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ABSTRACT 

Unsupervised Classification of Physical Activity from Implanted Accelerometer in Deep 

Brain Stimulation Patients 

By 

Farzana Yasmin Boby 

An externally worn Apple Watch is being considered for feedback control to 

develop a closed-loop deep brain stimulation (DBS) system to treat Parkinson’s disease 

(PD). Here, we investigate whether accelerometers provide sufficient information to 

classify different physical activities and compare performance using the implanted 

accelerometer versus the Apple Watch. We developed a method to classify physical 

activity into 3 classes (rest, tremor, or voluntary activity) based on accelerometry. During 

the controlled validation experiments, our clustering algorithm performed with 91% 

accuracy with a high-end accelerometer and 89% with the Apple Watch. We applied our 

validated algorithm to 48 different datasets from 5 participants’ acceleration streamed 

from the implantable pulse generator (IPG) with those based on the Apple Watch during 

daily living activities. The classification based on the two accelerometer signals matched 

for 83% of the tremor. For the resting activity, there was 30% mismatch; for the 

voluntary activity, there was 32% mismatch. Overall, the percentage of activity classified 

as tremor was higher with the Apple Watch classification than the IPG. On the contrary, 

the percentage of the rest was higher with the IPG than the Apple Watch. The results 

point toward feasibility of classifying activity continuously based on data streamed from 

an implanted accelerometer integrated in the DBS device as well as the benefit to using 

an implanted accelerometer versus an external accelerometer. 



 v

ACKNOWLEDGMENTS 

At the very beginning I would like to thank my family for their relentless support 

both emotionally and financially. I know raising two children after my father’s death was 

difficult for my mom, still she always gives her best to us. Without the support from my 

husband, it would not be possible for me to study abroad as an international student.  

Dr. Won, thank you so much for your mentorship and all the amazing 

opportunities I got in my higher education because of you. You are one of the best 

mentors and one of the best souls I have ever met. Thank you for all the support and 

always inspiring me.  

Thanks to my thesis committee, Dr. Wang, and Dr. Liu for willing to help me in 

my thesis. I would also like to thank all the faculties at Cal State LA for their continuous 

support to the students. 

I want to specially thank Erick for working on this project before me and 

developing the classification model. Next, I will thank Paris and Calysta for helping me 

perform the validation experiments related to this project. 

Finally, I would like to thank CATSUS and the Office of Graduate Studies for 

supporting my research. Also, I would like to acknowledge financial support for this 

work by NSF HRD-1547723 to NSF HRD-2112554 and CSU Instructionally Related 

Activities Fund. 

 

 

 

  



 vi

TABLE OF CONTENTS 

Abstract .............................................................................................................................. iv 

Acknowledgments................................................................................................................v 

List of Tables ................................................................................................................... viii 

List of Figures .................................................................................................................... ix 

Chapter 

         1. Motivation ...............................................................................................................1 

  1.1. Parkinson’s disease, neurological diseases treated by DBS .......................1 
 
  1.2. Benefits of DBS therapy .............................................................................3

  1.3. Limitations of conventional DBS system ...................................................4 

  1.4. Closed loop DBS.........................................................................................6 

                  1.5. Thesis objective statement ..........................................................................8 

 2. Characteristics and Comparison of Acceleration from Extrinsic Sensor vs 

             Implanted Sensor ..................................................................................................10 

  2.1. Experimental protocol ...............................................................................10 

  2.2. Correlation between Apple Watch and IPG acceleration .........................14

  2.3. Spectral analysis of acceleration signals ...................................................19 

 3. Clustering Algorithm ............................................................................................26 

  3.1. Classification with K-means clustering ....................................................26 

  3.2. Feature extraction from acceleration data .................................................28 

                  3.3. Elbow method of clustering ......................................................................31 

                  3.4. Classifying acceleration data ....................................................................33

 4. Validation Experiment ..........................................................................................38 



 vii

                 4.1. ActiGraph – the hardware, software data acquisition ................................38 

                 4.2. Apple Watch – the hardware, software data acquisition............................40 

                 4.3. Experimental protocol  ...............................................................................42 

                 4.4. Results and analysis  ..................................................................................45 

                 4.5. Change of classification performance with changing window size and 

                        number of clusters ......................................................................................51 

         5. Application of Clustering to Patient at Home Data  .............................................54 

                  5.1. Calculating percentage of each activity and percentage of classification       

                         match for IPG and Apple Watch  ..............................................................54 

                  5.2. Tremor vs. voluntary active movement ....................................................60 

                           5.2.1. Apple and IPG both detect tremor  ...............................................61 

                           5.2.2. Apple detects tremor while IPG detects voluntary movement  ....66 

                  5.3. Voluntary active movement vs. rest  ........................................................72 

                           5.3.1. Apple and IPG both detect rest  ....................................................72 

                           5.3.2. Apple detects voluntary movement while IPG detects rest ..........77 

                   5.4. Comparing percentage of tremor classification to clinical assessment  ..78 

         6. Summary of Results  .............................................................................................80 

         7. Discussion - Implications for Closed-Loop DBS  ................................................83 

References ..........................................................................................................................86 

Appendices 

 A. Main MATLAB Script File for Running the data from the PD Patients .............92 

 B. Main MATLAB Script File for Running the Validation Experiment Data .......108 

 C. MATLAB Helper Functions ..............................................................................122 



 viii 

LIST OF TABLES 

Table 
 

1.   Pearson’s correlation coefficient for subject 2 .......................................................17 

2.   Average correlation between Apple Watch and IPG acceleration .........................18 

3.   12-dimensional integral power in four frequency bands .......................................22 

4.   Experimental setup.................................................................................................43 

5.   ActiGraph confusion matrix ..................................................................................50 

6.   Apple Watch confusion matrix ..............................................................................50 

7.    True positive and false positive rate of ActiGraph and Apple Watch ..................51 

8.    Comparison of classification performance with changing window size and 

number of clusters ............................................................................................52 

9.     Confusion matrix .................................................................................................57 

10.   Confusion matrix for three classes .......................................................................58 

11.   Percentage match and mismatch of Apple Watch-based classification with IPG-

based classification ..........................................................................................60 

12.   Comparison of tremor detection with clinical assessment ...................................78 

 

  



 ix

LIST OF FIGURES 

Figure 
 

1.   DBS system ..............................................................................................................3 

2.   Open loop DBS system ............................................................................................5 

3.   Closed-loop DBS system .........................................................................................7 

4.    Experimental protocol  ..........................................................................................11 

5.   Apple Watch available data in Rune Labs .............................................................12 

6.   IPG available data in Rune Labs ............................................................................13 

7.   Data visualization in the Rune Labs user interface ................................................13 

8.   Overlapping acceleration signals for subject 2 ......................................................15 

9.   Correlation of acceleration envelopes for different window sizes.........................16 

10.   STFT of IPG and Apple Watch acceleration for subject 2, 10-s window ...........19 

11.   STFT of IPG and Apple Watch acceleration for subject 2, 20-s window ...........20 

12.   STFT of IPG and Apple Watch acceleration for subject 2, 60-s window ...........20 

13.   STFT of IPG and Apple Watch acceleration for subject 2, 600-s window .........21 

14.   IPG and Apple Watch integral power in 0-4 Hz band for subject 2 ....................23 

15.   IPG and Apple Watch integral power in 4-7 Hz band for subject 2 ....................23 

16.   IPG and Apple Watch integral power in 7-12 Hz band for subject 2 ..................24 

17.   IPG and Apple Watch integral power in 12-32 Hz band for subject 2 ................24 

18.   Steps of k-means clustering algorithm  ................................................................27 

19.   PC 1 and 2 derived from the 12 original features from 10th dataset for  

           subject 2 ............................................................................................................30  

20.   Integral power in PC space for subject 2 dataset 10 ............................................31 



 x

21.   Elbow plot for subject 2 dataset 10 ......................................................................32 

22.   Exponential fit of the distortion array for dataset 10 subject 2 ............................33 

23.   STFT of IPG cluster 1-4 for subject 2 dataset 10 ................................................34 

24.   STFT of Apple Watch cluster 1-4 for subject 2 dataset 10..................................35 

25.   IPG Acceleration color coded classification  .......................................................36 

26.   Apple Watch Acceleration color coded classification .........................................36 

27.   Actigraph GT9X Link ..........................................................................................39 

28.   ActiGraph initialization with ActiLife software ..................................................40 

29.   Apple Watch ........................................................................................................41 

30.   Acceleration data acquisition from Apple Watch  ...............................................42  

31.   3-axis acceleration data in the csv file .................................................................42 

32.   Experimental Protocol  ........................................................................................44 

33.   Raw acceleration signals from ActiGraph and Apple Watch ..............................45 

34.   Clusters in PC space for ActiGraph and Apple Watch ........................................45 

35.   STFT of ActiGraph cluster 1-4 ............................................................................46 

36.   STFT of Apple Watch cluster 1-4 ........................................................................47 

37.   Classification result for ActiGraph and Apple Watch .........................................48 

38.   Ground Truth signal for ActiGraph and Apple Watch  .......................................49 

39.   Classification result of ActiGraph Vs Apple Watch with 3 numbers of  

          clusters ...............................................................................................................53 

40.   Elbow of distortion matric ...................................................................................55 

41.   Assigning each acceleration indices into a cluster ...............................................56 

42.   Apple Watch detected more tremor (blue) than IPG ...........................................61 



 xi

43.   Comparison of IPG and Apple Watch classification ...........................................62 

44.   Clusters of IPG and Apple Watch Classification .................................................63 

45.   STFT of IPG cluster 1-4 ......................................................................................63 

46.   STFT of Apple Watch cluster 1-4 ........................................................................65 

47.   Tremor (green) detected in both IPG and Apple Watch ......................................66 

48.   Apple Watch detects tremor (green) while IPG detects voluntary movement (red) 

for subject E395, dataset 10 .............................................................................67 

49.   Clusters of IPG and Apple Watch Classification for subject NU5U, dataset 2 ...67 

50.   Comparison of IPG and Apple Watch classification for subject NU5U,  

dataset2 ............................................................................................................68 

51.   Apple Watch detects tremor while IPG detects voluntary movement .................69 

52.   Classification result for subject 5 dataset 4 where tremor (blue) was detected ...71 

53.   Tremor (blue) detected in subject 5 dataset 4  .....................................................71 

54.   IPG detected tremor (blue) while Apple Watch detected voluntary movement 

(green and black), right image more zoomed in ..............................................72 

55.   Comparison of IPG and Apple Watch classification for subject NU5U,  

  dataset 7 ...........................................................................................................73 

56.   STFT of IPG cluster 1-4 for Subject NU5U, dataset 7 ........................................74 

57.   STFT of Apple Watch cluster 1-4 for Subject NU5U, dataset 7 .........................75 

58.   High and low intensity movement .......................................................................76 

59.   Apple Watch (blue) and IPG (blue) both detect rest............................................76 

60.   IPG detects rest (blue) while Apple Watch detects voluntary movement (black 

and red) ............................................................................................................77 



 xii

61.   Average IPG and Apple Watch tremor detection ................................................79 

62.   Hardware implementation of the classification algorithm  ..................................84 



 

 1

CHAPTER 1 

Motivation 

 
1.1 Parkinson’s disease, neurological diseases treated by DBS 

Parkinson’s disease (PD) is a progressive neurological disorder characterized by 

tremor, rigidity, and slowness of movement, and is associated with progressive neuronal 

loss of the substantia nigra and other brain structures [1]. Parkinson’s disease patients 

have low brain dopamine concentration. Non-motor symptoms may also arise, including 

issues with mental health, memory problems, skin problems, low blood pressure, pain, 

fatigue, speech, and communication issues etc. Parkinson’s disease cannot be cured fully, 

but medications can help control the symptoms. Traditional PD management primarily 

focused on dopamine replacement therapies, namely medications such as levodopa which 

increase the dopamine level of the brain. However, after long-term use, on the order of a 

decade, most of the patients receive inconsistent therapeutic benefit from the medication 

in treating symptoms such as bradykinesia and rigidity [2][3]. Long-term levodopa 

therapy in Parkinson's disease may pose various adverse reactions, such as dyskinesia; 

wearing-off effect (exposure of Parkinsonian symptoms again as the effect of levodopa 

diminishes, normally after 3-4 hours after taking levodopa); on-off effect (On time means 

levodopa is working properly to control symptoms, off time means levodopa is not 

working properly); mental symptoms such as impaired cognitive function, depression, 

apathy, sleep disorder etc.; and frozen gait [4]. Deep brain stimulation is then offered to 

medically refractive PD patients. 

Deep brain stimulation (DBS) is an invasive electrical stimulation treatment 

which has provided remarkable benefits for people with a variety of neurologic 



 

 2

conditions. Stimulation of the ventral intermediate nucleus of the thalamus can 

dramatically relieve tremor associated with essential tremor or Parkinson disease (PD) 

[5]. Similarly, stimulation of the subthalamic nucleus or the internal segment of the 

globus pallidus can substantially reduce bradykinesia, rigidity, tremor, and gait 

difficulties in people with PD [5].  It requires a surgical procedure to implant the 

stimulating device, called the implantable pulse generator (IPG), the leads, and 

electrode(s) to deliver chronic electrical stimulation of brain region(s). DBS is used either 

for therapy for disorders affecting the nervous system, especially movement disorders, 

and has been approved in most countries for the treatment of Parkinson's disease, 

essential tremor, and dystonia [6]. Other diseases treated by DBS include epilepsy and 

obsessive-compulsive disorder (OCD).  

The implantable pulse generator (IPG) is the most important component of the 

DBS system, and it requires programming for setting the stimulation parameters. The 

amount of stimulation is controlled by the IPG which is placed under the skin in the 

upper chest wall. IPG sends the stimulation to electrodes implanted in the brain via 

extension leads, which then deliver the stimulation to the targeted areas. 
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Figure 1. DBS system [6]. 

1.2 Benefits of DBS therapy 

The human brain consists of billions of neurons. These neurons communicate 

with each other by transferring electric ions. Because of various brain diseases, neurons 

in different parts of the brain can be less active than other parts. As a result, those brain 

cells do not work perfectly. Depending on the part of the brain affected, one can have 

disruptions in the abilities controlled in that area. DBS stimulates those inactive or less 

active areas of the brain through electrical stimulation, often activating regions which are 

responsible for inhibiting pathological brain activity.  This disruption of pathological 

neural signals helps manage symptoms of several brain conditions. As a clinical tool, 

DBS offers several advantages over other surgical approaches for neuromodulation. 

These advantages include the non-lesional nature of DBS, the capacity to titrate 

stimulation parameters to maximize benefit and reduce adverse effects and the 

opportunity to directly interface with the circuit pathology that drives overt symptoms 

[7].  
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DBS therapy can help patients with Parkinson’s disease improve their symptoms 

such as tremors, stiffness, slowness, and dyskinesias. It can also decrease the dose of 

medication the patient needs to manage their PD. In a pivotal study conducted in 2009 

[8], 255 people with advanced Parkinson’s disease were randomized into two treatment 

arms: 1) DBS or 2) the best alternative care doctors were able to recommend. By 6 

months after surgery, patients receiving deep brain stimulation had gained an average of 

4.6 hours per day of good symptom control without troubling involuntary movements, 

called dyskinesia. In contrast, patients receiving standard medical care showed no 

change, on average, in hourly symptom control.  

New features of the implantable pulse generator (IPG) allow fractionation of the 

electric current into variable proportions between different contacts of the multi-polar 

lead [9]. Another design consists in leads that allow selective current steering from 

directionally placed electrode contacts that would deliver the stimulation in a specific 

direction or even create a directional shaped electric field that would conform to the 

anatomy of the brain target aimed at, avoiding adjacent structures, and thus avoiding side 

effects [9]. 

1.3 Limitations of conventional DBS system 

Over 160,000 patients worldwide have undergone DBS for a variety of 

neurological and non-neurological conditions, with numbers increasing each year [10]. 

Despite well-developed interface technology, the clinical success of brain stimulation is 

dependent on variables such as quality of stimulation and exact electrode location 

[11][12]. Conventional deep brain stimulation instruments use open-loop control. In these 

systems, stimulation is continuous and parameters such as amplitude, frequency, and duty 
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cycle are fixed. Although these systems are useful and practical in some cases, they have 

some drawbacks. The brain structures of different people are not quite identical to each 

other [12]. As a result, using a common program of stimulation in the treatment of 

different people does not bring the same answer, even in some cases leading to severe 

complications [13]. In an open-loop DBS system stimulation parameters currently need a 

lengthy trial and error process and can be set or modified only at the time of clinical 

visits. Once stimulation parameters are set to a specific setting, how the patient responds 

with that stimulation is examined. Patients needed to undergo the same process as long as 

they respond well with the stimulation setting. Therefore, the main limitation of current 

DBS device is its open-loop control which results in frequent clinic visits for stimulation 

programming and missing the maximal quality of life improvements that a closed-loop 

DBS could afford [14]. 

 

Figure 2. Open loop DBS system. 
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In the open-loop DBS system, after stimulation amplitude and duration is set 

once, if the patient needs any adjustment, she or he must wait until the next clinical visit. 

In reality, patients may need stimulation of more or less amplitude/duration. Adjustments 

of stimulation parameters are not conducted in real-time based on the ongoing 

neurophysiological variations in the brain; therefore, adverse effects on the patient may 

be induced due to brain overstimulation [16].  

1.4 Closed loop DBS 

Closed-loop DBS systems (also known as adaptive) can be used to solve the 

mentioned limitations. In these systems, stimulation current can be changed automatically 

proportional to the recorded brain physiological signals [15]. Closed-loop DBS employs a 

sensor to record a signal linked to symptoms while open-loop DBS does not use a sensor 

for recording the brain condition; therefore, stimulation parameters including duration, 

amplitude, and frequency of the pulse train remain constant in open-loop DBS regardless 

of fluctuations in the disease state [16]. The recorded signal which contains the 

information about the disease state is known as a biomarker.  In the closed-loop DBS, the 

stimulation pulses are delivered when the brain is in an abnormal state, or they are 

automatically and dynamically adjusted based on the variations in the recorded signal 

over the time [16]. 
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Figure 3. Closed-loop DBS system. 

In closed-loop DBS systems, programming of the stimulation parameters is done 

automatically based on biomarkers. Closed-loop DBS adaptively activates and 

deactivates stimulation based on brain states. On the contrary, open-loop DBS continues 

to stimulate regardless of the state of the patient. 

To complete the loop of the closed-loop DBS, it is important to find out a 

potential biomarker for providing the feedback signal. Some examples of 

electrophysiological biomarkers considered in the feedback loop of adaptive DBS 

systems are action potentials (APs) [16][17], ECGs [18][19], LFPs [20][21], 

electroencephalogram (EEGs) [22], electromyogram (EMG) [23] and biochemical [24] 

signal. Kinematic data [25] such as acceleration signals can also be used as biomarkers. 

One advantage of using acceleration as a closed-loop feedback signal is the process is 
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non-invasive [25]. Each of these signals needs more research to find out which approach 

is more feasible, effective, and efficient.  

1.5 Thesis objective statement 

Medtronic, Inc. (Minneapolis, MN) developed the Summit RC+S, approved for 

research purposes to aid in the development of closed-loop deep brain stimulation (DBS).  

