-7 Hz band. Cluster 2 (green) and cluster 5 (magenta)

can be the tremor bands. Cluster 1 (red) and cluster 3 (blue) have brighter 0-4 Hz band

(1st, 5th and 9th row). These two clusters can be rest or voluntary active movement. By

 75

analyzing the signal characteristics, we can hypothesize that cluster 3 (blue) can be rest

and cluster 1 (red) can be voluntary movement.

Similarly, to detect the activities let us analyze the power spectral density in four

different frequency band in each axis for Apple Watch.

Figure 57. STFT of Apple Watch cluster 1-4 for Subject NU5U, dataset 7.

By analyzing the STFTs and the signal characteristics we can predict that for

Apple Watch cluster 2 (green) is tremor, cluster 3 (blue) is rest, cluster 4 (black) is high

intensity voluntary movement, cluster 1 (red) is low intensity voluntary movement. Fig.

58 shows the difference between red and black cluster-

 76

Figure 58. High and low intensity movement.

Fig. 59 shows the case when IPG and Apple Watch both detect rest. For both

Apple Watch and IPG blue is rest. We can see the marked rectangles where both Apple

Watch and IPG detects rest at the same time.

Figure 59. Apple Watch (blue) and IPG (blue) both detect rest.

In many cases we found that Apple Watch and IPG detect rest at the same time.

We also found many cases where IPG detects rest while Apple Watch detects voluntary

active movement.

 77

5.3.1 Apple Watch detects voluntary movement while IPG detects rest

Apple Watch is worn on the wrist, while IPG is implanted on the chest. Because

Apple Watch is placed on the hand, it’s more sensitive to hand movement than IPG.

Apple Watch detects the arbitrary hand movement while resting as voluntary movement.

Let us analyze the same dataset, subject NU5U, dataset 7. Fig. 60 shows the case where

IPG detects rest while Apple Watch detects voluntary movement.

Figure 60. IPG detects rest (blue) while Apple Watch detects voluntary movement (black

and red).

For subject NU5U, dataset 7 in IPG classification blue was rest, red was voluntary

movement. In Apple Watch classification blue was also rest, black and red was voluntary

movement. We can see in Fig. 60 that in the IPG classification from 10:04 to 10:18 most

of the activity is classified as rest (blue). On the contrary, in Apple Watch classification

for the same time frame most of the activity is classified as voluntary movement (black

 78

and red). We assume that during rest activity probably the subject was performing some

arm movement which is classified as voluntary movement in Apple Watch classification.

In that sense, IPG gives us more accurate classification than Apple Watch.

 5.4 Comparing percentage of tremor classification to clinical assessment

After analyzing the classification result of IPG and Apple Watch acceleration, we

compared our tremor classification with clinical assessment. Our clinical experts assessed

each patient and according to our clinical experts subject NU5U has lots of hand tremor,

subject E395 has intermittent tremor, subject RZCH has hand tremor, subject 6KOZ has

tremor in the jaw and face and subject AC27 has never reported tremor. Table 12 shows

the comparison of tremor detection with clinical assessment.

Table 12. Comparison of tremor detection with clinical assessment.

Subject
Clinical

Assessment

Avg IPG

Tremor %

Avg Apple Watch

Tremor %

Subject 1 NU5U
Lots of hand

tremor

26.09 26.6

Subject 2 E395
Intermittent

tremor

16.68 17.16

Subject 3 RZCH Hand tremor 15.7 27.5

Subject 4 6KOZ
Tremor in jaw

and face

22.78 25.92

Subject 5 AC27
Never reported

Tremor

2.82 0.81

 79

It’s visible from the table that subject 1 has the highest percentage of tremor in

IPG classification with slightly more tremor in Apple Watch. Since this subject has a lot

of tremors in hand and due to the external location of Apple Watch, it detected more

tremors. For subject AC27 we got 2.82% tremor in IPG and 0.81% tremor in Apple

Watch classification. We ran a total of 10 datasets for subject AC27 and got tremor in

only two datasets for a very small amount of time. Although the patient has never

reported tremor, our algorithm detected tremor for a small amount of time which

indicates that our algorithm is able to detect tremor even if tremor doesn’t continue for a

long time. This proves the sensitivity of our algorithm.

Figure 61. Average IPG and Apple Watch tremor detection.

Overall, our classification result coincides with the clinical assessment for all

subjects.

 80

CHAPTER 6

Summary of Results

The results in this thesis show that acceleration acquired by the Apple Watch and

IPG accelerometers are largely consistent with each other, but also identify and illustrate

differences between these two accelerometers’ data. The differences in signal

characteristics and performance of the activity classification are consistent with the

differences in the location of the two accelerometers; namely, the accelerometer on the

wrist (the Apple Watch) detects more power in the hand tremor but does not always

classify the rest states accurately, whereas the implanted IPG accelerometer is best able to

classify rest states when the body is stationary (whether sitting, standing, or lying down).

We computed the Pearson’s correlation coefficient between the two accelerometers to

determine how linearly related acceleration from the two accelerometers are to each

other. The accelerations recorded from these two accelerometers were correlated by an

average of 0.43 among all the datasets when we used a window size of 10 second. We

obtained the highest average correlation coefficient of 0.70 among all the datasets for a

10-minute window.

We then analyzed the signals in the frequency domain by performing the short

time Fourier transform. We calculated the integral power in different frequency bands

such as 0-4 Hz, 4-7 Hz, 7-12 Hz and 12-32 Hz. By analyzing the integral power plots of

different frequency bands, we saw that Apple Watch collected more power in all the

bands. In some instances, the IPG detected no activity even while the Apple Watch

detected activity, and often detected less power in acceleration. Although Both Apple

Watch and IPG detected activity at the Parkinson’s tremor band (4-7 Hz), Apple Watch

 81

4-7 Hz band had more power than IPG. This was consistent with our hypothesis that the

Apple Watch would detect more tremors than the IPG, but we discovered that there were

cases in which IPG detected tremors as strongly as the Apple Watch. We hypothesize

based on these results that while tremor is most visible in the appendages, there may be

tremor in the core of the body that is just as readily detected by the IPG.

From the classification result plots, it is visible that IPG classification was clearer

than Apple Watch. IPG detected rest activity more accurately, while Apple Watch picked

some low intensity movement at the time of rest. This was because of the external

location of the Apple Watch. Because of the location, Apple Watch is more sensitive to

movements and as a result it had more power than IPG. Apple Watch might misclassify

some high intensity movements to be tremor, because of its sensitivity to movements.

After getting the integral power in each band, we classified the acceleration signal into

Parkinson’s tremor, rest, and voluntary active movement according to the spectral

features.

Since this was an unsupervised classification, for validating the model we

performed a controlled experiment with ActiGraph and Apple Watch. We achieved an

overall accuracy of 91% of our classification algorithm with ActiGraph and slightly

lower accuracy with Apple Watch. Most of the misclassification was due to the voluntary

active movement being classified as rest.

After validating the model, we applied our algorithm to 48 datasets from five

subjects in their daily life. After analyzing all the results, we noticed that most of the

tremor activity was detected in both the accelerometers at the same time, although Apple

Watch detected more tremors. Some activities which were classified as voluntary

 82

movement in IPG-based classification, were classified as tremor in Apple Watch. While

analyzing the integral power in different frequency bands we predicted that Apple Watch

might detect more tremors than IPG. Average tremor detection among all the datasets in

IPG was 16.81%, while in Apple Watch the average tremor detection was 19.6%. Tremor

was also detected in two datasets out of ten datasets for a very small amount of time in

subject AC27 who never reported tremor. This proves that our algorithm can detect

tremors which don’t even last for long periods. We also compared the tremor detection

for each subject with the clinical assessment which coincides with our results.

In all the datasets percentage of rest was higher in IPG-based classification and

percentage of voluntary activity was higher in Apple Watch classification. Some

activities which were classified as rest in IPG were classified as voluntary movement in

Apple Watch. Again, this was due to the external location of the Apple Watch. Apple

watch detected the arbitrary hand movement at the time of rest as voluntary activity.

Then we calculated the percentage of each activity to match the Apple Watch-

based classification with the IPG-based classification. 83.27% of the tremor detected at

the same time in both the accelerometers. Most of the mismatches were during the rest

and voluntary activity. Rest activity match was 69.67% and voluntary activity match was

68.36% among all the datasets.

 83

CHAPTER 7

Discussion - Implications for Closed-Loop DBS

In this thesis we analyzed the possibility of using an implanted accelerometer for

providing feedback to the closed loop deep brain stimulation device. Implanted

accelerometers have some advantage over externally worn wristwatches. For instance, an

implanted accelerometer that is already integrated into the DBS device reduces the

required number of devices to record data from patients. An implanted accelerometer can

be used instead of using a wristwatch for providing feedback to the closed loop control

system.

From our analysis, the implanted IPG accelerometer appears to detect postural

rest activity more accurately than Apple Watch. Also, Apple Watch has noisier data

transmission. Because of the different physical location of these two accelerometers, the

recorded signal had differences, and consequently there were discrepant classification

results. The Apple Watch was more sensitive to arm movements, and thus, arm/hand

movements tend to be classified with the active voluntary movements, whereas the IPG

only classifies movements of the whole body as active voluntary movements. If all these

classifications are relevant to effective DBS, then the feedback signal could be a hybrid

acceleration signal that somehow combines the information from both the internal and

external accelerometer. The results of our analyses indicate that overall IPG-based

classification was more accurate than the conventional Apple Watch.

Since our classification algorithm can detect tremor, rest, and voluntary activity

etc., this algorithm can be deployed to a microcontroller which is integrated with the IPG.

According to the classified physical state the stimulation parameters of the stimulator

 84

would be set in the IPG. For example, if the classified physical state is tremor, the

stimulator will be stimulating. Otherwise, it will be in sleep mode. As a result, the battery

life of the IPG will be improved. As our algorithm can detect high and low intensity

tremors, the stimulation parameter would be set differently according to the tremor

severity. Fig. 62 shows a feasible hardware implementation of our proposed closed-loop

DBS system.

Figure 62. Hardware implementation of the classification algorithm.

In conclusion, we have validated our clustering algorithm to have 91% accuracy

through the controlled experiment. After implementing the algorithm, patients don’t need

to go to the clinicians for manual settings of the stimulation parameters of the DBS

device. Instead, they can be adaptively set according to the detected activity states of the

patient. The patients can get rid of the tedious clinical visits and trial and error process of

stimulation settings. The problems with the side effects for overstimulation or under

stimulation can also be solved. Our adaptive closed-loop DBS algorithm can afford the

maximal quality of life improvements of the Parkinson’s disease patients.

 85

According to the analysis, we can conclude that using hybrid acceleration from

both Apple Watch and IPG accelerometer as feedback to the DBS device, the stimulation

parameters could be set according to the physical states of the DBS users. Since IPG

detects postural rest activity (when body is stationary, but there is some hand/arm

movement) and active voluntary movement more accurately, DBS can take feedback

from IPG classification to detect the activity as rest or voluntary activity and turn the

DBS stimulation off. On the contrary, if the patient has tremor in hand, Apple Watch

tremor detection could be used for setting the stimulation. We can use tremor detection

from IPG either, since IPG tremor detection seems more accurate according to our

analysis. To strongly say that IPG tremor detection is more accurate, we must wait for the

controlled experiment on each patient. Our classification algorithm is also able to detect

the intensity of tremor. According to the tremor intensity, the amount of stimulation to be

supplied to the patient can also be set. Thus, instead of getting constant stimulation all the

time regardless of the activity, the DBS user can get adaptive stimulation using our

algorithm according to the physical state. For getting feedback, conventional Apple

Watch can be completely replaced by the IPG, since IPG classification results seem more

accurate than conventional Apple Watch.

Still there is potential for improvement of our algorithm, and we still hope to

address a major limitation in our validation experiments. Although we have validated our

model with a controlled experiment, the experiment was conducted on healthy subjects

with no Parkinson’s disease, and there was no use of IPG data. We planned controlled

experiments to be conducted by our Duke collaborators on each of the five patient

subjects. Each subject will be asked to perform activities like those used during our

 86

controlled experiments while at their clinic visits and while IPG and Apple watch

accelerometry data are acquired. The Duke researcher will record the times of the

different activities to provide ground truth data. With the control data from the IPG and

Apple Watch, along with the timing information and the type of activities, we will apply

our model to these data and compare with the ground truth. Then it would be possible to

validate the model under much more comparable conditions to the condition under which

DBS users would be using closed-loop DBS.

 87

REFERENCES

[1] Prof Eduardo Tolosa MD, Gregor Wenning MD, Werner Poewe MD, “The

 diagnosis of Parkinson's disease”, The Lancet Neurology, Volume 5, Issue 1,

 January 2006, Pages 75-86.

[2] Fasano, A.; Fung, V.S.C.; Lopiano, L.; Elibol, B.; Smolentseva, I.G.; Seppi, K.;

 Takáts, A.; Onuk, K.; Parra, J.C.; Bergmann, L.; et al. “Characterizing Advanced

 Parkinson’s Disease: OBSERVE-PD Observational Study Results of 2615 Patients”.

 BMC Neurol. 2019, 19, 50.

[3] Kim, H.-J.; Mason, S.; Foltynie, T.; Winder-Rhodes, S.; Barker, R.A.; Williams

 Gray, “C.H. Motor Complications in Parkinson’s Disease: 13-Year Follow-up of the

 CamPaIGN Cohort. Mov. Disord”. 2020, 35, 185–190.

[4] Nakamura Y. “Problems of long-term levodopa therapy in Parkinson's disease”.

 Nihon Rinsho. 1997 Jan;55(1):65-71. Japanese. PMID: 9014425.

[5] Joel S. Perlmutte and Jonathan W. Mink, “Deep brain stimulation”, Annual Review

 of Neuroscience, Vol. 29:229-257 (Volume publication date: 21 July 2006)

[6] Martin Jakobs, Anton Fomenko, Andres M Lozano, Karl L Kiening, “Cellular,

 molecular, and clinical mechanisms of action of deep brain stimulation—a

 systematic review on established indications and outlook on future developments”,

 EMBO Molecular Medicine, March 2019, PMID: 30862663.

[7] Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S, Chang JW, Matthews

 K, McIntyre CC, Schlaepfer TE, Schulder M, Temel Y, Volkmann J, Krauss JK.

 “Deep brain stimulation: current challenges and future directions”. Nat Rev

 Neurol. 2019 Mar;15(3):148-160. doi: 10.1038/s41582-018-0128-2. PMID:

 88

 30683913; PMCID: PMC6397644.

[8] NIH Research Matters, “Deep Brain Stimulation Curbs Parkinson Symptoms”,

 National Institute of Health (NIH), January 12, 2009.

[9] Hariz M. “Deep brain stimulation: new techniques. Parkinsonism Relat Disord”.

 2014 Jan;20 Suppl 1: S192-6. doi: 10.1016/S1353-8020(13)70045-2. PMID:

 24262179.

[10] Lozano AM, Lipsman N. “Probing and regulating dysfunctional circuits using

 deep brain stimulation”. Neuron. 2013; 77:406–424.

[11] Odekerken VJ, van Laar T, Staal MJ, Mosch A, Hoffmann CF, Nijssen PC, et al.

 “Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for

 advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial”.

 Lancet Neurol. 2013; 12:37–44. doi: 10.1016/S1474-4422(12)70264-8.

[12] Zrinzo L, van Hulzen AL, Gorgulho AA, Limousin P, Staal MJ, De Salles AA, et

 al. “Avoiding the ventricle: a simple step to improve accuracy of anatomical

 targeting during deep brain stimulation”. J Neurosurg. 2009; 110:1283–90. doi:

 10.3171/2008.12. JNS08885.

[13] de Koning PP, Figee M, van den Munckhof P, Schuurman PR, Denys D. “Status of

 deep brain stimulation for obsessive-compulsive disorder: a clinical review of

 different targets”. Curr Psychiatry Rep. 2011; 13:274–82. doi: 10.1007/s11920

 011-0200-8.

[14] S. Little, A. Pogosyan, S. Neal, B. Zavala, L. Zrinzo, M. Hariz, T. Foltynie, P.

 Limousin, K. Ashkan, J. Fitzgerald, A. L. Green, T. Z. Aziz and P. Brown,

 "Adaptive Deep Brain Stimulation in advanced Parkinson Disease," Annals of

 89

 Neurology, vol. 74, no. 3, pp. 449-457, 2013.

[15] Ghasemi P, Sahraee T, Mohammadi A. “Closed- and Open-loop Deep Brain

 Stimulation: Methods, Challenges, Current and Future Aspects”. J Biomed Phys

 Eng. 2018 Jun 1;8(2):209-216. PMID: 29951448; PMCID: PMC6015649.

[16] Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, et al.

 “Closed-loop deep brain stimulation is superior in ameliorating parkinsonism.

 Neuron”. 2011; 72:370–84.

[17] Lettieri C, Rinaldo S, Devigili G, Pauletto G, Verriello L, Budai R, et al. “Deep

 brain stimulation: subthalamic nucleus electrophysiological activity in awake and

 anesthetized patients”. Clin Neurophysiol. 2012; 123:2406–13.

[18] P. Afshar, D. Moran, A. Rouse, W. Xuan, and T. Denison, "Validation of chronic

 implantable neural sensing technology using electrocorticographic (ECoG) based

 brain machine interfaces," 2011 5th International IEEE/EMBS Conference on

 Neural Engineering, Cancun, 2011, pp. 704–707.

[19] S. E. Qasim, C. de Hemptinne, N. C. Swann, S. Miocinovic, J. L. Ostrem, and P. A.

 Starr, "Electrocorticography reveals beta desynchronization in the basal ganglia

 cortical loop during rest tremor in Parkinson's disease," Neurobiol Dis, vol. 86,

 pp. 177-186, 2//2016.

[20] R. Hyo-Gyuem, J. Jaehun, J. A. Fredenburg, S. Dodani, P. Patil, and M. P. Flynn,

 "A wirelessly powered log-based closed-loop deep brain stimulation SoC with two

 way wireless telemetry for treatment of neurological disorders," 2012 Symposium

 on VLSI Circuits (VLSIC), Honolulu, HI, 2012, pp. 70–71.

[21] Abosch A, Lanctin D, Onaran I, Eberly L, Spaniol M, Ince NF. “Long-term

 90

 recordings of local field potentials from implanted deep brain stimulation

 electrodes”. Neurosurgery. 2012; 71:804–14.

[22] Swann N, Poizner H, Houser M, Gould S, Greenhouse I, Cai W, et al. “Deep brain

 stimulation of the subthalamic nucleus alters the cortical profile of response

 inhibition in the beta frequency band: a scalp EEG study in Parkinson’s disease”. J

 Neurosci. 2011; 31:5721–9.

[23] Graupe D, Basu I, Tuninetti D, Vannemreddy P, Slavin KV. “Adaptively

 controlling deep brain stimulation in essential tremor patient via surface

 electromyography”. Neurol Res. 2010; 32:899–904.

[24] Chang SY, Kimble CJ, Kim I, Paek SB, Kressin KR, Boesche JB, et al.

 “Development of the Mayo investigational Neuromodulation control system: toward

 a closed-loop electrochemical feedback system for deep brain stimulation”. J

 Neurosurg. 2013; 119:1556–65.

[25] C.-H. Kuo, G. A. White-Dzuro and A. L. Ko, "Approaches to closed-loop deep

 brain stimulation for movement disorders," Neurosurgical Focus, vol. 45, no. 2,

 2018.

[26] K. K. Sellers, R. Gilron, J. Anso, K. H. Louie, P. R. Shirvalkar, E. F. Chang, S. J.

 Little and P. A. Starr, "Analysis-rcs-data: Open-Source Toolbox for the Ingestion,

 Time-Alignment, and Visualization of Sense and Stimulation Data from the

 Medtronic Summit RC+S System", Frontiers in Human Neuroscience, vol. 15,

 2021.

[27] J. V. D. Wardt, A. M. M. van der Stouwe, M. Dirkx et al., “Systematic clinical

 approach for diagnosing upper limb tremor,” Journal of Neurology, Neurosurgery

 91

 & Psychiatry, vol. 91, no. 8, pp. 822–830, 2020.

[28] ActiGraph, LLC (2023). Retrieved from: https://actigraphcorp.com/actigraph-link/

[29] ActiGraph, LLC (2023). Retrieved from: https://actigraphcorp.com/actilife/

[30] Mostafa, Abeer & Barghash, Toka & Assaf, Asmaa & Gomaa, Walid. (2020).

 “Multi-sensor Gait Analysis for Gender Recognition”. 629-636.

 10.5220/0009792006290636.

[31] rune-labs (2021), jupyter notebook templates, Github repository:

 https://github.com/rune-labs/opensource/tree/master/jupyter-notebook-templates

[32] Erick A. Rojas-Torres (2022), Team flow: “Adaptive deep brain stimulation for

 Parkinson’s Disease application” [Master’s Thesis, California State University,

 Los Angeles].

[33] Pratap Dangeti. Statistics for Machine Learning. Packet Publishing, July 2017.

 ISBN: 9781788295758.

 92

APPENDIX A

Main MATLAB Script file for Running the Data from the PD patients

This script was used to get all the figures and results in this thesis. It is separated into

different sections.