The Summit RC+S system consists of two surface or depth leads that are implanted in the 

brain and a neurostimulator (INS) implanted in the chest. The system is capable of 

sensing neural activity, acceleration, performing on-board computations, and delivering 

open-loop or adaptive stimulation based on user-programmed parameters [26]. In this 

thesis, we analyze acceleration data streamed from Medtronic’s RC+S DBS device 

(intrinsic accelerometry) and externally worn wristwatch (extrinsic accelerometry). We 

investigate how well accelerometry works as a feedback signal to the adaptive DBS in 

detecting Parkinson’s tremor as well as other daily living activities and compare activity 

classification results using intrinsic accelerometry with those using the externally worn 

wristwatch.  

Our goal is to detect Parkinson’s tremor and other physical activities using 

acceleration as feedback, so that DBS can be controlled more efficiently and effectively. 

Parkinson’s tremor is considered to happen at 4-7 Hz [27] frequency range. A machine 

learning algorithm can detect the activity as tremor when the frequency range of the 

tremor is 4-7 Hz. After tremor is detected, the stimulation parameters could be set 

automatically to start stimulation at that moment but keep it off during sleep or rest. 

Similarly, other physical activities such as walking, running, cooking, and so on can also 
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be detected and this information could be used to set the stimulation parameters precisely 

in real-time. 

The objective of this thesis is to demonstrate feasibility of an accelerometer-based 

physical activity classifier that could be used to close the loop in DBS and determine 

whether an implanted accelerometer or an externally worn accelerometer can work better 

in providing a feedback signal to the closed-loop DBS device.  
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CHAPTER 2 

Characteristics and Comparison of Acceleration from Extrinsic Sensor vs Implanted 

Sensor 

 
In this chapter we are going to discuss the experimental paradigm and data 

collection process from extrinsic and intrinsic accelerometers. We will be analyzing the 

correlation between the envelopes of the acceleration signals from both accelerometers 

by changing the window size of the moving average filter. We will also analyze the 

spectral power of the acceleration signals by changing the window size used for 

calculating the Short Time Fourier Transform (STFT). 

2.1 Experimental Protocol 

A unique aspect of our study was that data was streamed during daily living 

activities in their everyday life environment, typically from the participants’ homes. Data 

collection was carried out by Dr. Dennis Turner and Dr. Warren Grill’s research 

laboratory at Duke University in accordance with approved protocol from the Duke 

Institutional Review Board. Six Parkinson’s disease patient participants were recruited 

for this study at Duke University Medical Centre. All 6 participants have severe 

Parkinson’s disease and were eligible for DBS therapy and were implanted with the 

Medtronic Summit RC+S closed-loop DBS device. This device is developed for research 

purposes and is not FDA-approved. The RC+S device is capable of both providing 

stimulation and acquiring acceleration signal, LFP (Local Field Potentials) signal and the 

stimulation settings. Data was collected from only 5 of the 6 enrolled participants thus 

far. There was no data available for the sixth subject. We examined 10 datasets from each 



 

 11

of the subjects available except subject 4, because there were only 8 overlapping datasets 

available for subject 4.  

The IPG of the RC+S device can record the data while the DBS is on, and data is 

downloaded from the device by clinicians during the monthly clinical visit; then data is 

uploaded to Rune Labs’ server where it is available to download.  

Another way of acquiring the acceleration data is using Apple Watch. All the 

patients are instructed to wear Apple Watch as often as possible. Apple Watch data is 

streamed automatically to Rune Labs’ server. From Rune Labs’ server the data from IPG 

and Apple Watch is available to download for the researchers, according to the approved 

IRB protocol.  

 

Figure 4. Experimental protocol. 

In Rune Labs’ web user interface, we can choose the subject, date and time, and 

the type of data which we want to download. There are several options for Apple Watch 

data to download, such as: acceleration with and without gravity, heart rate, dyskinesia 

probability, tremor probability, tremor probability by severity, etc. 
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Figure 5. Apple Watch available data in Rune Labs. 

Similarly, there are several options of data to download from the IPG such as 

LFPs, acceleration, adaptive stimulation, adaptive stimulation state, therapy etc. In this 

project we focus only on the acceleration data from both IPG and Apple Watch. 
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Figure 6. IPG available data in Rune Labs. 

 

Figure 7. Data visualization in the Rune Labs user interface. 
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The data can be downloaded using Rune Labs’ graphical user interface (GUI) 

application. For downloading large data which contains hours of data, the file size 

becomes too large to be downloaded using the GUI. To download larger files, we used 

Rune Labs’ python API (Application Programming Interface), called from a Python 

notebook. In the Jupyter notebook, the device ID, patient ID, start and end time of the 

data etc. are specified. The Jupyter notebook file can be found in their GitHub [31]. After 

downloading the data, we analyzed and processed the data using MATLAB. 

2.2 Correlation between Apple Watch and IPG acceleration 

For this project we need overlapping data simultaneously streamed from IPG and 

Apple Watch at the same time. The data from Apple Watch and IPG had different 

sampling frequencies. Apple Watch had a sampling frequency of 50 Hz and IPG had a 

sampling frequency of 65 Hz. We performed linear interpolation on the Apple Watch 

data to synchronize the data to the sampling frequency of IPG data (65 Hz). 

After data synchronization, we compared the Apple Watch with the IPG 

acceleration data by superimposing the two accelerometer signals on each other. Fig. 8 

shows overlapping signal content and correlation between the two acceleration signals. 
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Figure 8. Overlapping acceleration signals for subject 2. 

From Fig. 8 we can see that both the acceleration signals have higher intensity 

activities and lower intensity activities or relatively quiet signal at the same time. At the 

time when IPG signal has high amplitudes, Apple Watch also has high amplitudes. But, 

at the time when IPG signal has relatively low amplitude, Apple Watch still shows some 

high amplitude at the same time. Apple Watch signal is quite noisier than IPG. 

To quantify the correlation between the two acceleration signals, we calculated 

the envelope of each signal and compared the two envelopes. Although the overall 

activity intensity could be correlated to each other, the high frequency changes of the 

signals are not expected to be correlated. For getting the envelopes of the signals, we 

calculated the magnitude of the three axes acceleration signal using the following 

formula- 
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 𝑚(𝑡) =  ට𝑎௫(𝑡)ଶ + 𝑎௬(𝑡)ଶ + 𝑎௭(𝑡)ଶ 

Where, m(t) is the magnitude of acceleration a, ax is the acceleration in the x 

dimension, ay is the acceleration in the y dimension and az is the acceleration in the z 

dimension. The magnitude was convolved with a rectangular window to obtain the 

envelope. Different window sizes were used for the rectangular window, namely 10 

seconds, 1 minute and 10 minutes to determine the window size for which the envelopes 

are mostly correlated. 

Figure 9. Correlation of acceleration envelopes for different window sizes. 

From Fig. 9 visually it looks like a 10-minute window shows the highest 

correlation of the acceleration envelopes. Then we calculated the Pearson’s correlation 

coefficient using the following formula- 
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𝑟 =  
𝛴(𝑥 − �̅�)(𝑦 − 𝑦ത)

ඥ𝛴(𝑥 − �̅�)ଶ𝛴(𝑦 − 𝑦ത)ଶ
 

Where:  

           r = correlation coefficient 

           xi = value of variable x in a sample 

           �̅� = mean of all the values of variable x 

           yi = value of variable y in a sample 

           𝑦ത = mean of all the values of variable y 

A Pearson’s correlation coefficient value 0 means there is no correlation between 

the signals, +1 means there is perfect positive linear relationship between the two signals 

and -1 means there is perfect negative linear relationship. We used MATLAB command 

𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓 to calculate the Pearson’s correlation coefficient. 

Table 1 shows the Pearson’s correlation coefficient values for all 10 datasets for 

subject 2 using 10-second, 1-minute and 10-minute windows. 

Table 1. Pearson’s correlation coefficient for subject 2. 

Dataset 10s 1 min 10 min 

1 0.59 0.64 0.89 

2 0.42 0.42 0.59 

3 0.59 0.67 0.96 

4 0.59 0.63 0.74 

5 0.5 0.6 0.83 

6 0.61 0.72 0.66 

7 0.6 0.64 0.79 
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8 0.41 0.33 0.38 

9 0.51 0.71 0.9 

10 0.53 0.61 0.72 

Average 0.54 0.6 0.75 

 

For most of the datasets, the 10-minute window gave us the highest correlation 

coefficient values. For subject 2 the average correlation coefficient value was 0.54, 0.6 

and 0.75 respectively for 10-second, 1-minute and 10-minute window size. As the 

window size increased, the correlation between the two acceleration signals also 

increased. This was true for the other subjects as well. Table 2 shows the average 

correlation of all five subjects for different window sizes. 

Table 2. Average correlation between Apple Watch and IPG acceleration. 

 
10 sec 1 min 10 min 

Subject 1 0.23 0.35 0.57 

Subject 2 0.53 0.59 0.75 

Subject 3 0.38 0.56 0.59 

Subject 4 0.57 0.64 0.77 

Subject 5 0.46 0.64 0.81 

Average 0.43 0.56 0.70 

 

The average correlation of Apple Watch acceleration with IPG acceleration for 

among all the datasets was 0.43, 0.56 and 0.7 respectively for 10-second, 1-minute and 

10-minute window. 
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2.3 Spectral analysis of acceleration signals 

After analyzing the correlation between the acceleration signals, we analyzed the 

spectral behavior of the signals to see at which frequencies the activities occurred. The 

Short Time Fourier Transform (STFT) of the signal was performed using MATLAB 

command 𝑠𝑡𝑓𝑡. After that for visualizing the frequency content coordinated time axis, we 

used MATLAB command 𝑖𝑚𝑎𝑔𝑒𝑠𝑐. We used hamming window of 10 second window 

size with 50% overlap because it gave us the best temporal resolution compared to 20 

second, 1 minute and 10 minutes. We got the following plots with different window 

sizes. 

  

Figure 10. STFT of IPG and Apple Watch acceleration for subject 2 with window 

size of 10 sec, x-axis is segment windows in seconds and y-axis are the frequencies in 

which the activities occurred in logarithmic scale. 
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Figure 11. STFT of IPG and Apple Watch acceleration for subject 2 with window 

size of 20 sec, x-axis is segment windows in seconds and y-axis are the frequencies in 

which the activities occurred in logarithmic scale. 

  

Figure 12. STFT of IPG and Apple Watch acceleration for subject 2 with window 

size of 60 sec, x-axis is segment windows in seconds and y-axis are the frequencies in 

which the activities occurred in logarithmic scale. 
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Figure 13. STFT of IPG and Apple Watch acceleration for subject 2 with window 

size of 600 sec, x-axis is segment windows in seconds and y-axis are the frequencies in 

which the activities occurred in logarithmic scale. 

If we compare Fig. 10-13, we can see that with increasing window size we lose 

some information with higher window. After comparing the Apple Watch STFT plots 

with that of IPG STFT plots, we can say that the activities sensed by Apple Watch are 

more spread with wider frequency range than that of IPG. To obtain better frequency 

resolution, we chose a 10-second window for our analysis. 

Then the integral power was calculated in four different frequency bands from the 

spectral power. 0-4 Hz band represents the typical normal movements, 4-7 Hz band 

represents Parkinson’s tremor band, 7-12 Hz band represents the physiological tremor 

band, and 12-32 Hz band represents the beta oscillations which increases as the clinical 

symptoms worsens.  

To find the power in each band at first, we found all the indices in each band (0-4 

Hz, 4-7 Hz, 7-12 Hz, 12-32 Hz) and stored the indices of these frequency bands in an 

array. Then we calculated the absolute value of the spectral power (power we got using 

𝑠𝑡𝑓𝑡), 𝑆(𝑡, 𝑓). After that MATLAB command 𝑡𝑟𝑎𝑝𝑧 is applied to the absolute value of 



 

 22

spectral power across each frequency band to compute power in each band using the 

following formula. 

𝑃ି௫(𝑡) = න 𝑆(𝑡, 𝑓)𝑑𝑓
௫



 

Where, 𝑓𝑚𝑖𝑛 is the minimum frequency in each band and 𝑓𝑚𝑎𝑥 is the maximum 

frequency in each band. 

We stored this result in a 12-dimensional array, where each row indicates integral 

power in different frequency band in each three axes. Table 3 shows how the integral 

power is stored in the 12-dimensional array.  

Table 3. 12-dimensional integral power in four frequency bands. 

 Dimension Frequency band Integral power in each 

column 

Row 1 A-x 0-4 Hz P0-4, start – P0-4, end 

Row 2 4-7Hz P4-7, start – P4-7, end 

Row 3 7-12 Hz P7-12, start – P7-12, end 

Row 4 12-32 Hz P12-32, start – P12-32, end 

Row 5 A-y 0-4 Hz P0-4, start – P0-4, end 

Row 6 4-7Hz P4-7, start – P4-7, end 

Row 7 7-12 Hz P7-12, start – P7-12, end 

Row 8 12-32 Hz P12-32, start – P12-32, end 

Row 9 A-z 0-4 Hz P0-4, start – P0-4, end 

Row 10 4-7Hz P4-7, start – P4-7, end 

Row 11 7-12 Hz P7-12, start – P7-12, end 
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Row 12 12-32 Hz P12-32, start – P12-32, end 

 

Here, Pfmin-fmax, start – Pfmin-fmax, end represents the values in each column in a specific 

row for each time segment from start to the end. 

After getting the integral power for each band, we plotted them. Fig. 14-17 shows 

the integral power in each band. 

Figure 14. IPG and Apple Watch integral power in 0-4 Hz band for subject 2. 

Figure 15. IPG and Apple Watch integral power in 4-7 Hz band for subject 2. 
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Figure 16. IPG and Apple Watch integral power in 7-12 Hz band for subject 2. 

    

Figure 17. IPG and Apple Watch integral power in 12-32 Hz band for subject 2. 

Fig. 14-17 shows that different plots have bursts at the same time we got bursts in 

the raw acceleration signals. Also, in between bursts there are rest or less amplitude 

oscillations. Looking at all the plots of all frequency bands it is visible that the 0-4 Hz 

plot (Fig. 14) has the highest amplitude, which indicates there is more general activity 

and power in this band for both IPG and Apple Watch. The next highest amplitude can be 

seen in the 4-7 Hz plots (Fig. 15), which is the Parkinson’s tremor band. Apple Watch 

acceleration has more energy compared to that of IPG acceleration for all frequency 

bands. In places where IPG integral power seems to be rest (less amplitude variation), 
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Apple Watch has more amplitude variations in the same place. We hypothesize that these 

amplitude oscillations might be noise. From the integral plot it is clear that IPG has more 

rest than Apple Watch. Since Apple Watch 4-7 Hz band (Fig. 15) has more power than 

that of IPG, it is expected that Apple Watch may detect more tremors than IPG. 

Parkinson’s tremor appears mostly in hands. Because of the Apple Watch’s location on 

the wrist, it may also happen that some of the high intensity voluntary active movement 

can be misclassified as tremor. How we used the integral power in different frequency 

bands to classify different activities will be discussed in the next chapter.  
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CHAPTER 3 

Clustering Algorithm 

 
3.1 Classification with K-means clustering 

Classification is a machine learning algorithm which categorizes a set of data into 

discrete classes. There are many biomedical applications of classification methods.  

Classification can be used to diagnose diseases, to detect certain conditions for which 

alerts, or notifications would be needed, or to determine patient states for administering 

the appropriate therapy. For example, based on features such as blood glucose 

concentration, frequency of urination, presence of ketones in the urine, blurred vision, 

and levels of fatigue, individuals can be classified into two classes i.e., with diabetes and 

without diabetes.  For the purpose of this thesis, we use classification to identify the type 

of physical activity of a participant at any given time.  Knowing their physical activity 

may potentially allow for adaptive closed-loop control of their deep brain stimulation 

therapy. To create a successful classification algorithm, it is important to provide 

identifying feature sets to predict a class or category. 

Clustering means classifying data points in feature-space, depending on 

similarities with or closeness with data points in the same cluster. K-means clustering is a 

popular clustering algorithm for unsupervised learning. K-means clustering picks out k 

centroids in an n-dimensional feature-space and assigns each data point to the nearest 

cluster based on identifying features. This method uses the Euclidean distance formula to 

determine the distance of a data point from each of the centroids. Then the data point is 

assigned to the cluster that minimizes the distance between the data point and the 

cluster’s centroid. There are several steps in this algorithm, as outlined here: 
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Step 1: Selecting a value of k i.e., number of clusters and then selecting random 

centroids 

Step 2: Allocating each data points to the nearest cluster by calculating the 

distance from the centroid 

Step 3: Calculating the new centroid of all the data points assigned to each cluster  

Step 4: Re-calculating the distances from each data point to every centroid and 

assigning the data points to the cluster with the nearest centroid 

Step 5: Repeating step 3 and 4. If the centroid doesn’t change from the previous 

iteration, these centroids will be the final centroids. 

Figure 18. Steps of k-means clustering algorithm. 

In this project we used k-means clustering algorithm to classify different physical 

activities of the patient as well as Parkinson’s tremor so that the stimulation parameters of 

DBS can be automatically set according to the specific need at specific time.  
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3.2 Feature extraction from acceleration data 

Feature extraction is the most important step in any machine learning model. In 

our case it is important to determine features from the acceleration signal which are 

distinct for different physical activity states of the patients. We extracted our features 

from the spectral power in four different frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-

32 Hz) in each axis of the acceleration [32]. Thus, we extracted 12 total features from the 

acceleration signal.   

We performed Principal Component Analysis (PCA) to visualize the data in 

feature space. Principal Component Analysis is a dimensionality reduction method in 

machine learning, used to reduce the number of features to avoid data redundancy. The 

first step in PCA is normalization. In this step the range of the continuous initial variables 

are being normalized so that each of them contributes equally. After normalization all the 

variables will be in the same scale which will prevent biased results. The second step is to 

compute the covariance matrix. In order to find the correlation among variables it is 

important to compute the covariance matrix. Covariance matrix can be calculated using 

the flowing formula. 

𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥, 𝐶 =  
𝑋்𝑋

𝑁
 

Where: 

X = Normalized input matrix 

N = Number of observations 

The third step is to compute the eigen vectors and eigen values of the covariance 

matrix to find the principal components. From the rule of eigenvalue and eigenvector we 

can write the following equation. 
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𝐶𝑥 =  𝜆𝑥 

(𝐶 − 𝜆𝐼)𝑥 = 0 

Where: 

C = Covariance matrix 

x = Eigen vectors 

λ = Eigen values 

I = Identity matrix 

By solving the above equation, we can get the eigen values and eigen vectors. The 

eigenvectors corresponding to the eigenvalues represent the principal component vectors. 

The first principal component vector is the eigenvector associated with the maximum 

eigenvalue which contains the highest amount of information. Similarly, the eigenvector 

associated with the second maximum eigenvalue is the second principal component 

vector and so on.  

We used the pca command in MATLAB which returned the principal component 

(PC) coefficients and the PC scores. The PC scores are the representation of the 

observations in PC space. PC coefficients tell us how much of the original 12 features 

make up the new PC feature. The first two principal components have the highest 

variance and thus least redundancy and are typically used to represent the new features in 

PC space. 
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Figure 19. PC 1 and 2 derived from the 12 original features from the 10th dataset 

for subject 2. 

In Fig. 19, index 1 is the x dimension of the 0-4 Hz band. Index 2 is the x 

dimension of the 4-7 Hz band. Index 3 is the x dimension of the 7-12 Hz band. Index 4 is 

the x dimension of the 12-32 Hz band. Index 5 is the y dimension of the 0-4 Hz band. 

Index 6 is the y dimension of the 4-7 Hz band. Index 7 is the y dimension of the 7-12 Hz 

band. Index 8 is the y dimension of the 12-32 Hz band. Index 9 is the z dimension of the 

0-4 Hz band. Index 10 is the z dimension of the 4-7 Hz band. Index 11 is the z dimension 

of the 7-12 Hz band. Index 12 is the z dimension of the 12-32 Hz band. 