Loading in and plotting raw data

clear all;

clc;

rng('default')

% data sets with gaps give sampling frequencies that are off, IPG

% should be at ~64 Hz and Apple Watch should be ~50 Hz

path(path, 'E:\Thesis\DBSdata');

[ptPath] = uigetdir('Choose the patient data path to obtain the acceleration input

files)');

dateList = dir(ptPath);

nFiles = length(dateList) - 2

cd(ptPath);

% for i = 1:nFiles,

close all;

[filename, pathname] = uigetfile('*.csv', 'Choose the IPG acceleration data');

ius = strfind(filename, '_'); % index of underscores

ptID = filename(1:ius(1)-1)

date = filename(ius(1)+1: ius(2)-1)

IPGdata = datastore([pathname,filename],'Type','tabulartext');

IPGdata = readall(IPGdata);

IPGdata = IPGdata.Variables;

tIPG = IPGdata(:,2);

tConvIPG = datetime(tIPG,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC');

tConvIPG.TimeZone = 'America/New_York';

IPG_duration = tConvIPG(end) - tConvIPG(1)

IPGaccel = IPGdata(:,3:end);

nCh = size(IPGaccel, 2);

filename = [filename(1:ius(2)) 'apple_accel.csv']

dataApple= datastore([pathname,filename],'Type','tabulartext');

dataApple = readall(dataApple);

dataApple = dataApple.Variables;

 93

tApp = dataApple(:,2);

tConvApp = datetime(tApp,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC');

tConvApp.TimeZone = 'America/New_York';

Apple_duration = tConvApp(end) - tConvApp(1)

Appleaccel= dataApple(:,3:end);

fsIPG = round(1/mean(seconds(diff(tConvIPG))))

fsApple = round(1/mean(seconds(diff(tConvApp))))

axis_labels = {'a_x' 'a_y' 'a_z'};

channels = size(IPGaccel,2);

figure('Name', 'Raw IPG acceleration')

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvIPG, IPGaccel(:,i))

 ylabel([axis_labels{i}]);

end

sgtitle('IPG acceleration')

figure('Name', 'Raw Apple acceleration')

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvApp, Appleaccel(:,i))

 ylabel([axis_labels{i}]);

end

sgtitle('Apple acceleration')

figure('Name', 'Raw acceleration overlaps')

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvApp, Appleaccel(:,i));hold on

 plot(tConvIPG, IPGaccel(:,i))

 ylabel([axis_labels{i}]);

 legend('Apple Watch','IPG')

end

sgtitle('Raw overlapping acceleration data')

Data selection

If there is a gap in the datasets (IPG and Apple watch aren't 64 and 50 Hz respectively)

then select the longest data segment in the data set

 94

data_select = input('Do you want to select the overlapping data segment? Y/N:\n','s')

if upper(data_select) == 'Y'

 close all

 figure;

 for i = 1: channels

 subplot(channels,1,i)

 plot(tApp, Appleaccel(:,i),'Color',[0,0,1,0.025]);hold on

 plot(tIPG, IPGaccel(:,i),'Color',[1,0,0,0.95])

 axis([-inf inf -1 1])

 legend('Apple Watch','IPG')

 end

 sgtitle('Raw overlapping acceleration data')

 disp('Select start time, then end time');

 [selectTimes, y] = ginput(2);

 selectTimes;

 IPGstart = sum(tIPG< selectTimes(1));

 IPGend = sum(tIPG< selectTimes(2));

 tIPG = tIPG(IPGstart+1:IPGend);

 IPGaccel = IPGaccel(IPGstart+1:IPGend,:);

 tConvIPG = datetime(tIPG,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC');

 tConvIPG.TimeZone = 'America/New_York';

 IPG_duration = tConvIPG(end) - tConvIPG(1)

 fsIPG = round(1/mean(seconds(diff(tConvIPG))))

 Applestart = sum(tConvApp< tConvIPG(1)) + 1;

 Appleend = sum(tConvApp< tConvIPG(end));

 tConvApp = tConvApp(Applestart:Appleend);

 fsApple = round(1/mean(seconds(diff(tConvApp))))

 Apple_duration = tConvApp(end) - tConvApp(1)

 Appleaccel = Appleaccel(Applestart:Appleend,:);

 close all

 figure('Name','New raw acceleration data segment');

 for i = 1: channels

 subplot(channels,1,i)

 plot(tConvApp, Appleaccel(:,i));hold on

 plot(tConvIPG, IPGaccel(:,i))

 ylabel([axis_labels{i}]);

 legend('Apple Watch','IPG')

 end

 sgtitle('New raw acceleration data segment')

else

 disp('You picked no')

 95

% return

end

Interpolating and plotting on synced axis

fs = round(1/mean(seconds(diff(tConvIPG))));

if tConvIPG(end)<= tConvApp(end)

 tSync = timeScaling(tConvIPG, fs);

else

 tSync = timeScaling(tConvApp, fs);

end

fs_synced = round(1/mean(seconds(diff(tSync))))

[accelApp, L] = syncData(Appleaccel, tConvApp, tSync, 1);

[accelIPG, L] = syncData(IPGaccel, tConvIPG, tSync, 0);

accelApp(isnan(accelApp))=0;

accelIPG(isnan(accelIPG))=0;

figure('Name', 'Overlapping data with synced axis')

for i = 1:3

 subplot(3,1,i)

 plot(tSync, accelApp(:,i))

 hold on;

 plot(tSync, accelIPG(:,i))

 ylabel(axis_labels{i},'FontSize',16);

 legend('apple','ipg')

end

sgtitle('Overlapping data with synced axis')

STFT of acceleration signal using different time windows

Calculate the STFT of the accel signals and plot, also find the acceleration integral power

and plot its different bands (IPG/Apple_result)

twindows = [10]; % 20 seconds, 1 minute, 10 minutes

win_size = length(twindows);

band = [0 4 7 12 32];

titles = {'0-4 Hz', '4-7 Hz', '7-12 Hz', '12-32 Hz'};

IPG_results = [];

Apple_results = [];

% fIPG= (1:Nfft)*fsIPG/Nfft - fsIPG/2 ;

for window = 1:win_size;

 IPG_result = [];

 Apple_result = [];

 e = nextpow2(twindows(window)*fs); % changes nfft value acccording to time window

 Nfft = 2^e;

 96

 twin = twindows(window); % window size

 Lwin = round(twin*fs);

 win = hanning(Lwin);

 Noverlap = round(0.5*Lwin);

 figure('Name', ['Synced IPG with window size ' num2str(twindows(window)) ' seconds'])

 for j = 1:channels;

 subplot(channels,1,j)

 [IPG_stft_synced, FIPG_synced] = stft(accelIPG(:,j),fs, 'Window', win,

'FFTLength', Nfft, 'OverlapLength', Noverlap);

 df = mean(diff(FIPG_synced)); % use with trapz, trapz*df

 start = sum(FIPG_synced<2);

 imagesc((1:(length(accelIPG(:,j))/fs)-1), FIPG_synced(start:end),

20*log10(abs(IPG_stft_synced(start:end,:))));

 ylabel([axis_labels{j}],'FontSize',16);

 IPG.stft{j} = IPG_stft_synced;

 for k = 1:length(band)-1;

 IPGband = find(FIPG_synced >=band(k) & FIPG_synced <=band(k+1)); % looks

for all the content in the specific freq. band

 BW = band(k+1)-band(k); % bandwidth of frequency band

 t_stft = abs((IPG_stft_synced));

 dist = trapz(t_stft(IPGband,:));

 IPG_result = [IPG_result; dist*df/BW]; % integral power of IPG acceleration

 end

 end

 IPG_results.window{window} = IPG_result;

 sgtitle(['Synced IPG with window size ' num2str(twindows(window)) ' seconds'])

 for j = 1:4 % 4 different bands, 1 figure for each band

 figure('Name', ['IPG Window size ' num2str(twindows(window)) ', ' titles{j} '

band'])

 for k = 1:channels % 3 axis (x y z)

 subplot(channels,1,k);

 plot(IPG_results.window{window}((k-1)*4+j,:))

 ylabel(axis_labels{k})

 end

 sgtitle(['IPG Window size ' num2str(twindows(window)) ', ' titles{j} ' band'])

 end

 figure('Name', ['Synced Apple with window size ' num2str(twindows(window)) '

seconds'])

 for j = 1:channels;

 subplot(channels,1,j)

 [Apple_stft_synced, FApple_synced] = stft(accelApp(:,j),fs, 'Window', win,

'FFTLength', Nfft, 'OverlapLength', Noverlap);

 start = sum(FApple_synced<2);

 df = mean(diff(FApple_synced));

 imagesc((1:(length(accelApp(:,j))/fs)-1), FApple_synced(start:end),

20*log10(abs(Apple_stft_synced(start:end,:))));

 97

 ylabel([axis_labels{j}],'FontSize',16);

 for k = 1:length(band)-1;

 Appleband = find(FApple_synced >=band(k) & FApple_synced <=band(k+1));

 BW = band(k+1)-band(k);

 t_stft = abs((Apple_stft_synced));

 y = trapz(t_stft(Appleband,:));

 Apple_result = [Apple_result; y*df/BW];

 end

 end

 Apple_results.window{window} = Apple_result;

 sgtitle(['Synced Apple with window size ' num2str(twindows(window)) ' seconds'])

 for j = 1:4,

 figure('Name', ['Apple Window size ' num2str(twindows(window)) ', ' titles{j} '

band'])

 for k = 1:channels,

 subplot(channels,1,k);

 plot(Apple_results.window{window}((k-1)*4+j,:))

 ylabel(axis_labels{k})

 end

 sgtitle(['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' band'])

 end

end

Plotting envelopes and calculating correlation coefficients

aIPG = sqrt(sum(accelIPG.^2, 2)); % acceleration magnitude

aIPG(find(isnan(aIPG))) = 0;

aApple = sqrt(sum(accelApp.^2, 2)); % acceleration magnitude

aApple(find(isnan(aApple))) = 0;

twindows = [10, 60, 600]; % 20 seconds, 1 minute, 10 minutes

titles = {'10 sec' '1 min' '10 min'};

rs = [];

figure('Name', 'Envelopes of acceleration signal');

for iEnv = 1:3;

 twin = twindows(iEnv); % window for moving average in seconds

 envIPG = env(aIPG-1, twin, fs);

 envApp = env(aApple-1, twin, fs);

 subplot(channels,1,iEnv);

 plot(tSync, envIPG);

 hold on;

 plot(tSync, envApp);

 ylabel('G', 'FontSize', 12);

 title(titles{iEnv},'FontSize',12);

 98

 legend('apple','ipg');

 %pause;

 envIPG(isnan(envIPG))=0;

 envApp(isnan(envApp))=0;

 r = round(corrcoef([envIPG envApp]),2);

 rs = [rs r(2)];

end

rs

Performing elbow method to find optimal clusters

clusters = 10;

ipg_distortion_array = [];

for clust = 1:clusters

 [ipg_idx c] = kmeans((IPG_result'),clust,'Replicate',5);

 d = c';

 for j = 1:length(unique(ipg_idx))

 x_array = [];

 idx_array = IPG_result(:,find(ipg_idx==j));

 for k = 1:size(idx_array,2)

 x = idx_array(:,k)-d(:,j);

 x_array = [x_array x];

 end

 % size(x_array)

 t = x_array.^2;

 y = sum(t,2);

 % size(t)

 distortion = sqrt(y);

 distortion = mean(distortion);

 end

 ipg_distortion_array = [ipg_distortion_array distortion];

end

figure('Name', 'Elbow Method for IPG')

plot(1:clusters,ipg_distortion_array,'-xr')

xlabel('Number of clusters')

ylabel('Distortion')

title('Elbow method for IPG')

apple_distortion_array = [];

for clust = 1:clusters

 [apple_idx c] = kmeans((Apple_result'),clust,'Replicate',5);

 d = c';

 for j = 1:length(unique(apple_idx))

 x_array = [];

 idx_array = Apple_result(:,find(apple_idx==j));

 for k = 1:size(idx_array,2)

 x = idx_array(:,k)-d(:,j);

 x_array = [x_array x];

 end

 % size(x_array)

 t = x_array.^2;

 99

 y = sum(t,2);

 % size(t)

 distortion = sqrt(y);

 distortion = mean(distortion);

 end

 apple_distortion_array = [apple_distortion_array distortion];

end

figure('Name', 'Elbow Method for Apple Watch')

plot(1:clusters,apple_distortion_array,'-xr')

xlabel('Number of clusters')

ylabel('Distortion')

title('Elbow method for Apple Watch')

Finding optimal number of clusters

y = ipg_distortion_array - min(ipg_distortion_array) + 0.2; % IPG

x = [1:10; ones([1, 10])]';

[coef,BINT,R,RINT,STATS] = regress(log(y'), x);

A = exp(coef(2));

clus = [1:10];

B = mean(ipg_distortion_array(7:end));

yhat = A*exp(coef(1)*clus) + B;

figure('Name', 'Optimum number of cluster IPG');

plot(clus, ipg_distortion_array, 'r')

hold on;

plot(clus, yhat, 'b');

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster

IPG');

legend('distortion_array', 'yhat')

cluster_IPG = knee_pt(yhat, clus)

% Apple Watch

y = apple_distortion_array - min(apple_distortion_array) + 0.2;

x = [1:10; ones([1, 10])]';

[coef,BINT,R,RINT,STATS] = regress(log(y'), x);

A = exp(coef(2));

clus = [1:10];

B = mean(apple_distortion_array(7:end));

yhat = A*exp(coef(1)*clus) + B;

figure('Name', 'Optimum number of cluster Apple Watch');

plot(clus, apple_distortion_array, 'r')

hold on;

plot(clus, yhat, 'b')

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster

Apple Watch');

legend('distortion array', 'yhat')

cluster_apple = knee_pt(yhat, clus)

 100

Clustering using optimal k clusters

clusters = cluster_IPG;

[ipg_idx c] = kmeans(log(IPG_result'),clusters,'Replicate',5);

for clust = 1:clusters

 idx_array = IPG_result(:,find(ipg_idx==clust));

 figure('Name',['STFT of IPG cluster ' num2str(clust)])

 imagesc(idx_array)

 title(['IPG cluster ' num2str(clust)])

 set(gca, 'YTick', [1:12]);

 labels = {'x,0-4Hz', 'x,4-7Hz', 'x,7-12Hz', 'x,12-32Hz', 'y,0-4Hz', 'y,4-7Hz', 'y,7-

12Hz', 'y,12-32Hz', 'z,0-4Hz', 'z,4-7Hz', 'z,7-12Hz', 'z,12-32Hz'}

 set(gca,'YTickLabel', labels);

end

clusters = cluster_apple;

[apple_idx c] = kmeans(log(Apple_result'),clusters,'Replicate',5);

for clust = 1:clusters

 idx_array = Apple_result(:,find(apple_idx==clust));

 figure('Name',['STFT of Apple Watch cluster ' num2str(clust)])

 imagesc(idx_array)

 title(['Apple Watch cluster ' num2str(clust)])

 set(gca, 'YTick', [1:12]);

 labels = {'x,0-4Hz', 'x,4-7Hz', 'x,7-12Hz', 'x,12-32Hz', 'y,0-4Hz', 'y,4-7Hz', 'y,7-

12Hz', 'y,12-32Hz', 'z,0-4Hz', 'z,4-7Hz', 'z,7-12Hz', 'z,12-32Hz'}

 set(gca,'YTickLabel', labels);

end

Look at the clusters in pc space

pt_markers = ['r.'; 'g.'; 'b.'; 'k.';'m.';'y.'];

[IPG_coeff IPG_score] = pca(IPG_result');

figure('Name', 'IPG results in PC space')

plot(IPG_score(:,1),IPG_score(:,2),'.c')

title('IPG results in PC space')

xlabel('PC 1')

ylabel('PC 2')

figure('Name', 'Stem plot of IPG coefficients 1 and 2')

subplot(2,1,1)

stem(IPG_coeff(:,1))

title('PC 1')

subplot(2,1,2)

stem(IPG_coeff(:,2))

title('PC 2')

sgtitle('IPG coefficients 1 and 2 stem plot')

clusters = cluster_IPG;

figure('Name', 'IPG results in PC space color coded')

for iclust = 1:clusters,

 101

 hold on;

 plot(IPG_score(find(ipg_idx==iclust), 1), IPG_score(find(ipg_idx==iclust), 2),

pt_markers(iclust,:), 'LineWidth', 1);

end

title('IPG results in PC space')

xlabel('PC 1')

ylabel('PC 2')

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4', 'clust 5', 'clust 6')

[Apple_coeff Apple_score] = pca(Apple_result');

figure('Name', 'Apple Watch results in PC space')

plot(Apple_score(:,1),Apple_score(:,2),'.c')

title('Apple results in PC space')

xlabel('PC 1')

ylabel('PC 2')

figure('Name', 'Stem plot of Apple Watch coefficients 1 and 2')

subplot(2,1,1)

stem(Apple_coeff(:,1))

title('PC 1')

subplot(2,1,2)

stem(Apple_coeff(:,2))

title('PC 2')

sgtitle('Apple coefficients 1 and 2 stem plot')

figure('Name', 'Apple Watch results in PC space color coded')

clusters = cluster_apple;

for iclust = 1:clusters,

 hold on;

 plot(Apple_score(find(apple_idx==iclust), 1), Apple_score(find(apple_idx==iclust),

2), pt_markers(iclust,:), 'LineWidth', 1);

end

title('Apple results in PC space')

xlabel('PC 1')

ylabel('PC 2')

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4', 'clust 5', 'clust 6')

Plot synced acceleration color coded by clusters

Synced acceleration data are named accelApp and accelIPG use ipg_idx and apple_idx, 3

Clusters

idx_color = ['r', 'g', 'b','k', 'm', 'y'];

Delta = Lwin - Noverlap; % number of samples between each time block of the stft

figure('Name', 'Synced IPG acceleration color coded')

nBlocks = floor(length(accelIPG)/Delta);

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used

for stft and getting apple_idx

 102

clusters = cluster_IPG;

for iclust = 1:clusters

 iThisClust = find(ipg_idx == iclust)+1;

 iThisClust = iThisClust(iThisClust <= nBlocks);

 for j = 1:channels

 subplot(3,1,j)

 accelIPGB = reshape(accelIPG(1:nBlocks*Delta, j), Delta, nBlocks); % organized in

time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust),accelIPGB(:, iThisClust),idx_color(iclust)); hold on

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('synced IPG accel colored by idx classification')

figure('Name','Synced Apple acceleration color coded')

nBlocks = floor(length(accelApp)/Delta);

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used

for stft and getting apple_idx

clusters = cluster_apple;

for iclust = 1:clusters

 iThisClust = find(apple_idx == iclust)+1;

 iThisClust = iThisClust(iThisClust <= nBlocks);

 for j = 1:channels

 subplot(3,1,j)

 accelAppB = reshape(accelApp(1:nBlocks*Delta, j), Delta, nBlocks); % organized in

time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust),accelAppB(:, iThisClust),idx_color(iclust)); hold on

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('synced Apple accel colored by idx classification')

Plotting tremor band over classified acceleration signals

"tremor" band 4-7 Hz band are the 2nd,6th and 10th rows in the matrices "Apple_result"

and "IPG_result"

IPG_tremor_band = IPG_result([2,6,10],:); % IPG tremor band

Apple_tremor_band = Apple_result([2,6,10], :); % Apple Watch tremor band

tTremor = tSync((Lwin-Noverlap):(Lwin-Noverlap):end);

tTremor = tTremor(1:end-1);

Delta = Lwin - Noverlap; % number of samples between each time block of the stft

figure('Name','Classified IPG acceleration with tremor band')

nBlocks = floor(length(accelIPG)/Delta);

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used

for stft and getting ipg_idx

clusters = cluster_IPG;

for iclust = 1:clusters

 103

 iThisClust = find(ipg_idx == iclust)+1;

 iThisClust = iThisClust(iThisClust <= nBlocks);

 for j = 1:channels

 subplot(3,1,j)

 accelIPGB = reshape(accelIPG(1:nBlocks*Delta, j), Delta, nBlocks); % organized in

time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust),accelIPGB(:, iThisClust),idx_color(iclust)); hold on

 plot(tTremor,IPG_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]);

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('Classified IPG acceleration w/ tremor band')

trem_clust_ipg = input('which cluster is "tremor" in the ipg classification? r(1), g(2),

b(3), k(4), m(5), y(6):\n ');

low_trem_clust_ipg = input('which cluster is "low tremor" in the ipg classification?

r(1), g(2), b(3), k(4), m(5), y(6):\n ');

rest_clust_ipg = input('which cluster is "rest" in the ipg classification? r(1), g(2),

b(3), k(4), m(5), y(6):\n ');

activity_clust_ipg = input('which cluster is "voluntary activity" in the ipg

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n ');

low_activity_clust_ipg = input('which cluster is "low voluntary activity" in the ipg

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n ');

figure('Name','Classified Apple acceleration with tremor band')

nBlocks = floor(length(accelApp)/Delta);

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used

for stft and getting apple_idx

clusters = cluster_apple;

for iclust = 1:clusters

 iThisClust = find(apple_idx == iclust)+1;

 iThisClust = iThisClust(iThisClust <= nBlocks);

 for j = 1:channels

 subplot(3,1,j)

 accelAppB = reshape(accelApp(1:nBlocks*Delta, j), Delta, nBlocks); % organized in

time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust),accelAppB(:, iThisClust),idx_color(iclust)); hold on

 plot(tTremor,Apple_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]);