From Fig. 19, we can see that for IPG, index 1, 5 and 9 indicates 0-4 Hz band 

plays most important role in PC1. Index 4, 8 and 12 i.e., 12-32 Hz band has the lowest 

role in PC1. For PC2 other bands play a significant role. Let us see how the points cluster 

in the first two PC spaces. 



 

 31

Figure 20. Integral power in PC space for subject 2 dataset 10. 

3.3 Elbow method of clustering 

A fundamental step of any unsupervised classification algorithm is to determine 

the optimum number of classes into which data will be clustered. We used the “elbow 

method” for determining the optimum number of clusters in our clustering algorithm 

[33]. The elbow method is a popular method of finding the optimum value of k in k-

means clustering. We computed distortion, defined according to the following Equation. 

Distortion is the average squared distances from the cluster centers of the respective 

clusters. 

𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 =  
ඥ(𝑐 − 𝑥ଵ)ଶ + (𝑐 − 𝑥ଶ)ଶ+. . . . . . . . . . . . . . . . . . . . . . . . . . . +(𝑐 − 𝑥ே)ଶ

𝑁
 

Where: 

            c = Location of cluster center 

            x1, x2………..., xN = Locations of the corresponding samples          

We calculate this distortion metric for varying numbers of clusters from k = 1 to k 

= 10. If we plot the distortion array with the clusters, we get the following plots in Fig. 

21. 
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Figure 21. Elbow plot for subject 2 dataset 10. 

From this figure, we can see that there is no clear elbow for both IPG and Apple 

Watch. Then we determined the exponential fit of the curve using the following Equation 

which is shown in Fig. 22. 

𝑦௧ = 𝑒𝑒௫ + 𝐵 

Where: 

          yhat = Exponential fitted curve 

           c = Intercept of the linear regression model 

           a = Slope 

           x = Number of clusters from 1 to 10 

           B = Offset 

We performed linear regression on the data (x, log(y)). Where: 

𝑦 = 𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑎𝑟𝑟𝑎𝑦 − min(𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛 𝑎𝑟𝑟𝑎𝑦) + 𝑂𝑓𝑓𝑠𝑒𝑡 𝑣𝑎𝑙𝑢𝑒 
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Figure 22. Exponential fit of the distortion array for dataset 10 subject 2. 

Instead of manually trying to figure out the number of clusters, we attempted to 

automate it. We downloaded a function named knee_pt.m by Dmrity Kaplan from 

MATLAB file exchange which finds a location of "knee" of a curve and provides a 

consistent and mathematically justifiable answer when there is no obvious location along 

the curve where the curve "turns". The function uses as a definition of a "knee" the point 

where the curve is best approximated by a pair of lines. This function applied to our fitted 

exponential curve returned 4 as the optimal number of clusters for both the IPG and 

Apple Watch. 

3.4 Classifying acceleration data 

After getting the optimum number of clusters, we applied k-means clustering 

algorithm on the integral power in four frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-32 

Hz) in each axis of the acceleration [32]. Using the MATLAB function kmeans, we got 

an array ipg_idx and apple_idx which gave information regarding which data point 

consisted of which cluster. For subject 2 dataset 10, we got ipg_idx and apple_idx of size 
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2694X1. This indicates there are 2694 data points (segment windows) and each of the 

data points are assigned to either cluster 1,2,3 or 4 based on the features. 

To determine the spectral characteristics, we plotted the STFT of each cluster. It 

appears, as expected, that the spectral characteristics (relative distribution of power 

across the axes and frequency bands) were consistent within clusters and differ across 

clusters, as seen in Fig. 3.6. 

   

  

Figure 23. STFT of IPG cluster 1-4 for subject 2 dataset 10. 

Starting from top of the plot, row 1 is the x dimension of the 0-4 Hz band, row 2 

is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band, row 

4 is the x dimension of the 12-32 Hz band. Row 5-8 is the y dimension of the four 

frequency bands and row 9-12 are the z dimension of the four frequency bands. 
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Figure 24. STFT of Apple Watch cluster 1-4 for subject 2 dataset 10. 

From the STFTs of the clusters for IPG and Apple Watch, there is more power in 

the 0-4 Hz band (1st, 5th and 9th row) for both accelerometers. After getting the cluster 

numbers for each window segment, we can get our classification of the acceleration 

signal as Fig. 25 and 26. The final classification result is color coded according to the 

cluster number, cluster 1 = red, cluster 2 = green, cluster 3 = blue, cluster 4 = black, 

cluster 5 = magenta etc. 
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Figure 25. IPG Acceleration color coded classification, cluster 1 = red, cluster 2 

= green, cluster 3 = blue. 

 

Figure 26. Apple Acceleration color coded classification, cluster 1 = red, cluster 

2 = green, cluster 3 = blue, cluster 4 = black. 
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This is an unsupervised classification where we have no idea about the patients’ 

activities and their timing. So, which cluster indicates which activity must be determined 

from the spectral power of the clusters and the signal characteristics. We will discuss how 

to determine which cluster determines which activity in Chapter 5. 
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CHAPTER 4 

Validation Experiment 

 
Data was collected from patient subjects while they were at home, and they were 

free to do any daily living activities. No information is provided regarding what activities 

were performed at any given time by the subjects. Thus, having no ground truth data 

posed a challenge to validating the proposed classification model.  

Therefore, we designed and conducted a controlled experiment to validate the 

classification algorithm. In our experiment, we acquired acceleration data from two 

commercial accelerometry devices: the ActiGraph GT9X link (ActiGraph Corp., 

Pensacola, FL), commonly used in research studies on acceleration, and the Apple SE 

Watch, which is previously was the chosen candidate for providing the accelerometry 

feedback in the proposed closed-loop DBS system. The subject wore both the ActiGraph 

GT9X link and Apple Watch on the same wrist and performed predefined activities, 

which included: 1) tapping fingers on a table at 4-7 Hz with to simulate tremor, 2) laying 

down, 3) jumping up and down, 4) standing, 5) writing, 6) sitting, 7) moving arm in 

circular motion to simulate cooking, 8) walking, and 9) typing. The duration, starting and 

ending time for each activity was recorded. We acquired the 3-axis acceleration data from 

the Apple Watch using the HemiPhysioData mobile application (HemiPhysio Apps), and 

data was then transferred to the PC via an iPhone. Acceleration data from ActiGraph was 

acquired using ActiLife software. 

 4.1 Actigraph - the hardware, software data acquisition 

The ActiGraph GT9X Link captures and records three axes raw acceleration data. 

The ActiGraph GT9X Link consists of an inertial measurement unit (IMU) which 
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contains a gyroscope, magnetometer, and 3-axis accelerometer, and a programmable 

LCD display [28].  

 

Figure 27. Actigraph GT9X Link [28]. 

ActiLife is a software which is used for actigraphy data analysis ActiLife’s robust 

screening and analysis toolkit allows users to extract, process, and score collected data 

[29].  ActiLife software is a licensed program, and we purchased an ActiLife license. 

After installing the software, ActiGraph needs to be initialized. For initializing we 

connected Actigraph to the computer through a USB and initialized ActiGraph. While 

initializing the device we set the sampling rate to 70 samples/s. After that we set the start 

time and stop time of the experiment.  
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Figure 28. ActiGraph initialization with ActiLife software. 

Our subject wore ActiGraph on the wrist and performed some predefined 

activities. After the selected duration was over, ActiGraph automatically stopped 

recording. Then, the subject took off the ActiGraph from the wrist and set it to the 

ActiGraph case which is connected to the computer through USB for acquiring the 

recorded data. After that using ActiLife software we acquired a .csv file which contained 

3-axis acceleration data. 

 4.2 Apple Watch - the hardware, software data acquisition 

We used Apple Watch SE for acquiring the 3-axis acceleration signal. Apple 

Watch has gyroscope and accelerometer which can supply data about the movement in 

the physical world.  
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Figure 29. Apple Watch [30]. 

We used the HemiPhysioData Apple Watch mobile application for acquiring 3-

axis acceleration data. HemiPhysioData is an application developed by Moez Ur Rehman 

for acquiring raw and processed data from built-in Apple Watch sensors. At first, we 

installed the HemiPhysioData app in Apple iPhone and then installed it in Apple Watch. 

There are several features to select before recording data such as sampling frequency, 

dominant side, to which wristwatch was worn, move type, start time, end time, haptic 

feedback etc. When haptic feedback is enabled it’s possible to select the start in time and 

duration. We can also manually click on start and stop. We clicked start and stopped 

manually for our experiment. After recording an activity, it was logged in to the Watch. 

When we clicked on the logged files in the app there was a list of csv files which 

included the recorded acceleration data. After recording the data, we sent the file from the 

Apple Watch to the Apple iPhone which is connected to the Watch. Then for processing 

the data we transferred the data from iPhone to the computer. 
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Figure 30. Acceleration data acquisition from Apple Watch. 

The Actigraph output processed metrics, such as roll, pitch, yaw, rotation rate is 3 

axes, gravity in 3 axes etc. and wrote them to the output .csv file in addition to the raw 3-

axis acceleration data (AccelroX, AccelroY, AccelroZ). 

 

Figure 31. 3-axis acceleration data in the csv file. 

After acquiring the csv file into the iPhone, we transferred the data from iPhone to 

computer and processed the data using MATLAB software. 

 4.3 Experimental protocol 

For validating the classification algorithm, we selected activities which are 

commonly performed in daily living: lying down; jumping; standing; walking; typing; 

writing; pretending to cook; and simulated hand tremor. To simulate tremor at the 4-7 Hz 
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frequency, the subject tapped her finger on the table at 4-7 Hz frequency range (at 300-

450 beats per minute).  The subject wore both the ActiGraph and Apple Watch on the 

same wrist and performed these activities sequentially according to table 4. The sampling 

frequency for both ActiGraph and Apple Watch was 70 Hz. 

Table 4. Experimental setup. 

Activity  Duration (Minutes) 

400 BPM tapping  1 

350 BPM tapping 1 

300 BPM tapping  1 

Lying Down 6 

Jumping up &down 3 

Standing 6 

Writing 3 

Sitting 6 

Pretending to cook 3 

Standing 6 

Walking 3 

Sitting 6 

Typing 3 

 

For the first minute, the activity was creating tremor in 6.67 Hz (400 BPM) 

frequency. The frequency of tremor for the second minute was 5.83 Hz (350 BPM) and 
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finally for the third minute the tremor frequency was 5 HZ (300 BPM). Then other 

activities were also done according to the sequence given in table 4.  

Figure 32. Experimental Protocol. 

At first, we ran total 48 minutes of experiment at a time and acquired 48 minutes 

of data from ActiGraph. We noticed that there were a lot of data packet loss in Apple 

Watch data acquisition. Because of data packet loss during streaming with the Apple 

Watch for recordings in the order of an hour, we had to break the experiment into short 3- 

or 6-minute recordings according to each activity. The data for each activity was written 

to a separate csv file.  Then, the csv files were serially appended to each other according 

to the sequence of the activities. On the contrary, ActiGraph recording was a continuous 

48-minutes recording. For Apple Watch 3- or 6- minute recording we just clicked start 

and stop button of the HemiPhysioData app to get separate csv files for each activity. 

Data was recorded at the same time for both the accelerometers. By doing this data loss 

for Apple Watch decreased, but there was still some data packet loss. Instead of getting 

48-minutes of data, we got 30 minutes of data from Apple Watch.  
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4.4 Results and Analysis 

We applied our clustering model to the acquired data to validate the model. Fig. 

33 shows the raw acceleration data from ActiGraph and Apple Watch. 

Figure 33. Raw acceleration signals from ActiGraph and Apple Watch. 

With a 10-s window and 50% overlap we took the STFT of the signals and 

extracted the features by integrating the power in four different frequency bands (0-4 Hz, 

4-7 Hz, 7-12 Hz and 12-32 Hz). We got 4 numbers of clusters for both the accelerometers 

using elbow methods of clustering.  

   

Figure 34. Clusters in PC space for ActiGraph and Apple Watch. 

Let us analyze the spectral power for both the accelerometers. 
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Figure 35. STFT of ActiGraph cluster 1-4. 

Starting from the top of the plot, row 1 is the x dimension of the 0-4 Hz band, row 

2 is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band, 

row 4 is the x dimension of the 12-32 Hz band. Row 5-8 is the y dimension of the four 

frequency bands and row 9-12 are the z dimension of the four frequency bands. Cluster 

3’s 0-4 Hz band is brighter than that of cluster 1. Therefore, we identified cluster 3 as 

corresponding to voluntary movement and cluster 4 corresponding to rest activity. 

We can see from the 4-cluster plot in Fig. 4.8 that in cluster 2 and 4 the 6th row (y 

dimension 4-7 Hz) is the brightest of all which means cluster 2 and 4 has the highest 

power in 4-7 Hz band. Therefore, we determined cluster 2 and 4 to be the tremor class. 

By analyzing the signal characteristics, we observed that the difference between cluster 2 

and cluster 4 is that cluster 2 contains higher frequencies within the tremor band than 
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cluster 4; therefore, we identified cluster 2 as high frequency tremor and cluster 4 as low 

frequency tremor. 

Let’s analyze the spectral power in each cluster for Apple Watch. 

  

  

Figure 36. STFT of Apple Watch cluster 1-4. 

Apple Walch shows similar characteristics as ActiGraph. Also, for Apple Watch 

cluster 2 and 4 indicates tremor, cluster 3 indicates voluntary activity and cluster 1 

indicates rest. 

The classification result for ActiGraph and Apple Watch is shown in Fig. 37. 
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Figure 37. Classification result for ActiGraph and Apple Watch. 

Classification results for ActiGraph and Apple Watch look similar. We compared 

the classification result with the ground truth data to compute the accuracy of our model. 

We noticed that rest activities, where there was no whole-body movement, were 

classified as a common category; these included lying down, standing, and sitting.  

Included in this category were writing and typing, in which the body is also stationary, 

although they require higher degrees of arm movement.  Walking, jumping up and down, 

and pretending to cook, which all involve voluntary movement of the whole body to a 

much greater degree, tended to be categorized into a common class. High intensity tremor 

and lower intensity tremor tended to be categorized each in their own separate class. 

Therefore, we designated 3 major categories into which data could be classified by our 

algorithm: 1) rest; 2) voluntary movement; and 3) tremor, which is an involuntary 

movement that typically does not entail movements of the whole body.  We used the 

elbow method (described in Section 3.3) to determine how many classes the data should 

be clustered into. The optimal number of clusters was consistently 3 or 4. When the 
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number was determined to be 4 clusters, the tremor category was split into high intensity 

tremor and low intensity tremor; or sometimes high intensity voluntary movement 

(walking or jumping) and low intensity voluntary movement (typing and writing and 

pretending to cook).   

Fig. 38 shows the ground truth signal for ActiGraph and Apple Watch where 

tremor = 1, rest = 2 and voluntary movement = 3. We prepared the ground truth signal 

with the start time and end time of each activity for both the accelerometers. 

Figure 38. Ground Truth signal for ActiGraph and Apple Watch. 

Following the ground truth data, we assigned a value of 1 for clusters which 

indicate tremor (cluster 2 and 4), value of 2 for cluster 1 which indicates rest and value of 

3 which indicates voluntary movement. Then we calculated true positives, true negatives, 

false positives, and false negatives for both ActiGraph and Apple Watch. 
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Table 5. ActiGraph confusion matrix. 

 

 

 

 

 

 

 

Table 6. Apple Watch confusion matrix. 

 
TP FN FP TN 

Tremor 28 5 1 324 

Rest 206 6 47 99 

Voluntary 

Activity 111 48 11 234 

Total 345 59 59 657 

  

After that we calculated the true positive rate (TP rate), false positive rate (FP 

rate), and overall accuracy for both ActiGraph and Apple Watch. 

𝑇𝑟𝑢𝑒  𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 × 100% 

𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =  
𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 × 100% 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑒𝑠
 × 100% 

 
TP FN FP TN 

Tremor 34 5 3 536 

Rest 352 8 65 150 

Voluntary 

Activity 111 68 13 386 

Total 497 81 81 1072 
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We got true positive rate and false positive rates for ActiGraph and Apple Watch 

as follows- 

Table 7. True positive and false positive rate of ActiGraph and Apple Watch. 

Accelerometer True positive rate False positive rate 

ActiGraph 86.43% 6.78% 

Apple Watch 83.52% 8.24% 

 

Overall accuracy for ActiGraph classification = (497+1072) / (497+81+81+1072) 

X 100% = 90.64% 

Overall accuracy for Apple Watch classification = (345+657) / (345+59+59+657) 

X 100% = 89.46% 

Therefore, we can say that our algorithm is validated to have 91% overall 

accuracy for ActiGraph with slightly less accuracy with Apple Watch. In a nutshell, all 

the rest activities were perfectly detected with both ActiGraph and Apple Watch. Tremor 

activity was also perfectly detected for both devices except some low frequency tremor 

data points were classified as voluntary movement. Some low voluntary movement such 

as typing, and writing was misclassified as rest activity for both the accelerometers. 

Overall, misclassification was slightly more in Apple Watch classification. 

 4.5 Change of classification performance with changing window size and number of 

clusters 

We have checked the classification performance by changing the window size 

(10s, 20s and 60s) in calculating the short time Fourier transform and by changing the 

number of classes in the k-means clustering to be either 3 or 4. Window size and cluster 
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number plays a significant role in the classification performance, especially with the 

Apple watch data. 

Table 8. Comparison of classification performance with changing window size 

and number of clusters. 

Device   

10s 

win, 3 

clusters 

20s 

win, 3 

clusters 

60s 

win, 3 

clusters 

10s 

win, 4 

clusters 

20s 

win, 4 

clusters 

60s 

win, 4 

clusters 
 

ActiGraph  

True 

positive 

rate 

83.65% 85.02% 86.31% 86.43% 88.85% 87.36%  

False 

positive 

rate 

8.17% 7.50% 6.84% 6.78% 5.58% 6.31%  

Apple 

Watch  

True 

positive 

rate 

74.86% 76.65% 72.41% 83.52% 76.40% 75.86%  

False 

positive 

rate 

12.57% 11.67% 13.80% 8.24% 11.80% 12.07%  
 

 

For ActiGraph the highest true positive rate was achieved with 20 sec window 

and 4 number of clusters, and the True positive rate is 88.85%. On the contrary, Apple 

Watch True positive rate was highest for 10 sec window and 4 clusters in the 
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classification.  The performance was more consistent using the ActiGraph data and 

consistently higher than the results when using the Apple Watch data.  For both cases, 4 

clusters yielded greater accuracy. With three clusters, for both the devices, around 40% of 

tremor activity was detected as voluntary active movement. Also, some voluntary active 

movement is misclassified as rest. With 4 clusters, most of the tremor activity was 

classified perfectly.  

Figure 39. Classification result of ActiGraph Vs Apple Watch with 3 numbers of 

clusters, green = tremor, red = rest, blue = voluntary activity. 