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('Classified Apple acceleration w/ tremor band')

trem_clust_apple = input('which cluster is "tremor" in the Apple classification? r(1),

g(2), b(3), k(4), m(5), y(6):\n ');

low_trem_clust_apple = input('which cluster is "low tremor" in the apple classification?

r(1), g(2), b(3), k(4), m(5), y(6):\n ');

rest_clust_apple = input('which cluster is "rest" in the Apple classification? r(1),

g(2), b(3), k(4), m(5), y(6):\n ');

activity_clust_apple = input('which cluster is "high voluntary activity" in the Apple

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n ');

low_activity_clust_apple = input('which cluster is "low voluntary activity" in the Apple

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n ');

 104

Comparing IPG and Apple classification

Comparing Apple Watch based classification with IPG based classification

% finding matches for High tremor

TPt =0; % true matches for tremor

FPt=0; % False matches for tremor

FNt=0; % False matches for tremor

TNt=0; % true matches for tremor

apple_tremor_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == trem_clust_apple

 apple_tremor_clust(j) = 3;

 end

end

tremor_apple = size(nonzeros(apple_tremor_clust), 1);

IPG_tremor_clust = zeros(length(ipg_idx),1);

for j = 1:length(ipg_idx)

 if ipg_idx(j) == trem_clust_ipg

 IPG_tremor_clust(j) = 3;

 end

end

tremor_ipg = size(nonzeros(IPG_tremor_clust), 1);

for j = 1:length(ipg_idx)

 if (apple_tremor_clust(j)==3) && (IPG_tremor_clust(j)==3)

 TPt = TPt+1;

 elseif (apple_tremor_clust(j) ~=3) && (IPG_tremor_clust(j)==3)

 FNt = FNt+1;

 elseif (apple_tremor_clust(j)==3) && (IPG_tremor_clust(j)~=3)

 FPt = FPt+1;

 elseif (apple_tremor_clust(j)~=3) && (IPG_tremor_clust(j)~=3)

 TNt = TNt+1;

 end

end

% finding matches for Low tremor

TP_lt =0; % true matches for tremor

FP_lt=0; % False matches for tremor

FN_lt=0; % False matches for tremor

TN_lt=0; % true matches for tremor

apple_low_tremor_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == low_trem_clust_apple

 apple_low_tremor_clust(j) = 3;

 end

end

 105

low_tremor_apple = size(nonzeros(apple_low_tremor_clust), 1);

IPG_low_tremor_clust = zeros(length(ipg_idx),1);

for j = 1:length(ipg_idx)

 if ipg_idx(j) == low_trem_clust_ipg

 IPG_low_tremor_clust(j) = 3;

 end

end

low_tremor_ipg = size(nonzeros(IPG_low_tremor_clust), 1);

for j = 1:length(ipg_idx)

 if (apple_low_tremor_clust(j)==3) && (IPG_low_tremor_clust(j)==3)

 TP_lt = TP_lt+1;

 elseif (apple_low_tremor_clust(j) ~=3) && (IPG_low_tremor_clust(j)==3)

 FN_lt = FN_lt+1;

 elseif (apple_low_tremor_clust(j)==3) && (IPG_low_tremor_clust(j)~=3)

 FP_lt = FP_lt+1;

 elseif (apple_low_tremor_clust(j)~=3) && (IPG_low_tremor_clust(j)~=3)

 TN_lt = TN_lt+1;

 end

end

% finding matches for voluntary activity

TPv=0; % true matches for voluntary activity

FPv=0; % False matches for voluntary activity

FNv=0; % False matches for voluntary activity

TNv=0; % true matches for voluntary activity

apple_activity_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == activity_clust_apple

 apple_activity_clust(j) = 2;

 end

end

activity_apple = size(nonzeros(apple_activity_clust), 1);

IPG_activity_clust = zeros(length(ipg_idx),1);

for j = 1:length(ipg_idx)

 if ipg_idx(j) == activity_clust_ipg

 IPG_activity_clust(j) = 2;

 end

end

activity_ipg = size(nonzeros(IPG_activity_clust), 1);

for j = 1:length(ipg_idx)

 if (apple_activity_clust(j)==2) && (IPG_activity_clust(j)==2)

 TPv = TPv+1;

 elseif (apple_activity_clust(j) ~=2) && (IPG_activity_clust(j)==2)

 FNv = FNv+1;

 elseif (apple_activity_clust(j)==2) && (IPG_activity_clust(j)~=2)

 FPv = FPv+1;

 elseif (apple_activity_clust(j)~=2) && (IPG_activity_clust(j)~=2)

 TNv = TNv+1;

 106

 end

end

% finding matches for lower voluntary activity

TP_lv=0; % true matches for voluntary activity

FP_lv=0; % False matches for voluntary activity

FN_lv=0; % False matches for voluntary activity

TN_lv=0; % true matches for voluntary activity

apple_low_activity_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == low_activity_clust_apple

 apple_low_activity_clust(j) = 2;

 end

end

low_activity_apple = size(nonzeros(apple_low_activity_clust), 1);

IPG_low_activity_clust = zeros(length(ipg_idx),1);

for j = 1:length(ipg_idx)

 if ipg_idx(j) == low_activity_clust_ipg

 IPG_low_activity_clust(j) = 2;

 end

end

low_activity_ipg = size(nonzeros(IPG_low_activity_clust), 1);

for j = 1:length(ipg_idx)

 if (apple_low_activity_clust(j)==2) && (IPG_low_activity_clust(j)==2)

 TP_lv = TP_lv+1;

 elseif (apple_low_activity_clust(j) ~=2) && (IPG_low_activity_clust(j)==2)

 FN_lv = FN_lv+1;

 elseif (apple_low_activity_clust(j)==2) && (IPG_low_activity_clust(j)~=2)

 FP_lv = FP_lv+1;

 elseif (apple_low_activity_clust(j)~=2) && (IPG_low_activity_clust(j)~=2)

 TN_lv = TN_lv+1;

 end

end

% finding matches for rest

TPr=0; % true matches for rest

FPr=0; % False matches for rest

FNr=0; % False matches for rest

TNr=0; % true matches for rest

apple_rest_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == rest_clust_apple

 apple_rest_clust(j) = 1;

 end

end

rest_apple = size(nonzeros(apple_rest_clust), 1);

IPG_rest_clust = zeros(length(ipg_idx),1);

 107

for j = 1:length(ipg_idx)

 if ipg_idx(j) == rest_clust_ipg

 IPG_rest_clust(j) = 1;

 end

end

rest_ipg = size(nonzeros(IPG_rest_clust), 1);

for j = 1:length(ipg_idx)

 if (apple_rest_clust(j)==1) && (IPG_rest_clust(j)==1)

 TPr = TPr+1;

 elseif (apple_rest_clust(j) ~=1) && (IPG_rest_clust(j)==1)

 FNr = FNr+1;

 elseif (apple_rest_clust(j)==1) && (IPG_rest_clust(j)~=1)

 FPr = FPr+1;

 elseif (apple_rest_clust(j)~=1) && (IPG_rest_clust(j)~=1)

 TNr = TNr+1;

 end

end

% Total true positive and false detection rate

total_TP = TPt+TP_lt+TPr+TPv+TP_lv;

total_FN = FNt+FN_lt+FNr+FNv+FN_lv;

total_FP = FPt+FP_lt+FPr+FPv+FP_lv;

total_TN = TNt+TN_lt+TNr+TNv+TN_lv;

% percentage of activities

percentage_tremor_ipg =

tremor_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100

percentage_low_tremor_ipg =

low_tremor_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100

percentage_rest_ipg =

rest_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100

percentage_activity_ipg =

activity_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100

percentage_low_activity_ipg =

low_activity_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100

percentage_tremor_apple =

tremor_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_apple)

*100

percentage_low_tremor_apple =

low_tremor_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_ap

ple) *100

percentage_rest_apple =

rest_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_apple)

*100

percentage_activity_apple =

activity_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_appl

e) *100

percentage_low_activity_apple =

low_activity_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_

apple) *100

 108

APPENDIX B

Main MATLAB Script file for Running the Validation Experimental Data

Loading and plotting raw data

clear;

clc;

close all;

%rng('default')

% data sets with gaps give sampling frequencies that are off, ActiGraph

% should be at ~70 Hz and Apple Watch should be ~70 Hz

path(path,'E:\Thesis\DBSdata\REAL_EXPERIMENT_DATA');

[filename, pathname] = uigetfile('*.csv', 'Choose the Acti acceleration data');

Actidata = csvread([pathname filename], 11,0);

fsActi =70;

L_acti = size(Actidata,1);

tActi = [0:(L_acti-1)]/fsActi;

tConvActi = tActi;

Actiaccel = Actidata(:,1:end);

nCh = size(Actiaccel, 2);

% read Apple watch data

[filename, pathname] = uigetfile('*.csv', 'Choose the Apple acceleration data');

dataApple= csvread([pathname filename], 1,26);

fs_apple = 70;

L_apple = size(dataApple,1);

tApp = [0:(L_apple-1)]/fs_apple;

tConvApp = tApp;

Appleaccel= dataApple(:,1:end);

axis_labels = {'a_x' 'a_y' 'a_z'};

channels = size(Actiaccel,2);

figure('Name', 'Raw ActiGraph acceleration')

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvActi/60, Actiaccel(:,i))

 ylabel([axis_labels{i}]);

end

sgtitle('ActiGraph acceleration')

figure('Name', 'Raw Apple acceleration')

 109

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvApp/60, Appleaccel(:,i))

 ylabel([axis_labels{i}]);

end

sgtitle('Apple acceleration')

figure('Name', 'Raw acceleration overlaps')

for i = 1: channels

 subplot(channels,1,i)

 plot(tConvApp/60, Appleaccel(:,i));hold on

 plot(tConvActi/60, Actiaccel(:,i))

 ylabel([axis_labels{i}]);

 legend('Apple Watch','Acti')

end

sgtitle('Raw overlapping acceleration data')

STFT of acceleration signal using different time windows

Calculate the STFT of the accel signals and plot, also find the acceleration integral power

and plot its different bands (Acti/Apple_result)

fs = 70;

twindows = [10]; % 10s, 20 seconds, 1 minute, 10 minutes

win_size = length(twindows);

band = [0 4 7 12 32];

titles = {'0-4 Hz', '4-7 Hz', '7-12 Hz', '12-32 Hz'};

Acti_results = [];

Apple_results = [];

% fActi= (1:Nfft)*fsActi/Nfft - fsActi/2 ;

for window = 1:win_size;

 Acti_result = [];

 Apple_result = [];

 e = nextpow2(twindows(window)*fs); % changes nfft value acccording to time window

 Nfft = 2^e;

 twin = twindows(window); % window size

 Lwin = round(twin*fs);

 win = hanning(Lwin);