With the Apple Watch data, walking was misclassified as rest for all window 

sizes and cluster numbers except 10-second window with 4 clusters. We hypothesize that 

smaller window sizes yielded greater accuracy because it provided better frequency 

resolution.  
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CHAPTER 5 

Application of Clustering to Patient at Home Data 

 
5.1 Calculating percentage of each activity and percentage of classification match for IPG 

and Apple Watch 

After validation of the algorithm, it was applied to the data streamed from 

Parkinson’s disease patient.  Six patient subjects who all have severe PD were enrolled in 

the study; data has been collected from only 5 of the 6 thus far. We applied our model to 

48 different datasets from 5 subjects during their daily living. From this point forward, 

participants will be referred to by codes: NU5U for subject 1, E395 for subject 2, RZCH 

for subject 3, 6KOZ for subject 4 and AC27 for subject 5. There has been no data 

available for the sixth subject BOI0. The participants were free to do any daily living 

activities and were not required to log their activity; therefore, there is no ground truth 

data for the activities the participants were doing at the time of recording of data. Thus, 

before we applied our unsupervised classification algorithm to the patient subject data, 

we validated our algorithm with controlled experimental data, as described in Chapter 4.  

We had applied our algorithm to the patient subject data previously, and based on 

those initial results, we identified 3-5 possible activity categories. The classifications 

from applying our algorithm were mapped onto the time-domain acceleration signals 

using a color-coding scheme (see Fig. 4.10 and 4.12, for example).  Based on these 

results, it seemed clear that the acceleration data could be classified into 3 major activity 

categories: 1) tremor, 2) voluntary movement, and 3) rest.  For finer resolution, there 

could be up to 5 major activity categories: 1) high intensity tremor, 2) low intensity 

tremor, 3) high intensity voluntary active movement, 4) low intensity voluntary active 
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movement, or 5) rest. According to the distortion metric and knee method discussed in 

chapter 3, section 3.3, the number of clusters for k-means clustering is specified.  An 

example of the distortion curve used to identify the number of classes for a specific data 

set is shown in Fig. 40.  As can be seen for this particular case, the elbow of the distortion 

metric occurs between 3 and 4 clusters but closer to 4.  

Figure 40. Elbow of distortion matric. 

Our clustering algorithm classifies different activities based on the spectral power 

in four different frequency bands (0-4 Hz, 4-7 Hz, 7-12 Hz, 12-32 Hz) in each axis of 

acceleration. Each index in the acceleration signal is assigned to a cluster based on the 

spectral features. Fig. 41 shows an example how the clustering was done- 
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Figure 41. Assigning each acceleration indices into a cluster [32]. 

In Fig. 41 we can see there are three clusters where the black cluster indicates 

very high intensity movement as there are more oscillations in the acceleration signal. On 

the other hand, the portion of the acceleration signal which has lower oscillation than the 

previous one is clustered as a different cluster (green). The signal which has the lowest 

oscillation is assigned to red cluster as well. We calculated the total number of indices in 

each cluster, then divided that by the total number of indices to get the percentage of each 

activity cluster. 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓 𝑒𝑎𝑐ℎ 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

=  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝑆𝑢𝑚 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠
 × 100% 

For instance, if we want to calculate the percentage of black cluster the equation 

will be- 
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𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑜𝑓𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

=  
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑏𝑙𝑎𝑐𝑘 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + 𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑔𝑟𝑒𝑒𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 +  𝐼𝑛𝑑𝑖𝑐𝑒𝑠 𝑖𝑛 𝑟𝑒𝑑 𝑐𝑙𝑢𝑠𝑡𝑒𝑟

× 100% 

Following this procedure, we calculated the percentage of each activity cluster in 

the classification result for both the IPG and Apple Watch classification. 

For getting the percentage match of the Apple watch classification with the IPG 

classification, we considered IPG classification as the reference and calculated true 

positive, true negative, false positive and false negative rates for all the activities. For a 

given activity A, table 9 describes how each case was accounted for in the confusion 

matrix.  If IPG and Apple Watch both classify an activity as category A, it will be 

counted as a true positive. If IPG classifies an activity as A, but Apple Watch does not, it 

will be counted as a false negative. If IPG does not detect an activity as A (i.e., as B or C), 

but Apple Watch classifies it as A, it will be counted as a false positive. Finally, if IPG 

and Apple watch both classify it as not A, it will be counted as a true negative. We 

calculated these for all the indices present in the acceleration signal.  

Table 9. Confusion matrix. 

  Apple watch 

  Activity A Not Activity A 

IPG 
Activity A TP FN 

Not activity A FP TN 

 

Next, we calculated the percentage of classification match of the Apple Watch 

with the IPG classification.  
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Table 10. Confusion matrix for three classes. 

 TP TN FP FN 

Tremor NTT N~T~T NT~T N~TT 

Rest NRR N~R~R NR~R N~RR 

Voluntary 

active 

movement NVV N~V~V NV~V N~VV 

 

Where: 

NTT = Number of datapoints for which Apple Watch and IPG both detected tremor 

N~T~T = Number of datapoints for which Apple Watch and IPG both didn’t detect       

             tremor 

NT~T = Number of datapoints for which Apple Watch detected tremor, but IPG    

            didn’t 

N~TT = Number of datapoints for which Apple Watch didn’t detect tremor, but 

            IPG detected 

NRR = Number of datapoints for which Apple Watch and IPG both detected rest 

N~R~R = Number of datapoints for which Apple Watch and IPG both didn’t detect 

              rest 

NR~R = Number of datapoints for which Apple Watch detected rest, but IPG didn’t  

N~RR = Number of datapoints for which Apple Watch didn’t detect rest, but IPG 

            detected 

NVV = Number of datapoints for which Apple Watch and IPG both detected 
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              voluntary movement 

N~V~V = Number of datapoints for which Apple Watch and IPG both didn’t detect 

              voluntary movement 

NV~V = Number of datapoints for which Apple Watch detected voluntary 

             movement, but IPG didn’t 

N~VV = Number of datapoints for which Apple Watch didn’t detect rest, but IPG               

             detected 

We calculated Percentage of tremor match by adding all the NTT and N~T~T for all 

48 dataset, then dividing it by the sum of all NTT, N~T~T, NT~T, N~TT for all 48 dataset. We 

also calculated rest match and voluntary activity match of Apple Watch-based 

classification with IPG-based classification for all 48 datasets as follows- 

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑎𝑡𝑐ℎ =  
𝑇𝑜𝑡𝑎𝑙 𝑁்் + 𝑇𝑜𝑡𝑎𝑙 𝑁~்~்

𝑇𝑜𝑡𝑎𝑙 𝑁்் + 𝑇𝑜𝑡𝑎𝑙~்~் + 𝑇𝑜𝑡𝑎𝑙 𝑁்~் + 𝑇𝑜𝑡𝑎𝑙 𝑁~்்
× 100% 

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑎𝑡𝑐ℎ 

𝑅𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ =  
𝑇𝑜𝑡𝑎𝑙 𝑁ோோ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ோ~ோ

𝑇𝑜𝑡𝑎𝑙 𝑁ோோ + 𝑇𝑜𝑡𝑎𝑙~ோ~ோ + 𝑇𝑜𝑡𝑎𝑙 𝑁ோ~ோ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ோோ
× 100% 

𝑅𝑒𝑠𝑡 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑅𝑒𝑠𝑡 𝑚𝑎𝑡𝑐ℎ 

𝑉𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑐ℎ

=  
𝑇𝑜𝑡𝑎𝑙 𝑁 + 𝑇𝑜𝑡𝑎𝑙 𝑁~~

𝑇𝑜𝑡𝑎𝑙 𝑁 + 𝑇𝑜𝑡𝑎𝑙~~ + 𝑇𝑜𝑡𝑎𝑙 𝑁~ + 𝑇𝑜𝑡𝑎𝑙 𝑁~
× 100% 

𝑇𝑟𝑒𝑚𝑜𝑟 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ = 100% − 𝑉𝑜𝑙𝑢𝑛𝑡𝑎𝑟𝑦 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑚𝑎𝑡𝑐ℎ 

Table 11 shows the percentage of classification matches and mismatches for each 

class. 
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Table 11. Percentage match and mismatch of Apple Watch-based classification 

with IPG-based classification. 

 
Percentage 

match 

Percentage 

mismatch 

Tremor 83.27% 15.93% 

Rest 69.67% 30.32% 

Voluntary active 

movement 68.36% 31.63% 

 

From the table we can see that most of the mismatch of the Apple Watch-based 

classification with the IPG-based classification was for the rest and voluntary active 

movement. 83.27% of tremor activity of the Apple Watch classification got matched with 

the IPG classification. 

5.2 Tremor vs. voluntary active movement 

While investigating the classification result, we noticed there is 15.93% tremor 

mismatch between Apple Watch and IPG classification. In most cases, Apple Watch 

detected more tremors. In the following figure, Apple Watch detected continuous tremor 

(blue), while IPG detected some voluntary movement (red) during tremor activity. 
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Figure 42. Apple Watch detected more tremor (blue) than IPG. 

5.2.1 Apple and IPG both detect tremor 

In cases where IPG classified tremor and the tremor amplitude was strong, Apple 

Watch also classified the activity as tremor. As an example of such a case, let us discuss 

the following dataset 10 for subject E395. 
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Figure 43. Comparison of IPG and Apple Watch classification. 

According to the elbow method, we identified the optimal number of clusters to 

be four clusters both in the IPG classification and Apple Watch classification. As seen in 

Fig. 44, a couple outliers were selected as cluster 4 (black) in the IPG classification; thus, 

the meaningful categories in this instance were tremor, voluntary movement, and rest. 
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Figure 44. Clusters of IPG and Apple Watch Classification. 

Let us determine which cluster indicates tremor, rest, and voluntary movement. 

To find that out let us analyze the power spectral density in four different frequency 

bands in each axis for IPG. 

Figure 45. STFT of IPG cluster 1-4. 
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Starting from top of the plot, row 1 is the x dimension of the 0-4 Hz band, row 2 

is the x dimension of the 4-7 Hz band, row 3 is the x dimension of the 7-12 Hz band, row 

4 is the x dimension of the 12-32 Hz band. Row 5-8 are the y dimension of the four 

frequency bands and row 9-12 are the z dimension of the four frequency bands. 

In all the clusters the first row which is 0-4 Hz band in x axis is the brightest row. 

That means the 0-4 Hz band has the highest energy. Among all the clusters, cluster 1 and 

cluster 3 has a brighter 0-4 Hz band which means that cluster 1 and cluster 3 can be 

voluntary movement or rest cluster. Referring to Fig. 43, according to the signal 

characteristics cluster 1 (red) has more oscillation and higher amplitude compared to 

cluster 3 (blue). So, we can consider cluster 3 (blue) as rest and cluster 1 (red) as 

voluntary active movement. The 4-7 Hz band (2nd, 6th and 10th row) has the highest power 

in cluster 2 as this band is brighter in cluster 2 than any other cluster. 4-7 Hz band is the 

tremor band, so cluster 2 (green) can be tremor. 

Similarly, to detect the activities let us analyze the power spectral density in four 

different frequency band in each axis for Apple Watch. 
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Figure 46. STFT of Apple Watch cluster 1-4. 

Among the four clusters, cluster 2 has brighter 4-7 Hz (2nd, 6th and 10th row) band 

compared to other clusters. Cluster 2 (green) can be considered as tremor. Based on 

signal characteristics (Fig. 43), cluster 3 (blue) can be rest, cluster 1 (red) can be high 

intensity active movement and cluster 4 (black) can be some low intensity active 

movement in Apple Watch classification. 
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Figure 47. Tremor (green) detected in both IPG and Apple Watch. 

In both IPG and Apple Watch green (cluster 2) is tremor. Fig. 47 illustrates an 

example of IPG, and Apple watch-based classifications generally agree on the occurrence 

of tremor.  When IPG detects tremor (green) at any instance, Apple Watch also detects 

tremor (green) at that instance. 

5.2.2 Apple detects tremor while IPG detects voluntary movement 

There are cases where Apple Watch detected an activity as tremor while that 

activity was detected as voluntary active movement in IPG. Overall, tremor percentage 

was higher in Apple watch classification than IPG. For the same dataset analyzed above 

Apple Watch detected more tremors than IPG. Fig. 48 shows Apple Watch detected 

tremor while IPG detected voluntary movement. When the activity was classified as 

tremor (green) in Apple Watch, in some places the same activity was detected as 

voluntary movement (red) in IPG. 
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Figure 48. Apple Watch detects tremor (green) while IPG detects voluntary 

movement (red) for subject E395, dataset 10. 

Let us analyze another dataset, dataset 2 for subject NU5U. According to elbow 

method of clustering, both IPG and Apple Watch have 4 numbers of clusters including 

one outlier in IPG.  

Figure 49. Clusters of IPG and Apple Watch Classification for subject NU5U, dataset 2. 
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Figure 50. Comparison of IPG and Apple Watch classification for subject NU5U, dataset 

2. 
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Based on the power spectral density and signal characteristics we can predict that 

that blue (cluster 3) indicates tremor, black (cluster 4) indicates voluntary active 

movement and green (cluster 2) indicates rest in both the IPG and Apple Watch 

classification. In Apple Watch classification red (cluster 1) indicates low intensity 

voluntary active movement. The percentage of tremor is higher in Apple Watch 

classification than IPG. IPG detected 9% of the activity as tremor while Apple Watch 

detected 15% of the activity as tremor. Fig. 51 shows Apple Watch detected tremor while 

IPG detected voluntary movement. 

Figure 51. Apple Watch detects tremor (blue) while IPG detects voluntary movement 

(black). 

For this dataset, blue (cluster 3) was tremor for both IPG and Apple Watch. We 

can see that from 16:56:00 to 16:57:30 Apple watch classified the activity as cluster 3 

i.e., tremor. On the contrary, in IPG besides tremor (blue), voluntary activity (black) was 

also detected at that time frame. We hypothesize that the subject was having tremor while 

doing some active body movement. 
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From Fig 52 it can be seen that overall tremor detection is higher in Apple Watch 

classification for all subjects except AC27. For subject AC27 IPG detected more tremor. 
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Figure 52. Classification result for subject 5 dataset 4 where tremor (blue) was 

detected. 

After analyzing the power spectral density and signal characteristics we found 

that blue color (cluster 3) indicates tremor for both IPG and Apple Watch. After zooming 

in on the result, the tremor was more visible. 

 

Figure 53. Tremor (blue) detected in subject 5 dataset 4. 
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From Fig. 54 we can see that tremor is detected in both IPG and Apple watch for 

only a few seconds. Tremor is more strongly visible in Apple Watch; yet the percentage 

of data classified as tremor was greater in IPG than Apple Watch for this particular 

subject. 

  

Figure 54. IPG detected tremor (blue) while Apple Watch detected voluntary 

movement (green and black), right image more zoomed in. 

If we zoom in the signal of the first ellipse, we can see from the right figure that 

from 10:08:37 to 10:08:40 the signal could be tremor, since the signal corresponds to 4 

Hz frequency. So, IPG can detect tremors which last only for 2-3 seconds. On the 

contrary, Apple Watch can’t detect such tremors.  

 5.3 Voluntary active movement vs. rest 

Overall Apple Watch detected more voluntary movement while IPG detected 

more rest. Some activities which are classified as rest in IPG are classified as rest in 

Apple Watch classification. Because of the external position of the Apple Watch, it 

detected arbitrary hand movement while resting as voluntary active movement. 

5.3.1 Apple and IPG both detect rest 

There were also cases in which detection of both voluntary movement and rest 

matched between IPG and Apple watch classification. Fig. 55 shows the classification 
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result for subject NU5U, dataset 7 and illustrates one case where such a match for 

voluntary movement and rest occurred. 

  

Figure 55. Comparison of IPG and Apple Watch classification for subject NU5U, dataset 

7. 
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According to the elbow method of clustering, there are four clusters for both the 

Apple Watch and IPG classification. Let us analyze the STFTs of the clusters to figure 

out which cluster indicates which activity. 

Figure 56. STFT of IPG cluster 1-4 for Subject NU5U, dataset 7. 

From the STFT of the clusters it’s visible that the 4-7 Hz band (2nd,6th and 10th 

row) is brighter in cluster 2 (green) and cluster 5 (magenta). That means these two 

clusters have higher power in the 4-7 Hz band. Cluster 2 (green) and cluster 5 (magenta) 

can be the tremor bands. Cluster 1 (red) and cluster 3 (blue) have brighter 0-4 Hz band 

(1st, 5th and 9th row). These two clusters can be rest or voluntary active movement. By 
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analyzing the signal characteristics, we can hypothesize that cluster 3 (blue) can be rest 

and cluster 1 (red) can be voluntary movement. 

Similarly, to detect the activities let us analyze the power spectral density in four 

different frequency band in each axis for Apple Watch. 

Figure 57. STFT of Apple Watch cluster 1-4 for Subject NU5U, dataset 7. 

By analyzing the STFTs and the signal characteristics we can predict that for 

Apple Watch cluster 2 (green) is tremor, cluster 3 (blue) is rest, cluster 4 (black) is high 

intensity voluntary movement, cluster 1 (red) is low intensity voluntary movement. Fig. 

58 shows the difference between red and black cluster- 
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Figure 58. High and low intensity movement. 

Fig. 59 shows the case when IPG and Apple Watch both detect rest. For both 

Apple Watch and IPG blue is rest. We can see the marked rectangles where both Apple 

Watch and IPG detects rest at the same time. 

Figure 59. Apple Watch (blue) and IPG (blue) both detect rest. 

In many cases we found that Apple Watch and IPG detect rest at the same time. 

We also found many cases where IPG detects rest while Apple Watch detects voluntary 

active movement. 
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5.3.1 Apple Watch detects voluntary movement while IPG detects rest 

Apple Watch is worn on the wrist, while IPG is implanted on the chest. Because 

Apple Watch is placed on the hand, it’s more sensitive to hand movement than IPG. 

Apple Watch detects the arbitrary hand movement while resting as voluntary movement. 

Let us analyze the same dataset, subject NU5U, dataset 7. Fig. 60 shows the case where 

IPG detects rest while Apple Watch detects voluntary movement. 

Figure 60. IPG detects rest (blue) while Apple Watch detects voluntary movement (black 

and red). 

For subject NU5U, dataset 7 in IPG classification blue was rest, red was voluntary 

movement. In Apple Watch classification blue was also rest, black and red was voluntary 

movement. We can see in Fig. 60 that in the IPG classification from 10:04 to 10:18 most 

of the activity is classified as rest (blue). On the contrary, in Apple Watch classification 

for the same time frame most of the activity is classified as voluntary movement (black 
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and red). We assume that during rest activity probably the subject was performing some 

arm movement which is classified as voluntary movement in Apple Watch classification. 

In that sense, IPG gives us more accurate classification than Apple Watch. 

 5.4 Comparing percentage of tremor classification to clinical assessment 

After analyzing the classification result of IPG and Apple Watch acceleration, we 

compared our tremor classification with clinical assessment. Our clinical experts assessed 

each patient and according to our clinical experts subject NU5U has lots of hand tremor, 

subject E395 has intermittent tremor, subject RZCH has hand tremor, subject 6KOZ has 

tremor in the jaw and face and subject AC27 has never reported tremor. Table 12 shows 

the comparison of tremor detection with clinical assessment. 

Table 12. Comparison of tremor detection with clinical assessment. 

Subject 
Clinical 

Assessment 

Avg IPG 

Tremor % 

Avg Apple Watch 

Tremor % 

Subject 1 NU5U 
Lots of hand 

tremor 

26.09 26.6 

Subject 2 E395 
Intermittent 

tremor 

16.68 17.16 

Subject 3 RZCH Hand tremor 15.7 27.5 

Subject 4 6KOZ 
Tremor in jaw 

and face 

22.78 25.92 

Subject 5 AC27 
Never reported 

Tremor 

2.82 0.81 
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It’s visible from the table that subject 1 has the highest percentage of tremor in 

IPG classification with slightly more tremor in Apple Watch. Since this subject has a lot 

of tremors in hand and due to the external location of Apple Watch, it detected more 

tremors. For subject AC27 we got 2.82% tremor in IPG and 0.81% tremor in Apple 

Watch classification. We ran a total of 10 datasets for subject AC27 and got tremor in 

only two datasets for a very small amount of time. Although the patient has never 

reported tremor, our algorithm detected tremor for a small amount of time which 

indicates that our algorithm is able to detect tremor even if tremor doesn’t continue for a 

long time. This proves the sensitivity of our algorithm. 