 Noverlap = round(0.5*Lwin);

 figure('Name', ['Synced ActiGraph with window size ' num2str(twindows(window)) '

seconds'])

 for j = 1:channels;

 subplot(channels,1,j)

 [Acti_stft_synced, FActi_synced] = stft(Actiaccel(:,j),fs, 'Window', win,

'FFTLength', Nfft, 'OverlapLength', Noverlap);

 df = mean(diff(FActi_synced)); % use with trapz, trapz*df

 110

 start = sum(FActi_synced<2);

 imagesc((1:(length(Actiaccel(:,j))/fs)-1)/60, FActi_synced(start:end),

20*log10(abs(Acti_stft_synced(start:end,:))));

 ylabel([axis_labels{j}],'FontSize',16);

 Acti.stft{j} = Acti_stft_synced;

 for k = 1:length(band)-1;

 Actiband = find(FActi_synced >=band(k) & FActi_synced <=band(k+1)); %

looks for all the content in the specific freq. band

 BW = band(k+1)-band(k); % bandwidth of frequency band

 t_stft = abs((Acti_stft_synced));

 dist = trapz(t_stft(Actiband,:));

 Acti_result = [Acti_result; dist*df/BW]; % integral power of Acti

acceleration

 end

 end

 Acti_results.window{window} = Acti_result;

 sgtitle(['Synced ActiGraph with window size ' num2str(twindows(window)) ' seconds'])

 for j = 1:4 % 4 different bands, 1 figure for each band

 figure('Name', ['ActiGraph Window size ' num2str(twindows(window)) ', ' titles{j}

' band'])

 for k = 1:channels % 3 axis (x y z)

 subplot(channels,1,k);

 plot(Acti_results.window{window}((k-1)*4+j,:))

 ylabel(axis_labels{k})

 end

 sgtitle(['ActiGraph Window size ' num2str(twindows(window)) ', ' titles{j} '

band'])

 end

 figure('Name', ['Synced Apple with window size ' num2str(twindows(window)) '

seconds'])

 for j = 1:channels;

 subplot(channels,1,j)

 [Apple_stft_synced, FApple_synced] = stft(Appleaccel(:,j),fs, 'Window', win,

'FFTLength', Nfft, 'OverlapLength', Noverlap);

 start = sum(FApple_synced<2);

 df = mean(diff(FApple_synced));

 imagesc((1:(length(Appleaccel(:,j))/fs)-1)/60, FApple_synced(start:end),

20*log10(abs(Apple_stft_synced(start:end,:))));

 ylabel([axis_labels{j}],'FontSize',16);

 for k = 1:length(band)-1;

 Appleband = find(FApple_synced >=band(k) & FApple_synced <=band(k+1));

 BW = band(k+1)-band(k);

 t_stft = abs((Apple_stft_synced));

 y = trapz(t_stft(Appleband,:));

 Apple_result = [Apple_result; y*df/BW];

 111

 end

 end

 Apple_results.window{window} = Apple_result;

 sgtitle(['Synced Apple with window size ' num2str(twindows(window)) ' seconds'])

 for j = 1:4,

 figure('Name', ['Apple Window size ' num2str(twindows(window)) ', ' titles{j} '

band'])

 for k = 1:channels,

 subplot(channels,1,k);

 plot(Apple_results.window{window}((k-1)*4+j,:))

 ylabel(axis_labels{k})

 end

 sgtitle(['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' band'])

 end

end

Performing elbow method to find optimal clusters

clusters = 10;

Acti_distortion_array = [];

for clust = 1:clusters

 [Acti_idx c] = kmeans(Acti_result',clust,'Replicate',5);

 d = c';

 for j = 1:length(unique(Acti_idx))

 x_array = [];

 idx_array = Acti_result(:,find(Acti_idx==j));

 for k = 1:size(idx_array,2)

 x = idx_array(:,k)-d(:,j);

 x_array = [x_array x];

 end

 % size(x_array)

 t = x_array.^2;

 y = sum(t,2);

 % size(t)

 distortion = sqrt(y);

 distortion = mean(distortion);

 end

 Acti_distortion_array = [Acti_distortion_array distortion];

end

figure('Name', 'Elbow Method for ActiGraph')

plot(1:clusters,Acti_distortion_array,'-xr')

xlabel('Number of clusters')

ylabel('Distortion')

title('Elbow method for ActiGraph')

apple_distortion_array = [];

for clust = 1:clusters

 [apple_idx c] = kmeans(Apple_result',clust,'Replicate',5);

 d = c';

 112

 for j = 1:length(unique(apple_idx))

 x_array = [];

 idx_array = Apple_result(:,find(apple_idx==j));

 for k = 1:size(idx_array,2)

 x = idx_array(:,k)-d(:,j);

 x_array = [x_array x];

 end

 % size(x_array)

 t = x_array.^2;

 y = sum(t,2);

 % size(t)

 distortion = sqrt(y);

 distortion = mean(distortion);

 end

 apple_distortion_array = [apple_distortion_array distortion];

end

figure('Name', 'Elbow Method for Apple Watch')

plot(1:clusters,apple_distortion_array,'-xr')

xlabel('Number of clusters')

ylabel('Distortion')

title('Elbow method for Apple Watch')

Finding optimal number of clusters

y = Acti_distortion_array - min(Acti_distortion_array) + 0.2; % IPG

x = [1:10; ones([1, 10])]';

[coef,BINT,R,RINT,STATS] = regress(log(y'), x);

A = exp(coef(2));

clus = [1:10];

B = mean(Acti_distortion_array(7:end));

yhat = A*exp(coef(1)*clus) + B;

figure('Name', 'Optimum number of cluster IPG');

plot(clus, Acti_distortion_array, 'r')

hold on;

plot(clus, yhat, 'b');

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster

ActiGraph');

legend('distortion_array', 'yhat')

cluster_Acti = knee_pt(yhat, clus)

% line = (log2(A)+ coef(1)*clus) + log2(B);

% plot(clus, line)

% p = polyfit(yhat(1:5),clus(1:5),1)

% Apple Watch

y = apple_distortion_array - min(apple_distortion_array) + 0.2;

x = [1:10; ones([1, 10])]';

[coef,BINT,R,RINT,STATS] = regress(log(y'), x);

A = exp(coef(2));

clus = [1:10];

B = mean(apple_distortion_array(7:end));

 113

yhat = A*exp(coef(1)*clus) + B;

figure('Name', 'Optimum number of cluster Apple Watch');

plot(clus, apple_distortion_array, 'r')

hold on;

plot(clus, yhat, 'b')

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster

Apple Watch');

legend('distortion array', 'yhat')

cluster_apple = knee_pt(yhat, clus)

Clustering using optimal k clusters

clusters = cluster_Acti;

[Acti_idx c] = kmeans(Acti_result',clusters,'Replicate',5);

for clust = 1:clusters

 idx_array = Acti_result(:,find(Acti_idx==clust));

 figure('Name',['STFT of ActiGraph cluster ' num2str(clust)])

 imagesc(idx_array)

 title(['Acti cluster ' num2str(clust)])

end

clusters = cluster_apple;

[apple_idx c] = kmeans(Apple_result',clusters,'Replicate',5);

for clust = 1:clusters

 idx_array = Apple_result(:,find(apple_idx==clust));

 figure('Name',['STFT of Apple Watch cluster ' num2str(clust)])

 imagesc(idx_array)

 title(['Apple Watch cluster ' num2str(clust)])

end

% for i = 1:5

% idx_array = abs(Acti_result(:,find(idx==i)));

% figure;imagesc(idx_array(1050:1200,:));size(idx_array)

% end

Look at the clusters in pc space

pt_markers = ['r.'; 'g.'; 'b.'; 'k.'];

[Acti_coeff Acti_score] = pca(Acti_result');

figure('Name', 'ActiGraph results in PC space')

plot(Acti_score(:,1),Acti_score(:,2),'.c')

title('Acti results in PC space')

xlabel('PC 1')

ylabel('PC 2')

figure('Name', 'Stem plot of ActiGraph coefficients 1 and 2')

subplot(2,1,1)

stem(Acti_coeff(:,1))

title('PC 1')

 114

subplot(2,1,2)

stem(Acti_coeff(:,2))

title('PC 2')

sgtitle('ActiGraph coefficients 1 and 2 stem plot')

figure('Name', 'ActiGraph results in PC space color coded')

for iclust = 1:clusters,

 hold on;

 plot(Acti_score(find(Acti_idx==iclust), 1), Acti_score(find(Acti_idx==iclust), 2),

pt_markers(iclust,:), 'LineWidth', 1);

end

title('ActiGraph results in PC space')

xlabel('PC 1')

ylabel('PC 2')

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4')

[Apple_coeff Apple_score] = pca(Apple_result');

figure('Name', 'Apple Watch results in PC space')

plot(Apple_score(:,1),Apple_score(:,2),'.c')

title('Apple results in PC space')

xlabel('PC 1')

ylabel('PC 2')

figure('Name', 'Stem plot of Apple Watch coefficients 1 and 2')

subplot(2,1,1)

stem(Apple_coeff(:,1))

title('PC 1')

subplot(2,1,2)

stem(Apple_coeff(:,2))

title('PC 2')

sgtitle('Apple coefficients 1 and 2 stem plot')

figure('Name', 'Apple Watch results in PC space color coded')

for iclust = 1:clusters,

 hold on;

 plot(Apple_score(find(apple_idx==iclust), 1), Apple_score(find(apple_idx==iclust),

2), pt_markers(iclust,:), 'LineWidth', 1);

end

title('Apple results in PC space')

xlabel('PC 1')

ylabel('PC 2')

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4')

Plot synced acceleration color coded by clusters

 synced acceleration data are named Appleaccel and Actiaccel use Acti_idx and

apple_idx

 115

idx_color = ['r', 'g', 'b','k'];

Delta = Lwin - Noverlap; % number of samples between each time block of the stft

figure('Name', 'Synced ActiGraph acceleration color coded')

nBlocks = floor(length(Actiaccel)/Delta);

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting apple_idx

for iclust = 1:clusters

 iThisClust = find(Acti_idx == iclust);

 for j = 1:channels

 subplot(3,1,j)

 ActiaccelB = reshape(Actiaccel(1:nBlocks*Delta, j), Delta, nBlocks); % organized

in time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust)/60,ActiaccelB(:, iThisClust),idx_color(iclust)); hold

on

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('synced ActiGraph accel colored by idx classification')

figure('Name','Synced Apple acceleration color coded')

nBlocks = floor(length(Appleaccel)/Delta);

tSyncB = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting apple_idx

for iclust = 1:clusters

 iThisClust = find(apple_idx == iclust);

 for j = 1:channels

 subplot(3,1,j)

 AppleaccelB = reshape(Appleaccel(1:nBlocks*Delta, j), Delta, nBlocks); %

organized in time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust)/60,AppleaccelB(:, iThisClust),idx_color(iclust));

hold on

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('synced Apple accel colored by idx classification')

Plotting tremor band over classified acceleration signals

"tremor" band 4-7 Hz band are the 2nd,6th and 10th rows in the matrices "Apple_result"

and "Acti_result"

Acti_tremor_band = Acti_result([2,6,10],:); % Acti tremor band

Apple_tremor_band = Apple_result([2,6,10], :); % Apple Watch tremor band

tTremor = tConvActi((Lwin-Noverlap):(Lwin-Noverlap):end);

tTremor = tTremor(1:end-1);

Delta = Lwin - Noverlap; % number of samples between each time block of the stft

 116

figure('Name','Classified ActiGraph acceleration with tremor band')

nBlocks = floor(length(Actiaccel)/Delta);

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting Acti_idx

for iclust = 1:clusters

 iThisClust = find(Acti_idx == iclust);

 for j = 1:channels

 subplot(3,1,j)

 ActiaccelB = reshape(Actiaccel(1:nBlocks*Delta, j), Delta, nBlocks); % organized

in time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust)/60,ActiaccelB(:, iThisClust),idx_color(iclust)); hold

on

 plot(tTremor/60,Acti_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]);

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('Classified ActiGraph acceleration w/ tremor band')

trem_clust_Acti=zeros(2,1)

for k=1:2

trem_clust_Acti(k)=input('which cluster is "tremor" in the ActiGraph classification?

r(1), g(2), b(3), k(4):\n');

end

rest_clust_Acti = input('which cluster is "rest" in the ActiGraph classification? r(1),

g(2), b(3), k(4):\n ');

activity_clust_Acti = input('which cluster is "voluntary activity" in the ActiGraph

classification? r(1), g(2), b(3), k(4):\n ');

figure('Name','Classified Apple acceleration with tremor band')

tTremorA = tConvApp((Lwin-Noverlap):(Lwin-Noverlap):end);

tTremorA = tTremorA(1:end-1);

nBlocks = floor(length(Appleaccel)/Delta);

tSyncB = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting apple_idx

for iclust = 1:clusters

 iThisClust = find(apple_idx == iclust);

 for j = 1:channels

 subplot(3,1,j)

 AppleaccelB = reshape(Appleaccel(1:nBlocks*Delta, j), Delta, nBlocks); %

organized in time blocks corresponding to stft and used for getting apple_idx

 plot(tSyncB(:, iThisClust)/60,AppleaccelB(:, iThisClust),idx_color(iclust));

hold on

 plot(tTremorA/60,Apple_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]);

 ylabel([axis_labels{j}],'FontSize',16);

 end

end

sgtitle('Classified Apple acceleration w/ tremor band')

trem_clust_apple=zeros(2,1)

for k=1:2

trem_clust_apple(k)=input('which cluster is "tremor" in the Apple classification? r(1),

g(2), b(3), k(4):\n');

end

%trem_clust_apple = input('which cluster is "tremor" in the Apple classification? r(1),

 117

g(2), b(3), k(4):\n ');

%low_trem_clust_apple = input('which cluster is "low tremor" in the Apple classification?

r(1), g(2), b(3), k(4):\n ');

rest_clust_apple = input('which cluster is "rest" in the Apple classification? r(1),

g(2), b(3), k(4):\n ');

activity_clust_apple = input('which cluster is "voluntary activity" in the Apple

classification? r(1), g(2), b(3), k(4):\n ');

Actigraph correct detection

Creating ground truth signal based on activities tremor and comparing it with the

classification result

t_acti = tConvActi/60;

gt = zeros(1, length(t_acti));

i_gt = round([0:3:48]*60*fs); % index of the time points of ground truth signal

gt(i_gt(1)+1:i_gt(2)) = 1; % let's make the code for tremor = 1

gt(i_gt(2)+1:i_gt(4)) = 2; % let's make the code for laying down = 2

gt(i_gt(4)+1:i_gt(5)) = 3; % let's make the code for voluntary activity(bouncing) = 3

gt(i_gt(5)+1:i_gt(7)) = 2; % let's make the code for standing = 2

gt(i_gt(7)+1:i_gt(8)) = 3; % let's make the code for voluntary activity(writing) = 3

gt(i_gt(8)+1:i_gt(10)) = 2; % let's make the code for sitting = 2

gt(i_gt(10)+1:i_gt(11)) = 3; % let's make the code for voluntary activity(cooking) = 3

gt(i_gt(11)+1:i_gt(13)) = 2; % let's make the code for standing = 2

gt(i_gt(13)+1:i_gt(14)) = 3; % let's make the code for voluntary activity(walking) = 3

gt(i_gt(14)+1:i_gt(16)) = 2; % let's make the code for sitting = 2

gt(i_gt(16)+1:i_gt(17)) = 3; % let's make the code for voluntary activity(typing) = 3

figure('Name','Ground truth ActiGraph');

plot(t_acti,gt); xlabel('time(min)'); ylabel('ground truth');

sgtitle('Ground truth ActiGraph')

% finding TP,FP,FN

% FOR TREMOR

nBlocks = floor(length(Actiaccel)/Delta);

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting Acti_idx

gt = reshape(gt(1:nBlocks*Delta), Delta, nBlocks);

gt = gt';

TPt =0; % true positive for tremor

FPt=0; % False positive for tremor

FNt=0; % False negative for tremor

TNt=0; % true negative for tremor

Acti_tremor_clust = zeros(length(Acti_idx),1);

 118

for j = 1:length(Acti_idx)

 if Acti_idx(j) == trem_clust_Acti(1,1)

 Acti_tremor_clust(j) = 1;

 end

end

for j = 1:length(Acti_idx)

 if Acti_idx(j) == trem_clust_Acti(2,1)

 Acti_tremor_clust(j) = 1;

 end

end

for j = 1:length(Acti_idx)

 if (Acti_tremor_clust(j)==1) && (gt(j)==1)

 TPt = TPt+1;

 elseif (Acti_tremor_clust(j) ~=1) && (gt(j)==1)

 FNt = FNt+1;

 elseif (Acti_tremor_clust(j)==1) && (gt(j)~=1)

 FPt = FPt+1;

 elseif (Acti_tremor_clust(j)~=1) && (gt(j)~=1)

 TNt = TNt+1;

 end

end

% FOR REST

TPr =0; % true positive for rest

FPr=0; % False positive for rest

FNr=0; % False negative for rest

TNr=0; % True negative for rest

Acti_rest_clust = zeros(length(Acti_idx),1);

for j = 1:length(Acti_idx)

 if Acti_idx(j) == rest_clust_Acti

 Acti_rest_clust(j) = 2;

 end

end

for j = 1:length(Acti_idx)

 if (Acti_rest_clust(j)==2) && (gt(j)==2)

 TPr = TPr+1;

 elseif (Acti_rest_clust(j) ~=2) && (gt(j)==2)

 FNr = FNr+1;

 elseif (Acti_rest_clust(j)==2) && (gt(j)~=2)

 FPr = FPr+1;

 elseif (Acti_rest_clust(j)~=2) && (gt(j)~=2)

 TNr = TNr+1;

 end

end

% FOR VOLUNTARY ACTIVITY

TPv =0; % true positive for voluntary activity

FPv=0; % False positive for voluntary activity

FNv=0; % False negative for voluntary activity

TNv =0; % True negative for voluntary activity

 119

Acti_activity_clust = zeros(length(Acti_idx),1);

for j = 1:length(Acti_idx)

 if Acti_idx(j) == activity_clust_Acti

 Acti_activity_clust(j) = 3;

 end

end

for j = 1:length(Acti_idx)

 if (Acti_activity_clust(j)==3) && (gt(j)==3)

 TPv = TPv+1;

 elseif (Acti_activity_clust(j) ~=3) && (gt(j)==3)

 FNv = FNv+1;

 elseif (Acti_activity_clust(j)==3) && (gt(j)~=3)

 FPv = FPv+1;

 elseif (Acti_activity_clust(j)~=3) && (gt(j)~=3)

 TNv = TNv+1;

 end

end

Apple Watch correct detection

Creating ground truth signal based on activities tremor and comparing it with the

classification result

t_app = tConvApp/60;

% time according to activities

t1a= 0:1/fs:tConvApp(165*fs); %tremor

t2a=tConvApp(165*fs+1):1/fs:tConvApp(426*fs); % laying down

t3a = tConvApp(426*fs+1):1/fs:tConvApp(523.8*fs); % voluntary activity

t4a= tConvApp(523.8*fs+1):1/fs:tConvApp(744.6*fs); % standing

t5a = tConvApp(744.6*fs+1):1/fs:tConvApp(849.6*fs); % voluntary activity

t6a=tConvApp(849.6*fs+1):1/fs:tConvApp(1068*fs); %sitting

t7a=tConvApp(1068*fs+1):1/fs:tConvApp(1194*fs); % voluntary activity

t8a=tConvApp(1194*fs+1):1/fs:tConvApp(1413*fs); % standing

t9a=tConvApp(1413*fs+1):1/fs:tConvApp(1549.2*fs); % voluntary activity

t10a=tConvApp(1549.2*fs+1):1/fs:tConvApp(1683.6*fs); % sitting

t11a= tConvApp(1683.6*fs+1):1/fs:tConvApp(1797.4*fs); % voluntary activity

gta =

cat(2,(t1a>=0),2*(t2a>=0),3*(t3a>=0),2*(t4a>=0),3*(t5a>=0),2*(t6a>=0),3*(t7a>=0),2*(t8a>=

0),3*(t9a>=0),2*(t10a>=0),3*(t11a>=0));

figure('Name','Ground truth Apple watch');

plot(t_app,gta); xlabel('time(min)'); ylabel('Ground truth');

sgtitle('Apple watch Ground truth');

%

% finding TP,FP,FN

% FOR TREMOR

 120

nBlocks = floor(length(Appleaccel)/Delta);

tSyncBa = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks

used for stft and getting Acti_idx

gta = reshape(gta(1:nBlocks*Delta), Delta, nBlocks);

gta = gta';

TPta =0; % true positive for tremor

FPta=0; % False positive for tremor

FNta=0; % False negative for tremor

TNta=0; % true negative for tremor

apple_tremor_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == trem_clust_apple(1,1)

 apple_tremor_clust(j) = 1;

 end

end

for j = 1:length(apple_idx)

 if apple_idx(j) == trem_clust_apple(2,1)

 apple_tremor_clust(j) = 1;

 end

end

for j = 1:length(apple_idx)

 if (apple_tremor_clust(j)==1) && (gta(j)==1)

 TPta = TPta+1;

 elseif (apple_tremor_clust(j) ~=1) && (gta(j)==1)