 

Figure 61. Average IPG and Apple Watch tremor detection. 

Overall, our classification result coincides with the clinical assessment for all 

subjects. 
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CHAPTER 6 

Summary of Results 

 
The results in this thesis show that acceleration acquired by the Apple Watch and 

IPG accelerometers are largely consistent with each other, but also identify and illustrate 

differences between these two accelerometers’ data.  The differences in signal 

characteristics and performance of the activity classification are consistent with the 

differences in the location of the two accelerometers; namely, the accelerometer on the 

wrist (the Apple Watch) detects more power in the hand tremor but does not always 

classify the rest states accurately, whereas the implanted IPG accelerometer is best able to 

classify rest states when the body is stationary (whether sitting, standing, or lying down). 

We computed the Pearson’s correlation coefficient between the two accelerometers to 

determine how linearly related acceleration from the two accelerometers are to each 

other.  The accelerations recorded from these two accelerometers were correlated by an 

average of 0.43 among all the datasets when we used a window size of 10 second. We 

obtained the highest average correlation coefficient of 0.70 among all the datasets for a 

10-minute window.  

We then analyzed the signals in the frequency domain by performing the short 

time Fourier transform. We calculated the integral power in different frequency bands 

such as 0-4 Hz, 4-7 Hz, 7-12 Hz and 12-32 Hz. By analyzing the integral power plots of 

different frequency bands, we saw that Apple Watch collected more power in all the 

bands. In some instances, the IPG detected no activity even while the Apple Watch 

detected activity, and often detected less power in acceleration. Although Both Apple 

Watch and IPG detected activity at the Parkinson’s tremor band (4-7 Hz), Apple Watch 
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4-7 Hz band had more power than IPG. This was consistent with our hypothesis that the 

Apple Watch would detect more tremors than the IPG, but we discovered that there were 

cases in which IPG detected tremors as strongly as the Apple Watch.  We hypothesize 

based on these results that while tremor is most visible in the appendages, there may be 

tremor in the core of the body that is just as readily detected by the IPG. 

From the classification result plots, it is visible that IPG classification was clearer 

than Apple Watch. IPG detected rest activity more accurately, while Apple Watch picked 

some low intensity movement at the time of rest. This was because of the external 

location of the Apple Watch. Because of the location, Apple Watch is more sensitive to 

movements and as a result it had more power than IPG. Apple Watch might misclassify 

some high intensity movements to be tremor, because of its sensitivity to movements. 

After getting the integral power in each band, we classified the acceleration signal into 

Parkinson’s tremor, rest, and voluntary active movement according to the spectral 

features. 

Since this was an unsupervised classification, for validating the model we 

performed a controlled experiment with ActiGraph and Apple Watch. We achieved an 

overall accuracy of 91% of our classification algorithm with ActiGraph and slightly 

lower accuracy with Apple Watch. Most of the misclassification was due to the voluntary 

active movement being classified as rest.  

After validating the model, we applied our algorithm to 48 datasets from five 

subjects in their daily life. After analyzing all the results, we noticed that most of the 

tremor activity was detected in both the accelerometers at the same time, although Apple 

Watch detected more tremors. Some activities which were classified as voluntary 
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movement in IPG-based classification, were classified as tremor in Apple Watch. While 

analyzing the integral power in different frequency bands we predicted that Apple Watch 

might detect more tremors than IPG. Average tremor detection among all the datasets in 

IPG was 16.81%, while in Apple Watch the average tremor detection was 19.6%. Tremor 

was also detected in two datasets out of ten datasets for a very small amount of time in 

subject AC27 who never reported tremor. This proves that our algorithm can detect 

tremors which don’t even last for long periods. We also compared the tremor detection 

for each subject with the clinical assessment which coincides with our results. 

In all the datasets percentage of rest was higher in IPG-based classification and 

percentage of voluntary activity was higher in Apple Watch classification. Some 

activities which were classified as rest in IPG were classified as voluntary movement in 

Apple Watch. Again, this was due to the external location of the Apple Watch. Apple 

watch detected the arbitrary hand movement at the time of rest as voluntary activity.  

Then we calculated the percentage of each activity to match the Apple Watch-

based classification with the IPG-based classification. 83.27% of the tremor detected at 

the same time in both the accelerometers. Most of the mismatches were during the rest 

and voluntary activity. Rest activity match was 69.67% and voluntary activity match was 

68.36% among all the datasets. 
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CHAPTER 7 

Discussion - Implications for Closed-Loop DBS 

 
In this thesis we analyzed the possibility of using an implanted accelerometer for 

providing feedback to the closed loop deep brain stimulation device. Implanted 

accelerometers have some advantage over externally worn wristwatches. For instance, an 

implanted accelerometer that is already integrated into the DBS device reduces the 

required number of devices to record data from patients. An implanted accelerometer can 

be used instead of using a wristwatch for providing feedback to the closed loop control 

system.  

From our analysis, the implanted IPG accelerometer appears to detect postural 

rest activity more accurately than Apple Watch. Also, Apple Watch has noisier data 

transmission. Because of the different physical location of these two accelerometers, the 

recorded signal had differences, and consequently there were discrepant classification 

results.  The Apple Watch was more sensitive to arm movements, and thus, arm/hand 

movements tend to be classified with the active voluntary movements, whereas the IPG 

only classifies movements of the whole body as active voluntary movements.  If all these 

classifications are relevant to effective DBS, then the feedback signal could be a hybrid 

acceleration signal that somehow combines the information from both the internal and 

external accelerometer. The results of our analyses indicate that overall IPG-based 

classification was more accurate than the conventional Apple Watch.  

Since our classification algorithm can detect tremor, rest, and voluntary activity 

etc., this algorithm can be deployed to a microcontroller which is integrated with the IPG. 

According to the classified physical state the stimulation parameters of the stimulator 
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would be set in the IPG. For example, if the classified physical state is tremor, the 

stimulator will be stimulating. Otherwise, it will be in sleep mode. As a result, the battery 

life of the IPG will be improved. As our algorithm can detect high and low intensity 

tremors, the stimulation parameter would be set differently according to the tremor 

severity. Fig. 62 shows a feasible hardware implementation of our proposed closed-loop 

DBS system. 

Figure 62. Hardware implementation of the classification algorithm. 

In conclusion, we have validated our clustering algorithm to have 91% accuracy 

through the controlled experiment. After implementing the algorithm, patients don’t need 

to go to the clinicians for manual settings of the stimulation parameters of the DBS 

device. Instead, they can be adaptively set according to the detected activity states of the 

patient. The patients can get rid of the tedious clinical visits and trial and error process of 

stimulation settings. The problems with the side effects for overstimulation or under 

stimulation can also be solved. Our adaptive closed-loop DBS algorithm can afford the 

maximal quality of life improvements of the Parkinson’s disease patients. 
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According to the analysis, we can conclude that using hybrid acceleration from 

both Apple Watch and IPG accelerometer as feedback to the DBS device, the stimulation 

parameters could be set according to the physical states of the DBS users. Since IPG 

detects postural rest activity (when body is stationary, but there is some hand/arm 

movement) and active voluntary movement more accurately, DBS can take feedback 

from IPG classification to detect the activity as rest or voluntary activity and turn the 

DBS stimulation off. On the contrary, if the patient has tremor in hand, Apple Watch 

tremor detection could be used for setting the stimulation. We can use tremor detection 

from IPG either, since IPG tremor detection seems more accurate according to our 

analysis. To strongly say that IPG tremor detection is more accurate, we must wait for the 

controlled experiment on each patient. Our classification algorithm is also able to detect 

the intensity of tremor. According to the tremor intensity, the amount of stimulation to be 

supplied to the patient can also be set. Thus, instead of getting constant stimulation all the 

time regardless of the activity, the DBS user can get adaptive stimulation using our 

algorithm according to the physical state. For getting feedback, conventional Apple 

Watch can be completely replaced by the IPG, since IPG classification results seem more 

accurate than conventional Apple Watch. 

Still there is potential for improvement of our algorithm, and we still hope to 

address a major limitation in our validation experiments. Although we have validated our 

model with a controlled experiment, the experiment was conducted on healthy subjects 

with no Parkinson’s disease, and there was no use of IPG data. We planned controlled 

experiments to be conducted by our Duke collaborators on each of the five patient 

subjects.  Each subject will be asked to perform activities like those used during our 
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controlled experiments while at their clinic visits and while IPG and Apple watch 

accelerometry data are acquired. The Duke researcher will record the times of the 

different activities to provide ground truth data. With the control data from the IPG and 

Apple Watch, along with the timing information and the type of activities, we will apply 

our model to these data and compare with the ground truth. Then it would be possible to 

validate the model under much more comparable conditions to the condition under which 

DBS users would be using closed-loop DBS. 
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APPENDIX A 

Main MATLAB Script file for Running the Data from the PD patients 

This script was used to get all the figures and results in this thesis. It is separated into 

different sections. 

Loading in and plotting raw data 

clear all; 

clc; 

 

rng('default') 

% data sets with gaps give sampling frequencies that are off, IPG 

% should be at ~64 Hz and Apple Watch should  be ~50 Hz 

 

path(path, 'E:\Thesis\DBSdata'); 

 

[ptPath] = uigetdir('Choose the patient data path to obtain the acceleration input 

files)'); 

dateList = dir(ptPath); 

 

nFiles = length(dateList) - 2 

cd(ptPath); 

 

% for i = 1:nFiles, 

close all; 

[filename, pathname] = uigetfile('*.csv', 'Choose the IPG acceleration data'); 

ius = strfind(filename, '_'); % index of underscores 

ptID = filename(1:ius(1)-1) 

date = filename(ius(1)+1: ius(2)-1) 

 

IPGdata = datastore([pathname,filename],'Type','tabulartext'); 

IPGdata = readall(IPGdata); 

IPGdata = IPGdata.Variables; 

 

tIPG = IPGdata(:,2); 

tConvIPG = datetime(tIPG,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC'); 

tConvIPG.TimeZone = 'America/New_York'; 

IPG_duration = tConvIPG(end) - tConvIPG(1) 

 

IPGaccel = IPGdata(:,3:end); 

nCh = size(IPGaccel, 2); 

 

filename = [filename(1:ius(2)) 'apple_accel.csv'] 

 

dataApple= datastore([pathname,filename],'Type','tabulartext'); 

dataApple = readall(dataApple); 

dataApple = dataApple.Variables; 
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tApp = dataApple(:,2); 

tConvApp = datetime(tApp,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC'); 

tConvApp.TimeZone = 'America/New_York'; 

Apple_duration = tConvApp(end) - tConvApp(1) 

 

Appleaccel= dataApple(:,3:end); 

fsIPG = round(1/mean(seconds(diff(tConvIPG)))) 

fsApple = round(1/mean(seconds(diff(tConvApp)))) 

 

axis_labels = {'a_x' 'a_y' 'a_z'}; 

channels = size(IPGaccel,2); 

 

figure('Name', 'Raw IPG acceleration') 

for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvIPG, IPGaccel(:,i)) 

    ylabel([axis_labels{i}]); 

end 

sgtitle('IPG acceleration') 

 

figure('Name', 'Raw Apple acceleration') 

for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvApp, Appleaccel(:,i)) 

    ylabel([axis_labels{i}]); 

end 

sgtitle('Apple acceleration') 

 

figure('Name', 'Raw acceleration overlaps') 

for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvApp, Appleaccel(:,i));hold on 

    plot(tConvIPG, IPGaccel(:,i)) 

    ylabel([axis_labels{i}]); 

    legend('Apple Watch','IPG') 

end 

sgtitle('Raw overlapping acceleration data') 

Data selection 

If there is a gap in the datasets (IPG and Apple watch aren't 64 and 50 Hz respectively)  

then select the longest data segment in the data set 
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data_select = input('Do you want to select the overlapping data segment? Y/N:\n','s') 

 

if upper(data_select) == 'Y' 

    close all 

    figure; 

    for i = 1: channels 

        subplot(channels,1,i) 

        plot(tApp, Appleaccel(:,i),'Color',[0,0,1,0.025]);hold on 

        plot(tIPG, IPGaccel(:,i),'Color',[1,0,0,0.95]) 

        axis([-inf inf -1 1]) 

        legend('Apple Watch','IPG') 

    end 

    sgtitle('Raw overlapping acceleration data') 

 

    disp('Select start time, then end time'); 

    [selectTimes, y] = ginput(2); 

    selectTimes; 

 

    IPGstart = sum(tIPG< selectTimes(1)); 

    IPGend = sum(tIPG< selectTimes(2)); 

 

    tIPG = tIPG(IPGstart+1:IPGend); 

    IPGaccel = IPGaccel(IPGstart+1:IPGend,:); 

 

    tConvIPG = datetime(tIPG,'ConvertFrom','epochtime','Epoch','1970-01-

01','TicksPerSecond',1,'TimeZone','UTC'); 

    tConvIPG.TimeZone = 'America/New_York'; 

    IPG_duration = tConvIPG(end) - tConvIPG(1) 

    fsIPG = round(1/mean(seconds(diff(tConvIPG)))) 

 

    Applestart = sum(tConvApp< tConvIPG(1)) + 1; 

    Appleend = sum(tConvApp< tConvIPG(end)); 

 

    tConvApp = tConvApp(Applestart:Appleend); 

    fsApple = round(1/mean(seconds(diff(tConvApp)))) 

    Apple_duration = tConvApp(end) - tConvApp(1) 

    Appleaccel = Appleaccel(Applestart:Appleend,:); 

 

    close all 

    figure('Name','New raw acceleration data segment'); 

    for i = 1: channels 

        subplot(channels,1,i) 

        plot(tConvApp, Appleaccel(:,i));hold on 

        plot(tConvIPG, IPGaccel(:,i)) 

        ylabel([axis_labels{i}]); 

        legend('Apple Watch','IPG') 

    end 

    sgtitle('New raw acceleration data segment') 

 

else 

    disp('You picked no') 
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%     return 

end 

Interpolating and plotting on synced axis 

fs = round(1/mean(seconds(diff(tConvIPG)))); 

if tConvIPG(end)<= tConvApp(end) 

    tSync = timeScaling(tConvIPG, fs); 

else 

    tSync = timeScaling(tConvApp, fs); 

end 

fs_synced = round(1/mean(seconds(diff(tSync)))) 

 

[accelApp, L] = syncData(Appleaccel, tConvApp, tSync, 1); 

[accelIPG, L] = syncData(IPGaccel, tConvIPG, tSync, 0); 

accelApp(isnan(accelApp))=0; 

accelIPG(isnan(accelIPG))=0; 

 

figure('Name', 'Overlapping data with synced axis') 

for i = 1:3 

    subplot(3,1,i) 

    plot(tSync, accelApp(:,i)) 

    hold on; 

    plot(tSync, accelIPG(:,i)) 

    ylabel(axis_labels{i},'FontSize',16); 

    legend('apple','ipg') 

end 

sgtitle('Overlapping data with synced axis') 

STFT of acceleration signal using different time windows 

Calculate the STFT of the accel signals and plot, also find the acceleration integral power 

and plot its different bands (IPG/Apple_result) 

twindows = [10]; % 20 seconds, 1 minute, 10 minutes 

win_size = length(twindows); 

 

band = [0 4 7 12 32]; 

titles = {'0-4 Hz', '4-7 Hz', '7-12 Hz', '12-32 Hz'}; 

IPG_results = []; 

Apple_results = []; 

% fIPG= (1:Nfft)*fsIPG/Nfft - fsIPG/2 ; 

for window = 1:win_size; 

    IPG_result = []; 

    Apple_result = []; 

 

    e = nextpow2(twindows(window)*fs); % changes nfft value acccording to time window 

    Nfft = 2^e; 
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    twin = twindows(window); % window size 

    Lwin = round(twin*fs); 

    win = hanning(Lwin); 

    Noverlap = round(0.5*Lwin); 

 

    figure('Name', ['Synced IPG with window size ' num2str(twindows(window)) ' seconds']) 

    for j = 1:channels; 

        subplot(channels,1,j) 

        [IPG_stft_synced, FIPG_synced] = stft(accelIPG(:,j),fs, 'Window', win, 

'FFTLength', Nfft, 'OverlapLength', Noverlap); 

        df = mean(diff(FIPG_synced)); % use with trapz, trapz*df 

        start = sum(FIPG_synced<2); 

        imagesc((1:(length(accelIPG(:,j))/fs)-1), FIPG_synced(start:end), 

20*log10(abs(IPG_stft_synced(start:end,:)))); 

        ylabel([axis_labels{j}],'FontSize',16); 

        IPG.stft{j} = IPG_stft_synced; 

 

        for k = 1:length(band)-1; 

            IPGband = find(FIPG_synced >=band(k) & FIPG_synced <=band(k+1));    % looks 

for all the content in the specific freq. band 

            BW = band(k+1)-band(k); % bandwidth of frequency band 

 

            t_stft = abs((IPG_stft_synced)); 

            dist = trapz(t_stft(IPGband,:)); 

            IPG_result = [IPG_result; dist*df/BW];  % integral power of IPG acceleration 

 

        end 

 

    end 

 

    IPG_results.window{window} = IPG_result; 

    sgtitle(['Synced IPG with window size ' num2str(twindows(window)) ' seconds']) 

 

    for j = 1:4 % 4 different bands, 1 figure for each band 

        figure('Name', ['IPG Window size ' num2str(twindows(window)) ', ' titles{j} ' 

band']) 

        for k = 1:channels  % 3 axis (x y z) 

            subplot(channels,1,k); 

            plot(IPG_results.window{window}((k-1)*4+j,:)) 

            ylabel(axis_labels{k}) 

        end 

        sgtitle(['IPG Window size ' num2str(twindows(window)) ', ' titles{j} ' band']) 

    end 

 

    figure('Name', ['Synced Apple with window size ' num2str(twindows(window)) ' 

seconds']) 

    for j = 1:channels; 

        subplot(channels,1,j) 

        [Apple_stft_synced, FApple_synced] = stft(accelApp(:,j),fs, 'Window', win, 

'FFTLength', Nfft, 'OverlapLength', Noverlap); 

        start = sum(FApple_synced<2); 

        df = mean(diff(FApple_synced)); 

        imagesc((1:(length(accelApp(:,j))/fs)-1), FApple_synced(start:end), 

20*log10(abs(Apple_stft_synced(start:end,:)))); 
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        ylabel([axis_labels{j}],'FontSize',16); 

 

        for k = 1:length(band)-1; 

            Appleband = find(FApple_synced >=band(k) & FApple_synced <=band(k+1)); 

            BW = band(k+1)-band(k); 

 

            t_stft = abs((Apple_stft_synced)); 

            y = trapz(t_stft(Appleband,:)); 

            Apple_result = [Apple_result; y*df/BW]; 

 

        end 

    end 

    Apple_results.window{window} = Apple_result; 

    sgtitle(['Synced Apple with window size ' num2str(twindows(window)) ' seconds']) 

 

    for j = 1:4, 

        figure('Name', ['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' 

band']) 

        for k = 1:channels, 

            subplot(channels,1,k); 

            plot(Apple_results.window{window}((k-1)*4+j,:)) 

            ylabel(axis_labels{k}) 

        end 

        sgtitle(['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' band']) 

    end 

 

end 

Plotting envelopes and calculating correlation coefficients 

aIPG = sqrt(sum(accelIPG.^2, 2));   % acceleration magnitude 

aIPG(find(isnan(aIPG))) = 0; 

 

aApple = sqrt(sum(accelApp.^2, 2)); % acceleration magnitude 

aApple(find(isnan(aApple))) = 0; 

 

twindows = [10, 60, 600];   % 20 seconds, 1 minute, 10 minutes 

titles = {'10 sec' '1 min' '10 min'}; 

rs = []; 

 

figure('Name', 'Envelopes of acceleration signal'); 

for iEnv = 1:3; 

    twin = twindows(iEnv); % window for moving average in seconds 

    envIPG = env(aIPG-1, twin, fs); 

    envApp = env(aApple-1, twin, fs); 

 

    subplot(channels,1,iEnv); 

    plot(tSync, envIPG); 

    hold on; 

    plot(tSync, envApp); 

    ylabel('G', 'FontSize', 12); 

    title(titles{iEnv},'FontSize',12); 
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    legend('apple','ipg'); 

    %pause; 

 

    envIPG(isnan(envIPG))=0; 

    envApp(isnan(envApp))=0; 

    r = round(corrcoef([envIPG envApp]),2); 

    rs = [rs r(2)]; 

end 

rs 

Performing elbow method to find optimal clusters 

clusters = 10; 

ipg_distortion_array = []; 

for clust = 1:clusters 

    [ipg_idx c] = kmeans((IPG_result'),clust,'Replicate',5); 

    d = c'; 

    for j = 1:length(unique(ipg_idx)) 

        x_array = []; 

        idx_array = IPG_result(:,find(ipg_idx==j)); 

        for k = 1:size(idx_array,2) 

            x = idx_array(:,k)-d(:,j); 

            x_array = [x_array x]; 

        end 

        %         size(x_array) 

        t = x_array.^2; 

        y = sum(t,2); 

        %         size(t) 

        distortion = sqrt(y); 

        distortion = mean(distortion); 

    end 

    ipg_distortion_array = [ipg_distortion_array distortion]; 

end 

figure('Name', 'Elbow Method for IPG') 

plot(1:clusters,ipg_distortion_array,'-xr') 

xlabel('Number of clusters') 

ylabel('Distortion') 

title('Elbow method for IPG') 

 

apple_distortion_array = []; 

for clust = 1:clusters 

    [apple_idx c] = kmeans((Apple_result'),clust,'Replicate',5); 

    d = c'; 

    for j = 1:length(unique(apple_idx)) 

        x_array = []; 

        idx_array = Apple_result(:,find(apple_idx==j)); 

        for k = 1:size(idx_array,2) 

            x = idx_array(:,k)-d(:,j); 

            x_array = [x_array x]; 

        end 

        %         size(x_array) 

        t = x_array.^2; 
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        y = sum(t,2); 

        %         size(t) 

        distortion = sqrt(y); 

        distortion = mean(distortion); 

    end 

    apple_distortion_array = [apple_distortion_array distortion]; 

end 

 

figure('Name', 'Elbow Method for Apple Watch') 

plot(1:clusters,apple_distortion_array,'-xr') 

xlabel('Number of clusters') 

ylabel('Distortion') 

title('Elbow method for Apple Watch') 

Finding optimal number of clusters 

y = ipg_distortion_array - min(ipg_distortion_array) + 0.2; % IPG 

x = [1:10; ones([1, 10])]'; 

[coef,BINT,R,RINT,STATS] = regress(log(y'), x); 

A = exp(coef(2)); 

clus = [1:10]; 

B = mean(ipg_distortion_array(7:end)); 

yhat = A*exp(coef(1)*clus) + B; 

figure('Name', 'Optimum number of cluster IPG'); 

plot(clus, ipg_distortion_array, 'r') 

hold on; 

plot(clus, yhat, 'b'); 

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster 

IPG'); 

legend('distortion_array', 'yhat') 

cluster_IPG = knee_pt(yhat, clus) 

 

% Apple Watch 

y = apple_distortion_array - min(apple_distortion_array) + 0.2; 

x = [1:10; ones([1, 10])]'; 

[coef,BINT,R,RINT,STATS] = regress(log(y'), x); 

A = exp(coef(2)); 

clus = [1:10]; 

B = mean(apple_distortion_array(7:end)); 

yhat = A*exp(coef(1)*clus) + B; 

figure('Name', 'Optimum number of cluster Apple Watch'); 

plot(clus, apple_distortion_array, 'r') 

hold on; 

plot(clus, yhat, 'b') 

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster 

Apple Watch'); 

legend('distortion array', 'yhat') 

cluster_apple = knee_pt(yhat, clus) 
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Clustering using optimal k clusters 

clusters = cluster_IPG; 

[ipg_idx c] = kmeans(log(IPG_result'),clusters,'Replicate',5); 

for clust = 1:clusters 

    idx_array = IPG_result(:,find(ipg_idx==clust)); 

    figure('Name',['STFT of IPG cluster ' num2str(clust)]) 

    imagesc(idx_array) 

    title(['IPG cluster ' num2str(clust)]) 

    set(gca, 'YTick', [1:12]); 

    labels = {'x,0-4Hz', 'x,4-7Hz', 'x,7-12Hz', 'x,12-32Hz', 'y,0-4Hz', 'y,4-7Hz', 'y,7-

12Hz', 'y,12-32Hz', 'z,0-4Hz', 'z,4-7Hz', 'z,7-12Hz', 'z,12-32Hz'} 

    set(gca,'YTickLabel', labels); 

end 

clusters = cluster_apple; 

[apple_idx c] = kmeans(log(Apple_result'),clusters,'Replicate',5); 

for clust = 1:clusters 

    idx_array = Apple_result(:,find(apple_idx==clust)); 

    figure('Name',['STFT of Apple Watch cluster ' num2str(clust)]) 

    imagesc(idx_array) 

    title(['Apple Watch cluster ' num2str(clust)]) 

    set(gca, 'YTick', [1:12]); 

    labels = {'x,0-4Hz', 'x,4-7Hz', 'x,7-12Hz', 'x,12-32Hz', 'y,0-4Hz', 'y,4-7Hz', 'y,7-

12Hz', 'y,12-32Hz', 'z,0-4Hz', 'z,4-7Hz', 'z,7-12Hz', 'z,12-32Hz'} 

    set(gca,'YTickLabel', labels); 

end 

 

Look at the clusters in pc space 

pt_markers = ['r.'; 'g.'; 'b.'; 'k.';'m.';'y.']; 

 

[IPG_coeff IPG_score] = pca(IPG_result'); 

 

figure('Name', 'IPG results in PC space') 

plot(IPG_score(:,1),IPG_score(:,2),'.c') 

title('IPG results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

 

figure('Name', 'Stem plot of IPG coefficients 1 and 2') 

subplot(2,1,1) 

stem(IPG_coeff(:,1)) 

title('PC 1') 

subplot(2,1,2) 

stem(IPG_coeff(:,2)) 

title('PC 2') 

sgtitle('IPG coefficients 1 and 2 stem plot') 

clusters = cluster_IPG; 

figure('Name', 'IPG results in PC space color coded') 

for iclust = 1:clusters, 
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    hold on; 

    plot(IPG_score(find(ipg_idx==iclust), 1), IPG_score(find(ipg_idx==iclust), 2), 

pt_markers(iclust,:), 'LineWidth', 1); 

end 

title('IPG results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4', 'clust 5', 'clust 6') 

 

[Apple_coeff Apple_score] = pca(Apple_result'); 

 

figure('Name', 'Apple Watch results in PC space') 

plot(Apple_score(:,1),Apple_score(:,2),'.c') 

title('Apple results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

 

figure('Name', 'Stem plot of Apple Watch coefficients 1 and 2') 

subplot(2,1,1) 

stem(Apple_coeff(:,1)) 

title('PC 1') 

subplot(2,1,2) 

stem(Apple_coeff(:,2)) 

title('PC 2') 

sgtitle('Apple coefficients 1 and 2 stem plot') 

 

figure('Name', 'Apple Watch results in PC space color coded') 

clusters = cluster_apple; 

for iclust = 1:clusters, 

    hold on; 

    plot(Apple_score(find(apple_idx==iclust), 1), Apple_score(find(apple_idx==iclust), 

2), pt_markers(iclust,:), 'LineWidth', 1); 

end 

title('Apple results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4', 'clust 5', 'clust 6') 

Plot synced acceleration color coded by clusters 

Synced acceleration data are named accelApp and accelIPG use ipg_idx and apple_idx, 3 

Clusters 

idx_color = ['r', 'g', 'b','k', 'm', 'y']; 

Delta = Lwin - Noverlap; % number of samples between each time block of the stft 

 

figure('Name', 'Synced IPG acceleration color coded') 

nBlocks = floor(length(accelIPG)/Delta); 

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used 

for stft and getting apple_idx 
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clusters = cluster_IPG; 

for iclust = 1:clusters 

    iThisClust  = find(ipg_idx == iclust)+1; 

    iThisClust = iThisClust(iThisClust <= nBlocks); 

    for j = 1:channels 

        subplot(3,1,j) 

        accelIPGB = reshape(accelIPG(1:nBlocks*Delta, j), Delta, nBlocks); % organized in 

time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust),accelIPGB(:, iThisClust),idx_color(iclust));  hold on 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('synced IPG accel colored by idx classification') 

 

figure('Name','Synced Apple acceleration color coded') 

nBlocks = floor(length(accelApp)/Delta); 

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used 

for stft and getting apple_idx 

clusters = cluster_apple; 

for iclust = 1:clusters 

    iThisClust  = find(apple_idx == iclust)+1; 

    iThisClust = iThisClust(iThisClust <= nBlocks); 

    for j = 1:channels 

        subplot(3,1,j) 

        accelAppB = reshape(accelApp(1:nBlocks*Delta, j), Delta, nBlocks); % organized in 

time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust),accelAppB(:, iThisClust),idx_color(iclust));  hold on 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('synced Apple accel colored by idx classification') 

Plotting tremor band over classified acceleration signals 

"tremor" band 4-7 Hz band are the 2nd,6th and 10th rows in the matrices "Apple_result" 

and "IPG_result" 

IPG_tremor_band = IPG_result([2,6,10],:);    % IPG tremor band 

Apple_tremor_band = Apple_result([2,6,10], :);   % Apple Watch tremor band 

 

tTremor = tSync((Lwin-Noverlap):(Lwin-Noverlap):end); 

tTremor = tTremor(1:end-1); 

Delta = Lwin - Noverlap; % number of samples between each time block of the stft 

 

figure('Name','Classified IPG acceleration with tremor band') 

nBlocks = floor(length(accelIPG)/Delta); 

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used 

for stft and getting ipg_idx 

clusters = cluster_IPG; 

for iclust = 1:clusters 
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    iThisClust  = find(ipg_idx == iclust)+1; 

    iThisClust = iThisClust(iThisClust <= nBlocks); 

 

    for j = 1:channels 

        subplot(3,1,j) 

        accelIPGB = reshape(accelIPG(1:nBlocks*Delta, j), Delta, nBlocks); % organized in 

time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust),accelIPGB(:, iThisClust),idx_color(iclust));  hold on 

        plot(tTremor,IPG_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]); 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('Classified IPG acceleration w/ tremor band') 

trem_clust_ipg = input('which cluster is "tremor" in the ipg classification? r(1), g(2), 

b(3), k(4), m(5), y(6):\n '); 

low_trem_clust_ipg = input('which cluster is "low tremor" in the ipg classification? 

r(1), g(2), b(3), k(4), m(5), y(6):\n '); 

rest_clust_ipg = input('which cluster is "rest" in the ipg classification? r(1), g(2), 

b(3), k(4), m(5), y(6):\n '); 

activity_clust_ipg = input('which cluster is "voluntary activity" in the ipg 

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n '); 

low_activity_clust_ipg = input('which cluster is "low voluntary activity" in the ipg 

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n '); 

 

figure('Name','Classified Apple acceleration with tremor band') 

nBlocks = floor(length(accelApp)/Delta); 

tSyncB = reshape(tSync(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks used 

for stft and getting apple_idx 

clusters = cluster_apple; 

for iclust = 1:clusters 

    iThisClust  = find(apple_idx == iclust)+1; 

    iThisClust = iThisClust(iThisClust <= nBlocks); 

    for j = 1:channels 

        subplot(3,1,j) 

        accelAppB = reshape(accelApp(1:nBlocks*Delta, j), Delta, nBlocks); % organized in 

time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust),accelAppB(:, iThisClust),idx_color(iclust));  hold on 

        plot(tTremor,Apple_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]); 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('Classified Apple acceleration w/ tremor band') 

trem_clust_apple = input('which cluster is "tremor" in the Apple classification? r(1), 

g(2), b(3), k(4), m(5), y(6):\n '); 

low_trem_clust_apple = input('which cluster is "low tremor" in the apple classification? 

r(1), g(2), b(3), k(4), m(5), y(6):\n '); 

rest_clust_apple = input('which cluster is "rest" in the Apple classification? r(1), 

g(2), b(3), k(4), m(5), y(6):\n '); 

activity_clust_apple = input('which cluster is "high voluntary activity" in the Apple 

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n '); 

low_activity_clust_apple = input('which cluster is "low voluntary activity" in the Apple 

classification? r(1), g(2), b(3), k(4), m(5), y(6):\n '); 
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Comparing IPG and Apple classification 

Comparing Apple Watch based classification with IPG based classification 
 

% finding matches for High tremor 

 

TPt =0; % true matches for tremor 

FPt=0; % False matches for tremor 

FNt=0; % False matches for tremor 

TNt=0; % true matches for tremor 

 

apple_tremor_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == trem_clust_apple 

        apple_tremor_clust(j) = 3; 

    end 

end 

tremor_apple = size(nonzeros(apple_tremor_clust), 1); 

 

IPG_tremor_clust = zeros(length(ipg_idx),1); 

for j = 1:length(ipg_idx) 

    if ipg_idx(j) == trem_clust_ipg 

        IPG_tremor_clust(j) = 3; 

    end 

end 

tremor_ipg = size(nonzeros(IPG_tremor_clust), 1); 

 

for j = 1:length(ipg_idx) 

     if (apple_tremor_clust(j)==3) && (IPG_tremor_clust(j)==3) 

         TPt = TPt+1; 

     elseif (apple_tremor_clust(j) ~=3) && (IPG_tremor_clust(j)==3) 

         FNt = FNt+1; 

     elseif (apple_tremor_clust(j)==3) && (IPG_tremor_clust(j)~=3) 

         FPt = FPt+1; 

     elseif (apple_tremor_clust(j)~=3) && (IPG_tremor_clust(j)~=3) 

         TNt = TNt+1; 

     end 

end 

 

% finding matches for Low tremor 

 

TP_lt =0; % true matches for tremor 

FP_lt=0; % False matches for tremor 

FN_lt=0; % False matches for tremor 

TN_lt=0; % true matches for tremor 

 

apple_low_tremor_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == low_trem_clust_apple 

        apple_low_tremor_clust(j) = 3; 

    end 

end 
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low_tremor_apple = size(nonzeros(apple_low_tremor_clust), 1); 

 

IPG_low_tremor_clust = zeros(length(ipg_idx),1); 

for j = 1:length(ipg_idx) 

    if ipg_idx(j) == low_trem_clust_ipg 

        IPG_low_tremor_clust(j) = 3; 

    end 

end 

low_tremor_ipg = size(nonzeros(IPG_low_tremor_clust), 1); 

 

for j = 1:length(ipg_idx) 

     if (apple_low_tremor_clust(j)==3) && (IPG_low_tremor_clust(j)==3) 

         TP_lt = TP_lt+1; 

     elseif (apple_low_tremor_clust(j) ~=3) && (IPG_low_tremor_clust(j)==3) 

         FN_lt = FN_lt+1; 

     elseif (apple_low_tremor_clust(j)==3) && (IPG_low_tremor_clust(j)~=3) 

         FP_lt = FP_lt+1; 

     elseif (apple_low_tremor_clust(j)~=3) && (IPG_low_tremor_clust(j)~=3) 

         TN_lt = TN_lt+1; 

     end 

end 

 

% finding matches for voluntary activity 

 

TPv=0; % true matches for voluntary activity 

FPv=0; % False matches for voluntary activity 

FNv=0; % False matches for voluntary activity 

TNv=0; % true matches for voluntary activity 

 

apple_activity_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == activity_clust_apple 

        apple_activity_clust(j) = 2; 

    end 

end 

activity_apple = size(nonzeros(apple_activity_clust), 1); 

 

IPG_activity_clust = zeros(length(ipg_idx),1); 

for j = 1:length(ipg_idx) 

    if ipg_idx(j) == activity_clust_ipg 

        IPG_activity_clust(j) = 2; 

    end 

end 

activity_ipg = size(nonzeros(IPG_activity_clust), 1); 

 

for j = 1:length(ipg_idx) 

     if (apple_activity_clust(j)==2) && (IPG_activity_clust(j)==2) 

         TPv = TPv+1; 

     elseif (apple_activity_clust(j) ~=2) && (IPG_activity_clust(j)==2) 

         FNv = FNv+1; 

     elseif (apple_activity_clust(j)==2) && (IPG_activity_clust(j)~=2) 

         FPv = FPv+1; 

     elseif (apple_activity_clust(j)~=2) && (IPG_activity_clust(j)~=2) 

         TNv = TNv+1; 
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     end 

end 

 

% finding matches for lower voluntary activity 

 

TP_lv=0; % true matches for voluntary activity 

FP_lv=0; % False matches for voluntary activity 

FN_lv=0; % False matches for voluntary activity 

TN_lv=0; % true matches for voluntary activity 

 

apple_low_activity_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == low_activity_clust_apple 

        apple_low_activity_clust(j) = 2; 

    end 

end 

low_activity_apple = size(nonzeros(apple_low_activity_clust), 1); 

 

IPG_low_activity_clust = zeros(length(ipg_idx),1); 

for j = 1:length(ipg_idx) 

    if ipg_idx(j) == low_activity_clust_ipg 

        IPG_low_activity_clust(j) = 2; 

    end 

end 

low_activity_ipg = size(nonzeros(IPG_low_activity_clust), 1); 

 

for j = 1:length(ipg_idx) 

     if (apple_low_activity_clust(j)==2) && (IPG_low_activity_clust(j)==2) 

         TP_lv = TP_lv+1; 

     elseif (apple_low_activity_clust(j) ~=2) && (IPG_low_activity_clust(j)==2) 

         FN_lv = FN_lv+1; 

     elseif (apple_low_activity_clust(j)==2) && (IPG_low_activity_clust(j)~=2) 

         FP_lv = FP_lv+1; 

     elseif (apple_low_activity_clust(j)~=2) && (IPG_low_activity_clust(j)~=2) 

         TN_lv = TN_lv+1; 

     end 

end 

 

% finding matches for rest 

 

TPr=0; % true matches for rest 

FPr=0; % False matches for rest 

FNr=0; % False matches for rest 

TNr=0; % true matches for rest 

 

apple_rest_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == rest_clust_apple 

        apple_rest_clust(j) = 1; 

    end 

end 

rest_apple = size(nonzeros(apple_rest_clust), 1); 

 

IPG_rest_clust = zeros(length(ipg_idx),1); 
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for j = 1:length(ipg_idx) 

    if ipg_idx(j) == rest_clust_ipg 

        IPG_rest_clust(j) = 1; 

    end 

end 

rest_ipg = size(nonzeros(IPG_rest_clust), 1); 