 FNta = FNta+1;

 elseif (apple_tremor_clust(j)==1) && (gta(j)~=1)

 FPta = FPta+1;

 elseif (apple_tremor_clust(j)~=1) && (gta(j)~=1)

 TNta = TNta+1;

 end

end

% FOR REST

TPra =0; % true positive for rest

FPra=0; % False positive for rest

FNra=0; % False negative for rest

TNra=0; % true negative for rest

apple_rest_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == rest_clust_apple

 apple_rest_clust(j) = 2;

 end

end

for j = 1:length(apple_idx)

 if (apple_rest_clust(j)==2) && (gta(j)==2)

 TPra = TPra+1;

 elseif (apple_rest_clust(j) ~=2) && (gta(j)==2)

 FNra = FNra+1;

 elseif (apple_rest_clust(j)==2) && (gta(j)~=2)

 FPra = FPra+1;

 121

 elseif (apple_rest_clust(j)~=2) && (gta(j)~=2)

 TNra = TNra+1;

 end

end

% FOR VOLUNTARY ACTIVITY

TPva =0; % true positive for activity

FPva=0; % False positive for activity

FNva=0; % False negative for activity

TNva=0; % true negative for activity

apple_activity_clust = zeros(length(apple_idx),1);

for j = 1:length(apple_idx)

 if apple_idx(j) == activity_clust_apple

 apple_activity_clust(j) = 3;

 end

end

for j = 1:length(apple_idx)

 if (apple_activity_clust(j)==3) && (gta(j)==3)

 TPva = TPva+1;

 elseif (apple_activity_clust(j) ~=3) && (gta(j)==3)

 FNva = FNva+1;

 elseif (apple_activity_clust(j)==3) && (gta(j)~=3)

 FPva = FPva+1;

 elseif (apple_activity_clust(j)~=3) && (gta(j)~=3)

 TNva = TNva+1;

 end

end

% Actigrap true positive and false detection rate

total_TP_acti = TPt+TPr+TPv;

total_FN_acti = FNt+FNr+FNv;

total_FP_acti = FPt+FPr+FPv;

total_TN_acti = TNt+TNr+TNv;

correct_detection_acti = (total_TP_acti/(total_TP_acti+total_FN_acti))*100

false_detection_rate_acti = (total_FP_acti/(total_FP_acti+total_TN_acti))*100

% Apple watch true positive and false detection rate

total_TP_app = TPta+TPra+TPva;

total_FN_app = FNta+FNra+FNva;

total_FP_app = FPta+FPra+FPva;

total_TN_app = TNta+TNra+TNva;

correct_detection_apple = (total_TP_app/(total_TP_app+total_FN_app))*100

false_detection_rate_apple = (total_FP_app/(total_FP_app+total_TN_app))*100

 122

APPENDIX C

MATLAB Helper Functions

Creates envelopes of the acceleration signals

function ma = env(s, twin, fs)

% display(twin)

 s = s - mean(s);

 Lwin = round(fs*twin);

 w = ones(1, Lwin);

 ma = conv(abs(s), w, 'same')/Lwin;

end

Sets the time vector on the same scale for both accelerometers

function tSync = timeScaling(t, fs)

% t = original time vector of asynchronously acquired signal

% fs = desired sampling frequency in samples per second

%

% tSync = output time vector, now with constant sampling interval

 N = round(seconds(t(end) - t(1))*fs);

 tSync = linspace(t(1), t(end), N);

end

Synchronizes the data of the accelerometers by using linear interpolation

Setfunction [a, L] = syncData(accel, tConv, tSync, Apple)

% a = raw acceleration from device (Apple watch or IPG)

% tConv = converted time from device (Apple watch or IPG)

% tSync = converted time from IPG, and resampled at fixed sampling rate

 if(tSync(end) < tConv(end))

 L = sum(tConv <= tSync(end));

 else

 L = length(tConv);

 end

 a = zeros(length(tSync), 3);

 [t, iunique] = unique(tConv(1:L));

 a(:,1) = interp1(t, accel(iunique,1), tSync);

 a(:,2) = interp1(t, accel(iunique,2), tSync);

 a(:,3) = interp1(t, accel(iunique,3), tSync);

end

 123

Finds the knee point (optimum number of clusters) of an exponential curve by Dmrity
Kaplan from MATLAB file exchange

function [res_x, idx_of_result] = knee_pt(y,x,just_return)

%function [res_x, idx_of_result] = knee_pt(y,x,just_return)

%Returns the x-location of a (single) knee of curve y=f(x)

% (this is useful for e.g. figuring out where the eigenvalues peter out)

%

%Also returns the index of the x-coordinate at the knee

%

%Parameters:

% y (required) vector (>=3 elements)

% x (optional) vector of the same size as y

% just_return (optional) boolean

%

%If just_return is True, the function will not error out and simply return a Nan on

%detected error conditions

%

%Important: The x and y don't need to be sorted, they just have to

%correspond: knee_pt([1,2,3],[3,4,5]) = knee_pt([3,1,2],[5,3,4])

%

%Important: Because of the way the function operates y must be at least 3

%elements long and the function will never return either the first or the

%last point as the answer.

%

%Defaults:

%If x is not specified or is empty, it's assumed to be 1:length(y) -- in

%this case both returned values are the same.

%If just_return is not specified or is empty, it's assumed to be false (ie the

%function will error out)

%

%

%The function operates by walking along the curve one bisection point at a time and

%fitting two lines, one to all the points to left of the bisection point and one

%to all the points to the right of of the bisection point.

%The knee is judged to be at a bisection point which minimizes the

%sum of errors for the two fits.

%

%the errors being used are sum(abs(del_y)) or RMS depending on the

%(very obvious) internal switch. Experiment with it if the point returned

%is not to your liking -- it gets pretty subjective...

%

%

%Example: drawing the curve for the submission

% x=.1:.1:3; y = exp(-x)./sqrt(x); [i,ix]=knee_pt(y,x);

% figure;plot(x,y);

% rectangle('curvature',[1,1],'position',[x(ix)-.1,y(ix)-.1,.2,.2])

% axis('square');

%

%Food for thought: In the best of possible worlds, per-point errors should

%be corrected with the confidence interval (i.e. a best-line fit to 2

 124

%points has a zero per-point fit error which is kind-a wrong).

%Practially, I found that it doesn't make much difference.

%

%dk /2012

%{

% test vectors:

[i,ix]=knee_pt([30:-3:12,10:-2:0]) %should be 7 and 7

knee_pt([30:-3:12,10:-2:0]') %should be 7

knee_pt(rand(3,3)) %should error out

knee_pt(rand(3,3),[],false) %should error out

knee_pt(rand(3,3),[],true) %should return Nan

knee_pt([30:-3:12,10:-2:0],[1:13]) %should be 7

knee_pt([30:-3:12,10:-2:0],[1:13]*20) %should be 140

knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20) %should be 140

knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20+rand(1,13)) %should be close to 140

x = 0:.01:pi/2; y = sin(x); [i,ix]=knee_pt(y,x) %should be around .9 andaround 90

[~,reorder]=sort(rand(size(x)));xr = x(reorder); yr=y(reorder);[i,ix]=knee_pt(yr,xr) %i

should be the same as above and xr(ix) should be .91

knee_pt([10:-1:1]) %degenerate condition -- returns location of the first "knee" error

minimum: 2

%}

%set internal operation flags

use_absolute_dev_p = true; %ow quadratic

%deal with issuing or not not issuing errors

issue_errors_p = true;

if (nargin > 2 && ~isempty(just_return) && just_return)

 issue_errors_p = false;

end

%default answers

res_x = nan;

idx_of_result = nan;

%check...

if (isempty(y))

 if (issue_errors_p)

 error('knee_pt: y can not be an empty vector');

 end

 return;

end

%another check

if (sum(size(y)==1)~=1)

 if (issue_errors_p)

 error('knee_pt: y must be a vector');

 125

 end

 return;

end

%make a vector

y = y(:);

%make or read x

if (nargin < 2 || isempty(x))

 x = (1:length(y))';

else

 x = x(:);

end

%more checking

if (ndims(x)~= ndims(y) || ~all(size(x) == size(y)))

 if (issue_errors_p)

 error('knee_pt: y and x must have the same dimensions');

 end

 return;

end

%and more checking

if (length(y) < 3)

 if (issue_errors_p)

 error('knee_pt: y must be at least 3 elements long');

 end

 return;

end

%make sure the x and y are sorted in increasing X-order

if (nargin > 1 && any(diff(x)<0))

 [~,idx]=sort(x);

 y = y(idx);

 x = x(idx);

else

 idx = 1:length(x);

end

%the code below "unwraps" the repeated regress(y,x) calls. It's

%significantly faster than the former for longer y's

%

%figure out the m and b (in the y=mx+b sense) for the "left-of-knee"

sigma_xy = cumsum(x.*y);

sigma_x = cumsum(x);

sigma_y = cumsum(y);

sigma_xx = cumsum(x.*x);

n = (1:length(y))';

det = n.*sigma_xx-sigma_x.*sigma_x;

mfwd = (n.*sigma_xy-sigma_x.*sigma_y)./det;

bfwd = -(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det;

 126

%figure out the m and b (in the y=mx+b sense) for the "right-of-knee"

sigma_xy = cumsum(x(end:-1:1).*y(end:-1:1));

sigma_x = cumsum(x(end:-1:1));

sigma_y = cumsum(y(end:-1:1));

sigma_xx = cumsum(x(end:-1:1).*x(end:-1:1));

n = (1:length(y))';

det = n.*sigma_xx-sigma_x.*sigma_x;

mbck = flipud((n.*sigma_xy-sigma_x.*sigma_y)./det);

bbck = flipud(-(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det);

%figure out the sum of per-point errors for left- and right- of-knee fits

error_curve = nan(size(y));

for breakpt = 2:length(y-1)

 delsfwd = (mfwd(breakpt).*x(1:breakpt)+bfwd(breakpt))-y(1:breakpt);

 delsbck = (mbck(breakpt).*x(breakpt:end)+bbck(breakpt))-y(breakpt:end);

 %disp([sum(abs(delsfwd))/length(delsfwd), sum(abs(delsbck))/length(delsbck)])

 if (use_absolute_dev_p)

 % error_curve(breakpt) = sum(abs(delsfwd))/sqrt(length(delsfwd)) +

sum(abs(delsbck))/sqrt(length(delsbck));

 error_curve(breakpt) = sum(abs(delsfwd))+ sum(abs(delsbck));

 else

 error_curve(breakpt) = sqrt(sum(delsfwd.*delsfwd)) + sqrt(sum(delsbck.*delsbck));

 end

end

%find location of the min of the error curve

[~,loc] = min(error_curve);

res_x = x(loc);

idx_of_result = idx(loc);

end