 

for j = 1:length(ipg_idx) 

     if (apple_rest_clust(j)==1) && (IPG_rest_clust(j)==1) 

         TPr = TPr+1; 

     elseif (apple_rest_clust(j) ~=1) && (IPG_rest_clust(j)==1) 

         FNr = FNr+1; 

     elseif (apple_rest_clust(j)==1) && (IPG_rest_clust(j)~=1) 

         FPr = FPr+1; 

     elseif (apple_rest_clust(j)~=1) && (IPG_rest_clust(j)~=1) 

         TNr = TNr+1; 

     end 

end 

% Total true positive and false detection rate 

total_TP = TPt+TP_lt+TPr+TPv+TP_lv; 

total_FN = FNt+FN_lt+FNr+FNv+FN_lv; 

total_FP = FPt+FP_lt+FPr+FPv+FP_lv; 

total_TN = TNt+TN_lt+TNr+TNv+TN_lv; 

 

% percentage of activities 

percentage_tremor_ipg = 

tremor_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100 

percentage_low_tremor_ipg = 

low_tremor_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100 

percentage_rest_ipg = 

rest_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100 

percentage_activity_ipg = 

activity_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100 

percentage_low_activity_ipg = 

low_activity_ipg/(tremor_ipg+low_tremor_ipg+rest_ipg+activity_ipg+low_activity_ipg) *100 

 

percentage_tremor_apple = 

tremor_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_apple) 

*100 

percentage_low_tremor_apple = 

low_tremor_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_ap

ple) *100 

percentage_rest_apple = 

rest_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_apple) 

*100 

percentage_activity_apple = 

activity_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_appl

e) *100 

percentage_low_activity_apple = 

low_activity_apple/(tremor_apple+low_tremor_apple+rest_apple+activity_apple+low_activity_

apple) *100 
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APPENDIX B 

Main MATLAB Script file for Running the Validation Experimental Data 

Loading and plotting raw data 

clear; 

clc; 

close all; 

 

%rng('default') 

% data sets with gaps give sampling frequencies that are off, ActiGraph 

% should be at ~70 Hz and Apple Watch should  be ~70 Hz 

 

path(path,'E:\Thesis\DBSdata\REAL_EXPERIMENT_DATA'); 

 

[filename, pathname] = uigetfile('*.csv', 'Choose the Acti acceleration data'); 

 

Actidata = csvread([pathname filename], 11,0); 

 

fsActi =70; 

L_acti = size(Actidata,1); 

tActi = [0:(L_acti-1)]/fsActi; 

 

tConvActi =  tActi; 

Actiaccel = Actidata(:,1:end); 

nCh = size(Actiaccel, 2); 

 

% read Apple watch data 

[filename, pathname] = uigetfile('*.csv', 'Choose the Apple acceleration data'); 

 

 

dataApple= csvread([pathname filename], 1,26); 

 

fs_apple = 70; 

L_apple = size(dataApple,1); 

tApp = [0:(L_apple-1)]/fs_apple; 

tConvApp = tApp; 

Appleaccel= dataApple(:,1:end); 

 

axis_labels = {'a_x' 'a_y' 'a_z'}; 

channels = size(Actiaccel,2); 

 

figure('Name', 'Raw ActiGraph acceleration') 

for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvActi/60, Actiaccel(:,i)) 

    ylabel([axis_labels{i}]); 

end 

sgtitle('ActiGraph acceleration') 

 

figure('Name', 'Raw Apple acceleration') 
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for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvApp/60, Appleaccel(:,i)) 

    ylabel([axis_labels{i}]); 

end 

sgtitle('Apple acceleration') 

 

figure('Name', 'Raw acceleration overlaps') 

for i = 1: channels 

    subplot(channels,1,i) 

    plot(tConvApp/60, Appleaccel(:,i));hold on 

    plot(tConvActi/60, Actiaccel(:,i)) 

    ylabel([axis_labels{i}]); 

    legend('Apple Watch','Acti') 

end 

sgtitle('Raw overlapping acceleration data') 

STFT of acceleration signal using different time windows 

Calculate the STFT of the accel signals and plot, also find the acceleration integral power 

and plot its different bands (Acti/Apple_result) 

fs = 70; 

twindows = [10]; % 10s, 20 seconds, 1 minute, 10 minutes 

win_size = length(twindows); 

 

band = [0 4 7 12 32]; 

titles = {'0-4 Hz', '4-7 Hz', '7-12 Hz', '12-32 Hz'}; 

Acti_results = []; 

Apple_results = []; 

% fActi= (1:Nfft)*fsActi/Nfft - fsActi/2 ; 

for window = 1:win_size; 

    Acti_result = []; 

    Apple_result = []; 

 

    e = nextpow2(twindows(window)*fs); % changes nfft value acccording to time window 

    Nfft = 2^e; 

 

    twin = twindows(window); % window size 

    Lwin = round(twin*fs); 

    win = hanning(Lwin); 

    Noverlap = round(0.5*Lwin); 

 

    figure('Name', ['Synced ActiGraph with window size ' num2str(twindows(window)) ' 

seconds']) 

    for j = 1:channels; 

        subplot(channels,1,j) 

        [Acti_stft_synced, FActi_synced] = stft(Actiaccel(:,j),fs, 'Window', win, 

'FFTLength', Nfft, 'OverlapLength', Noverlap); 

        df = mean(diff(FActi_synced)); % use with trapz, trapz*df 
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        start = sum(FActi_synced<2); 

        imagesc((1:(length(Actiaccel(:,j))/fs)-1)/60, FActi_synced(start:end), 

20*log10(abs(Acti_stft_synced(start:end,:)))); 

        ylabel([axis_labels{j}],'FontSize',16); 

        Acti.stft{j} = Acti_stft_synced; 

 

        for k = 1:length(band)-1; 

            Actiband = find(FActi_synced >=band(k) & FActi_synced <=band(k+1));    % 

looks for all the content in the specific freq. band 

            BW = band(k+1)-band(k); % bandwidth of frequency band 

 

            t_stft = abs((Acti_stft_synced)); 

            dist = trapz(t_stft(Actiband,:)); 

            Acti_result = [Acti_result; dist*df/BW];  % integral power of Acti 

acceleration 

 

        end 

 

    end 

 

    Acti_results.window{window} = Acti_result; 

    sgtitle(['Synced ActiGraph with window size ' num2str(twindows(window)) ' seconds']) 

 

    for j = 1:4 % 4 different bands, 1 figure for each band 

        figure('Name', ['ActiGraph Window size ' num2str(twindows(window)) ', ' titles{j} 

' band']) 

        for k = 1:channels  % 3 axis (x y z) 

            subplot(channels,1,k); 

            plot(Acti_results.window{window}((k-1)*4+j,:)) 

            ylabel(axis_labels{k}) 

        end 

        sgtitle(['ActiGraph Window size ' num2str(twindows(window)) ', ' titles{j} ' 

band']) 

    end 

 

    figure('Name', ['Synced Apple with window size ' num2str(twindows(window)) ' 

seconds']) 

    for j = 1:channels; 

        subplot(channels,1,j) 

        [Apple_stft_synced, FApple_synced] = stft(Appleaccel(:,j),fs, 'Window', win, 

'FFTLength', Nfft, 'OverlapLength', Noverlap); 

        start = sum(FApple_synced<2); 

        df = mean(diff(FApple_synced)); 

        imagesc((1:(length(Appleaccel(:,j))/fs)-1)/60, FApple_synced(start:end), 

20*log10(abs(Apple_stft_synced(start:end,:)))); 

        ylabel([axis_labels{j}],'FontSize',16); 

 

        for k = 1:length(band)-1; 

            Appleband = find(FApple_synced >=band(k) & FApple_synced <=band(k+1)); 

            BW = band(k+1)-band(k); 

 

            t_stft = abs((Apple_stft_synced)); 

            y = trapz(t_stft(Appleband,:)); 

            Apple_result = [Apple_result; y*df/BW]; 
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        end 

    end 

    Apple_results.window{window} = Apple_result; 

    sgtitle(['Synced Apple with window size ' num2str(twindows(window)) ' seconds']) 

 

    for j = 1:4, 

        figure('Name', ['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' 

band']) 

        for k = 1:channels, 

            subplot(channels,1,k); 

            plot(Apple_results.window{window}((k-1)*4+j,:)) 

            ylabel(axis_labels{k}) 

        end 

        sgtitle(['Apple Window size ' num2str(twindows(window)) ', ' titles{j} ' band']) 

    end 

 

end 

Performing elbow method to find optimal clusters 

clusters = 10; 

Acti_distortion_array = []; 

for clust = 1:clusters 

    [Acti_idx c] = kmeans(Acti_result',clust,'Replicate',5); 

    d = c'; 

    for j = 1:length(unique(Acti_idx)) 

        x_array = []; 

        idx_array = Acti_result(:,find(Acti_idx==j)); 

        for k = 1:size(idx_array,2) 

            x = idx_array(:,k)-d(:,j); 

            x_array = [x_array x]; 

        end 

        %         size(x_array) 

        t = x_array.^2; 

        y = sum(t,2); 

        %         size(t) 

        distortion = sqrt(y); 

        distortion = mean(distortion); 

    end 

    Acti_distortion_array = [Acti_distortion_array distortion]; 

end 

figure('Name', 'Elbow Method for ActiGraph') 

plot(1:clusters,Acti_distortion_array,'-xr') 

xlabel('Number of clusters') 

ylabel('Distortion') 

title('Elbow method for ActiGraph') 

 

apple_distortion_array = []; 

for clust = 1:clusters 

    [apple_idx c] = kmeans(Apple_result',clust,'Replicate',5); 

    d = c'; 
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    for j = 1:length(unique(apple_idx)) 

        x_array = []; 

        idx_array = Apple_result(:,find(apple_idx==j)); 

        for k = 1:size(idx_array,2) 

            x = idx_array(:,k)-d(:,j); 

            x_array = [x_array x]; 

        end 

        %         size(x_array) 

        t = x_array.^2; 

        y = sum(t,2); 

        %         size(t) 

        distortion = sqrt(y); 

        distortion = mean(distortion); 

    end 

    apple_distortion_array = [apple_distortion_array distortion]; 

end 

 

figure('Name', 'Elbow Method for Apple Watch') 

plot(1:clusters,apple_distortion_array,'-xr') 

xlabel('Number of clusters') 

ylabel('Distortion') 

title('Elbow method for Apple Watch') 

Finding optimal number of clusters 

y = Acti_distortion_array - min(Acti_distortion_array) + 0.2; % IPG 

x = [1:10; ones([1, 10])]'; 

[coef,BINT,R,RINT,STATS] = regress(log(y'), x); 

A = exp(coef(2)); 

clus = [1:10]; 

B = mean(Acti_distortion_array(7:end)); 

yhat = A*exp(coef(1)*clus) + B; 

figure('Name', 'Optimum number of cluster IPG'); 

plot(clus, Acti_distortion_array, 'r') 

hold on; 

plot(clus, yhat, 'b'); 

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster 

ActiGraph'); 

legend('distortion_array', 'yhat') 

cluster_Acti = knee_pt(yhat, clus) 

 

% line = (log2(A)+ coef(1)*clus) + log2(B); 

% plot(clus, line) 

% p = polyfit(yhat(1:5),clus(1:5),1) 

 

% Apple Watch 

y = apple_distortion_array - min(apple_distortion_array) + 0.2; 

x = [1:10; ones([1, 10])]'; 

[coef,BINT,R,RINT,STATS] = regress(log(y'), x); 

A = exp(coef(2)); 

clus = [1:10]; 

B = mean(apple_distortion_array(7:end)); 
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yhat = A*exp(coef(1)*clus) + B; 

figure('Name', 'Optimum number of cluster Apple Watch'); 

plot(clus, apple_distortion_array, 'r') 

hold on; 

plot(clus, yhat, 'b') 

xlabel('number of cluster'); ylabel('distortion array'); title('Optimum number of cluster 

Apple Watch'); 

legend('distortion array', 'yhat') 

cluster_apple = knee_pt(yhat, clus) 

Clustering using optimal k clusters 

clusters = cluster_Acti; 

[Acti_idx c] = kmeans(Acti_result',clusters,'Replicate',5); 

for clust = 1:clusters 

    idx_array = Acti_result(:,find(Acti_idx==clust)); 

    figure('Name',['STFT of ActiGraph cluster ' num2str(clust)]) 

    imagesc(idx_array) 

    title(['Acti cluster ' num2str(clust)]) 

end 

clusters = cluster_apple; 

[apple_idx c] = kmeans(Apple_result',clusters,'Replicate',5); 

for clust = 1:clusters 

    idx_array = Apple_result(:,find(apple_idx==clust)); 

    figure('Name',['STFT of Apple Watch cluster ' num2str(clust)]) 

    imagesc(idx_array) 

    title(['Apple Watch cluster ' num2str(clust)]) 

end 

 

% for i = 1:5 

% idx_array = abs(Acti_result(:,find(idx==i))); 

% figure;imagesc(idx_array(1050:1200,:));size(idx_array) 

% end 

Look at the clusters in pc space 

pt_markers = ['r.'; 'g.'; 'b.'; 'k.']; 

 

[Acti_coeff Acti_score] = pca(Acti_result'); 

 

figure('Name', 'ActiGraph results in PC space') 

plot(Acti_score(:,1),Acti_score(:,2),'.c') 

title('Acti results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

 

figure('Name', 'Stem plot of ActiGraph coefficients 1 and 2') 

subplot(2,1,1) 

stem(Acti_coeff(:,1)) 

title('PC 1') 
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subplot(2,1,2) 

stem(Acti_coeff(:,2)) 

title('PC 2') 

sgtitle('ActiGraph coefficients 1 and 2 stem plot') 

 

figure('Name', 'ActiGraph results in PC space color coded') 

for iclust = 1:clusters, 

    hold on; 

    plot(Acti_score(find(Acti_idx==iclust), 1), Acti_score(find(Acti_idx==iclust), 2), 

pt_markers(iclust,:), 'LineWidth', 1); 

end 

title('ActiGraph results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4') 

 

[Apple_coeff Apple_score] = pca(Apple_result'); 

 

figure('Name', 'Apple Watch results in PC space') 

plot(Apple_score(:,1),Apple_score(:,2),'.c') 

title('Apple results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

 

figure('Name', 'Stem plot of Apple Watch coefficients 1 and 2') 

subplot(2,1,1) 

stem(Apple_coeff(:,1)) 

title('PC 1') 

subplot(2,1,2) 

stem(Apple_coeff(:,2)) 

title('PC 2') 

sgtitle('Apple coefficients 1 and 2 stem plot') 

 

figure('Name', 'Apple Watch results in PC space color coded') 

for iclust = 1:clusters, 

    hold on; 

    plot(Apple_score(find(apple_idx==iclust), 1), Apple_score(find(apple_idx==iclust), 

2), pt_markers(iclust,:), 'LineWidth', 1); 

end 

title('Apple results in PC space') 

xlabel('PC 1') 

ylabel('PC 2') 

legend('Clust 1', 'Clust 2', 'Clust 3','Clust 4') 

 
Plot synced acceleration color coded by clusters 

 synced acceleration data are named Appleaccel and Actiaccel use Acti_idx and 

apple_idx 
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idx_color = ['r', 'g', 'b','k']; 

Delta = Lwin - Noverlap; % number of samples between each time block of the stft 

 

figure('Name', 'Synced ActiGraph acceleration color coded') 

nBlocks = floor(length(Actiaccel)/Delta); 

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting apple_idx 

for iclust = 1:clusters 

    iThisClust  = find(Acti_idx == iclust); 

    for j = 1:channels 

        subplot(3,1,j) 

        ActiaccelB = reshape(Actiaccel(1:nBlocks*Delta, j), Delta, nBlocks); % organized 

in time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust)/60,ActiaccelB(:, iThisClust),idx_color(iclust));  hold 

on 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('synced ActiGraph accel colored by idx classification') 

 

figure('Name','Synced Apple acceleration color coded') 

nBlocks = floor(length(Appleaccel)/Delta); 

tSyncB = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting apple_idx 

for iclust = 1:clusters 

    iThisClust  = find(apple_idx == iclust); 

    for j = 1:channels 

        subplot(3,1,j) 

        AppleaccelB = reshape(Appleaccel(1:nBlocks*Delta, j), Delta, nBlocks); % 

organized in time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust)/60,AppleaccelB(:, iThisClust),idx_color(iclust));  

hold on 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('synced Apple accel colored by idx classification') 

Plotting tremor band over classified acceleration signals 

"tremor" band 4-7 Hz band are the 2nd,6th and 10th rows in the matrices "Apple_result" 

and "Acti_result" 

Acti_tremor_band = Acti_result([2,6,10],:);    % Acti tremor band 

Apple_tremor_band = Apple_result([2,6,10], :);   % Apple Watch tremor band 

 

tTremor = tConvActi((Lwin-Noverlap):(Lwin-Noverlap):end); 

tTremor = tTremor(1:end-1); 

Delta = Lwin - Noverlap; % number of samples between each time block of the stft 
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figure('Name','Classified ActiGraph acceleration with tremor band') 

nBlocks = floor(length(Actiaccel)/Delta); 

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting Acti_idx 

for iclust = 1:clusters 

    iThisClust  = find(Acti_idx == iclust); 

    for j = 1:channels 

        subplot(3,1,j) 

        ActiaccelB = reshape(Actiaccel(1:nBlocks*Delta, j), Delta, nBlocks); % organized 

in time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust)/60,ActiaccelB(:, iThisClust),idx_color(iclust));  hold 

on 

        plot(tTremor/60,Acti_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]); 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('Classified ActiGraph acceleration w/ tremor band') 

trem_clust_Acti=zeros(2,1) 

for k=1:2 

trem_clust_Acti(k)=input('which cluster is "tremor" in the ActiGraph classification? 

r(1), g(2), b(3), k(4):\n'); 

end 

rest_clust_Acti = input('which cluster is "rest" in the ActiGraph classification? r(1), 

g(2), b(3), k(4):\n '); 

activity_clust_Acti = input('which cluster is "voluntary activity" in the ActiGraph 

classification? r(1), g(2), b(3), k(4):\n '); 

 

 

figure('Name','Classified Apple acceleration with tremor band') 

tTremorA = tConvApp((Lwin-Noverlap):(Lwin-Noverlap):end); 

tTremorA = tTremorA(1:end-1); 

 

nBlocks = floor(length(Appleaccel)/Delta); 

tSyncB = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting apple_idx 

for iclust = 1:clusters 

    iThisClust  = find(apple_idx == iclust); 

    for j = 1:channels 

        subplot(3,1,j) 

        AppleaccelB = reshape(Appleaccel(1:nBlocks*Delta, j), Delta, nBlocks); % 

organized in time blocks corresponding to stft and used for getting apple_idx 

        plot(tSyncB(:, iThisClust)/60,AppleaccelB(:, iThisClust),idx_color(iclust));  

hold on 

        plot(tTremorA/60,Apple_tremor_band(j,:),'Color',[0.9290 0.6940 0.1250]); 

        ylabel([axis_labels{j}],'FontSize',16); 

    end 

end 

sgtitle('Classified Apple acceleration w/ tremor band') 

trem_clust_apple=zeros(2,1) 

for k=1:2 

trem_clust_apple(k)=input('which cluster is "tremor" in the Apple classification? r(1), 

g(2), b(3), k(4):\n'); 

end 

%trem_clust_apple = input('which cluster is "tremor" in the Apple classification? r(1), 
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g(2), b(3), k(4):\n '); 

%low_trem_clust_apple = input('which cluster is "low tremor" in the Apple classification? 

r(1), g(2), b(3), k(4):\n '); 

rest_clust_apple = input('which cluster is "rest" in the Apple classification? r(1), 

g(2), b(3), k(4):\n '); 

activity_clust_apple = input('which cluster is "voluntary activity" in the Apple 

classification? r(1), g(2), b(3), k(4):\n '); 

Actigraph correct detection 

Creating ground truth signal based on activities tremor and comparing it with the  
 
classification result 
 

t_acti = tConvActi/60; 

 

gt = zeros(1, length(t_acti)); 

 

i_gt = round([0:3:48]*60*fs); % index of the time points of ground truth signal 

 

gt(i_gt(1)+1:i_gt(2)) = 1; % let's make the code for tremor = 1 

gt(i_gt(2)+1:i_gt(4)) = 2; % let's make the code for laying down = 2 

gt(i_gt(4)+1:i_gt(5)) = 3; % let's make the code for voluntary activity(bouncing) = 3 

gt(i_gt(5)+1:i_gt(7)) = 2; % let's make the code for standing = 2 

gt(i_gt(7)+1:i_gt(8)) = 3; % let's make the code for voluntary activity(writing) = 3 

gt(i_gt(8)+1:i_gt(10)) = 2; % let's make the code for sitting = 2 

gt(i_gt(10)+1:i_gt(11)) = 3; % let's make the code for voluntary activity(cooking) = 3 

gt(i_gt(11)+1:i_gt(13)) = 2; % let's make the code for standing = 2 

gt(i_gt(13)+1:i_gt(14)) = 3; % let's make the code for voluntary activity(walking) = 3 

gt(i_gt(14)+1:i_gt(16)) = 2; % let's make the code for sitting = 2 

gt(i_gt(16)+1:i_gt(17)) = 3; % let's make the code for voluntary activity(typing) = 3 

 

 

figure('Name','Ground truth ActiGraph'); 

plot(t_acti,gt); xlabel('time(min)'); ylabel('ground truth'); 

sgtitle('Ground truth ActiGraph') 

 

% finding TP,FP,FN 

% FOR TREMOR 

nBlocks = floor(length(Actiaccel)/Delta); 

tSyncB = reshape(tConvActi(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting Acti_idx 

gt = reshape(gt(1:nBlocks*Delta), Delta, nBlocks); 

gt = gt'; 

 

TPt =0; % true positive for tremor 

FPt=0; % False positive for tremor 

FNt=0; % False negative for tremor 

TNt=0; % true negative for tremor 

 

Acti_tremor_clust = zeros(length(Acti_idx),1); 
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for j = 1:length(Acti_idx) 

    if Acti_idx(j) == trem_clust_Acti(1,1) 

        Acti_tremor_clust(j) = 1; 

    end 

end 

for j = 1:length(Acti_idx) 

    if Acti_idx(j) == trem_clust_Acti(2,1) 

        Acti_tremor_clust(j) = 1; 

    end 

end 

for j = 1:length(Acti_idx) 

     if (Acti_tremor_clust(j)==1) && (gt(j)==1) 

         TPt = TPt+1; 

     elseif (Acti_tremor_clust(j) ~=1) && (gt(j)==1) 

         FNt = FNt+1; 

     elseif (Acti_tremor_clust(j)==1) && (gt(j)~=1) 

         FPt = FPt+1; 

     elseif (Acti_tremor_clust(j)~=1) && (gt(j)~=1) 

         TNt = TNt+1; 

     end 

end 

 

 

% FOR REST 

 

TPr =0; % true positive for rest 

FPr=0; % False positive for rest 

FNr=0; % False negative for rest 

TNr=0; % True negative for rest 

 

Acti_rest_clust = zeros(length(Acti_idx),1); 

for j = 1:length(Acti_idx) 

    if Acti_idx(j) == rest_clust_Acti 

        Acti_rest_clust(j) = 2; 

    end 

end 

for j = 1:length(Acti_idx) 

     if (Acti_rest_clust(j)==2) && (gt(j)==2) 

         TPr = TPr+1; 

     elseif (Acti_rest_clust(j) ~=2) && (gt(j)==2) 

         FNr = FNr+1; 

     elseif (Acti_rest_clust(j)==2) && (gt(j)~=2) 

         FPr = FPr+1; 

     elseif (Acti_rest_clust(j)~=2) && (gt(j)~=2) 

         TNr = TNr+1; 

     end 

end 

 

% FOR VOLUNTARY ACTIVITY 

 

TPv =0; % true positive for voluntary activity 

FPv=0; % False positive for voluntary activity 

FNv=0; % False negative for voluntary activity 

TNv =0; % True negative for voluntary activity 
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Acti_activity_clust = zeros(length(Acti_idx),1); 

for j = 1:length(Acti_idx) 

    if Acti_idx(j) == activity_clust_Acti 

        Acti_activity_clust(j) = 3; 

    end 

end 

for j = 1:length(Acti_idx) 

     if (Acti_activity_clust(j)==3) && (gt(j)==3) 

         TPv = TPv+1; 

     elseif (Acti_activity_clust(j) ~=3) && (gt(j)==3) 

         FNv = FNv+1; 

     elseif (Acti_activity_clust(j)==3) && (gt(j)~=3) 

         FPv = FPv+1; 

     elseif (Acti_activity_clust(j)~=3) && (gt(j)~=3) 

         TNv = TNv+1; 

     end 

end 

Apple Watch correct detection 

Creating ground truth signal based on activities tremor and comparing it with the  
 
classification result 
 

t_app = tConvApp/60; 

 

% time according to activities 

 

t1a= 0:1/fs:tConvApp(165*fs); %tremor 

t2a=tConvApp(165*fs+1):1/fs:tConvApp(426*fs);  % laying down 

t3a = tConvApp(426*fs+1):1/fs:tConvApp(523.8*fs); % voluntary activity 

t4a= tConvApp(523.8*fs+1):1/fs:tConvApp(744.6*fs);  % standing 

t5a = tConvApp(744.6*fs+1):1/fs:tConvApp(849.6*fs); % voluntary activity 

t6a=tConvApp(849.6*fs+1):1/fs:tConvApp(1068*fs); %sitting 

t7a=tConvApp(1068*fs+1):1/fs:tConvApp(1194*fs); % voluntary activity 

t8a=tConvApp(1194*fs+1):1/fs:tConvApp(1413*fs); % standing 

t9a=tConvApp(1413*fs+1):1/fs:tConvApp(1549.2*fs); % voluntary activity 

t10a=tConvApp(1549.2*fs+1):1/fs:tConvApp(1683.6*fs); % sitting 

t11a= tConvApp(1683.6*fs+1):1/fs:tConvApp(1797.4*fs); % voluntary activity 

 

gta = 

cat(2,(t1a>=0),2*(t2a>=0),3*(t3a>=0),2*(t4a>=0),3*(t5a>=0),2*(t6a>=0),3*(t7a>=0),2*(t8a>=

0),3*(t9a>=0),2*(t10a>=0),3*(t11a>=0)); 

 

figure('Name','Ground truth Apple watch'); 

plot(t_app,gta); xlabel('time(min)'); ylabel('Ground truth'); 

sgtitle('Apple watch Ground truth'); 

% 

% finding TP,FP,FN 

% FOR TREMOR 
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nBlocks = floor(length(Appleaccel)/Delta); 

tSyncBa = reshape(tConvApp(1:nBlocks*Delta), Delta, nBlocks); % organized in time blocks 

used for stft and getting Acti_idx 

gta = reshape(gta(1:nBlocks*Delta), Delta, nBlocks); 

gta = gta'; 

 

TPta =0; % true positive for tremor 

FPta=0; % False positive for tremor 

FNta=0; % False negative for tremor 

TNta=0; % true negative for tremor 

 

apple_tremor_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == trem_clust_apple(1,1) 

        apple_tremor_clust(j) = 1; 

    end 

end 

for j = 1:length(apple_idx) 

    if apple_idx(j) == trem_clust_apple(2,1) 

        apple_tremor_clust(j) = 1; 

    end 

end 

for j = 1:length(apple_idx) 

     if (apple_tremor_clust(j)==1) && (gta(j)==1) 

         TPta = TPta+1; 

     elseif (apple_tremor_clust(j) ~=1) && (gta(j)==1) 

         FNta = FNta+1; 

     elseif (apple_tremor_clust(j)==1) && (gta(j)~=1) 

         FPta = FPta+1; 

     elseif (apple_tremor_clust(j)~=1) && (gta(j)~=1) 

         TNta = TNta+1; 

     end 

end 

 

% FOR REST 

 

TPra =0; % true positive for rest 

FPra=0; % False positive for rest 

FNra=0; % False negative for rest 

TNra=0; % true negative for rest 

 

apple_rest_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == rest_clust_apple 

        apple_rest_clust(j) = 2; 

    end 

end 

for j = 1:length(apple_idx) 

     if (apple_rest_clust(j)==2) && (gta(j)==2) 

         TPra = TPra+1; 

     elseif (apple_rest_clust(j) ~=2) && (gta(j)==2) 

         FNra = FNra+1; 

     elseif (apple_rest_clust(j)==2) && (gta(j)~=2) 

         FPra = FPra+1; 
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     elseif (apple_rest_clust(j)~=2) && (gta(j)~=2) 

         TNra = TNra+1; 

     end 

end 

 

% FOR VOLUNTARY ACTIVITY 

 

TPva =0; % true positive for activity 

FPva=0; % False positive for activity 

FNva=0; % False negative for activity 

TNva=0; % true negative for activity 

 

apple_activity_clust = zeros(length(apple_idx),1); 

for j = 1:length(apple_idx) 

    if apple_idx(j) == activity_clust_apple 

        apple_activity_clust(j) = 3; 

    end 

end 

for j = 1:length(apple_idx) 

     if (apple_activity_clust(j)==3) && (gta(j)==3) 

         TPva = TPva+1; 

     elseif (apple_activity_clust(j) ~=3) && (gta(j)==3) 

         FNva = FNva+1; 

     elseif (apple_activity_clust(j)==3) && (gta(j)~=3) 

         FPva = FPva+1; 

     elseif (apple_activity_clust(j)~=3) && (gta(j)~=3) 

         TNva = TNva+1; 

     end 

end 

 

% Actigrap true positive and false detection rate 

total_TP_acti = TPt+TPr+TPv; 

total_FN_acti = FNt+FNr+FNv; 

total_FP_acti = FPt+FPr+FPv; 

total_TN_acti = TNt+TNr+TNv; 

 

correct_detection_acti = (total_TP_acti/(total_TP_acti+total_FN_acti))*100 

false_detection_rate_acti = (total_FP_acti/(total_FP_acti+total_TN_acti))*100 

 

% Apple watch true positive and false detection rate 

total_TP_app = TPta+TPra+TPva; 

total_FN_app = FNta+FNra+FNva; 

total_FP_app = FPta+FPra+FPva; 

total_TN_app = TNta+TNra+TNva; 

 

correct_detection_apple = (total_TP_app/(total_TP_app+total_FN_app))*100 

false_detection_rate_apple = (total_FP_app/(total_FP_app+total_TN_app))*100 
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APPENDIX C 

MATLAB Helper Functions 

Creates envelopes of the acceleration signals 
 

function ma = env(s, twin, fs) 

% display(twin) 

    s = s - mean(s); 

    Lwin = round(fs*twin); 

    w = ones(1, Lwin); 

    ma = conv(abs(s), w, 'same')/Lwin; 

end 

 
Sets the time vector on the same scale for both accelerometers 
 

function tSync = timeScaling(t, fs) 

% t = original time vector of asynchronously acquired signal 

% fs = desired sampling frequency in samples per second 

% 

% tSync = output time vector, now with constant sampling interval 

 

    N = round(seconds(t(end) - t(1))*fs); 

    tSync = linspace(t(1), t(end), N); 

end 

 
Synchronizes the data of the accelerometers by using linear interpolation 
 

Setfunction [a, L] = syncData(accel, tConv, tSync, Apple) 

% a = raw acceleration from device (Apple watch or IPG) 

% tConv = converted time from device (Apple watch or IPG) 

% tSync = converted time from IPG, and resampled at fixed sampling rate 

 

    if(tSync(end) < tConv(end)) 

        L = sum(tConv <= tSync(end)); 

    else 

        L = length(tConv); 

    end 

    a = zeros(length(tSync), 3); 

    [t, iunique] = unique(tConv(1:L)); 

    a(:,1) = interp1(t, accel(iunique,1), tSync); 

    a(:,2) = interp1(t, accel(iunique,2), tSync); 

    a(:,3) = interp1(t, accel(iunique,3), tSync); 

end 
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Finds the knee point (optimum number of clusters) of an exponential curve by Dmrity 
Kaplan from MATLAB file exchange 
 

function [res_x, idx_of_result] = knee_pt(y,x,just_return) 

%function [res_x, idx_of_result] = knee_pt(y,x,just_return) 

%Returns the x-location of a (single) knee of curve y=f(x) 

%  (this is useful for e.g. figuring out where the eigenvalues peter out) 

% 

%Also returns the index of the x-coordinate at the knee 

% 

%Parameters: 

% y (required) vector (>=3 elements) 

% x (optional) vector of the same size as y 

% just_return (optional) boolean 

% 

%If just_return is True, the function will not error out and simply return a Nan on 

%detected error conditions 

% 

%Important:  The x and y  don't need to be sorted, they just have to 

%correspond: knee_pt([1,2,3],[3,4,5]) = knee_pt([3,1,2],[5,3,4]) 

% 

%Important: Because of the way the function operates y must be at least 3 

%elements long and the function will never return either the first or the 

%last point as the answer. 

% 

%Defaults: 

%If x is not specified or is empty, it's assumed to be 1:length(y) -- in 

%this case both returned values are the same. 

%If just_return is not specified or is empty, it's assumed to be false (ie the 

%function will error out) 

% 

% 

%The function operates by walking along the curve one bisection point at a time and 

%fitting two lines, one to all the points to left of the bisection point and one 

%to all the points to the right of of the bisection point. 

%The knee is judged to be at a bisection point which minimizes the 

%sum of errors for the two fits. 

% 

%the errors being used are sum(abs(del_y)) or RMS depending on the 

%(very obvious) internal switch.  Experiment with it if the point returned 

%is not to your liking -- it gets pretty subjective... 

% 

% 

%Example: drawing the curve for the submission 

% x=.1:.1:3; y = exp(-x)./sqrt(x); [i,ix]=knee_pt(y,x); 

% figure;plot(x,y); 

% rectangle('curvature',[1,1],'position',[x(ix)-.1,y(ix)-.1,.2,.2]) 

% axis('square'); 

% 

 

%Food for thought: In the best of possible worlds, per-point errors should 

%be corrected with the confidence interval (i.e. a best-line fit to 2 
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%points has a zero per-point fit error which is kind-a wrong). 

%Practially, I found that it doesn't make much difference. 

% 

%dk /2012 

 

 

 

%{ 

 

% test vectors: 

 

[i,ix]=knee_pt([30:-3:12,10:-2:0])  %should be 7 and 7 

knee_pt([30:-3:12,10:-2:0]')  %should be 7 

knee_pt(rand(3,3))  %should error out 

knee_pt(rand(3,3),[],false)  %should error out 

knee_pt(rand(3,3),[],true)  %should return Nan 

knee_pt([30:-3:12,10:-2:0],[1:13])  %should be 7 

knee_pt([30:-3:12,10:-2:0],[1:13]*20)  %should be 140 

knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20)  %should be 140 

knee_pt([30:-3:12,10:-2:0]+rand(1,13)/10,[1:13]*20+rand(1,13)) %should be close to 140 

x = 0:.01:pi/2; y = sin(x); [i,ix]=knee_pt(y,x)  %should be around .9 andaround 90 

[~,reorder]=sort(rand(size(x)));xr = x(reorder); yr=y(reorder);[i,ix]=knee_pt(yr,xr)  %i 

should be the same as above and xr(ix) should be .91 

knee_pt([10:-1:1])  %degenerate condition -- returns location of the first "knee" error 

minimum: 2 

 

%} 

 

 

%set internal operation flags 

use_absolute_dev_p = true;  %ow quadratic 

 

%deal with issuing or not not issuing errors 

issue_errors_p = true; 

if (nargin > 2 && ~isempty(just_return) && just_return) 

    issue_errors_p = false; 

end 

 

%default answers 

res_x = nan; 

idx_of_result = nan; 

 

%check... 

if (isempty(y)) 

    if (issue_errors_p) 

        error('knee_pt: y can not be an empty vector'); 

    end 

    return; 

end 

 

%another check 

if (sum(size(y)==1)~=1) 

    if (issue_errors_p) 

        error('knee_pt: y must be a vector'); 
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    end 

 

    return; 

end 

 

%make a vector 

y = y(:); 

 

%make or read x 

if (nargin < 2 || isempty(x)) 

    x = (1:length(y))'; 

else 

    x = x(:); 

end 

 

%more checking 

if (ndims(x)~= ndims(y) || ~all(size(x) == size(y))) 

    if (issue_errors_p) 

        error('knee_pt: y and x must have the same dimensions'); 

    end 

 

    return; 

end 

 

%and more checking 

if (length(y) < 3) 

    if (issue_errors_p) 

        error('knee_pt: y must be at least 3 elements long'); 

    end 

    return; 

end 

 

%make sure the x and y are sorted in increasing X-order 

if (nargin > 1 && any(diff(x)<0)) 

    [~,idx]=sort(x); 

    y = y(idx); 

    x = x(idx); 

else 

    idx = 1:length(x); 

end 

 

%the code below "unwraps" the repeated regress(y,x) calls.  It's 

%significantly faster than the former for longer y's 

% 

%figure out the m and b (in the y=mx+b sense) for the "left-of-knee" 

sigma_xy = cumsum(x.*y); 

sigma_x  = cumsum(x); 

sigma_y  = cumsum(y); 

sigma_xx = cumsum(x.*x); 

n        = (1:length(y))'; 

det = n.*sigma_xx-sigma_x.*sigma_x; 

mfwd = (n.*sigma_xy-sigma_x.*sigma_y)./det; 

bfwd = -(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det; 
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%figure out the m and b (in the y=mx+b sense) for the "right-of-knee" 

sigma_xy = cumsum(x(end:-1:1).*y(end:-1:1)); 

sigma_x  = cumsum(x(end:-1:1)); 

sigma_y  = cumsum(y(end:-1:1)); 

sigma_xx = cumsum(x(end:-1:1).*x(end:-1:1)); 

n        = (1:length(y))'; 

det = n.*sigma_xx-sigma_x.*sigma_x; 

mbck = flipud((n.*sigma_xy-sigma_x.*sigma_y)./det); 

bbck = flipud(-(sigma_x.*sigma_xy-sigma_xx.*sigma_y) ./det); 

 

%figure out the sum of per-point errors for left- and right- of-knee fits 

error_curve = nan(size(y)); 

for breakpt = 2:length(y-1) 

    delsfwd = (mfwd(breakpt).*x(1:breakpt)+bfwd(breakpt))-y(1:breakpt); 

    delsbck = (mbck(breakpt).*x(breakpt:end)+bbck(breakpt))-y(breakpt:end); 

    %disp([sum(abs(delsfwd))/length(delsfwd), sum(abs(delsbck))/length(delsbck)]) 

    if (use_absolute_dev_p) 

        % error_curve(breakpt) = sum(abs(delsfwd))/sqrt(length(delsfwd)) + 

sum(abs(delsbck))/sqrt(length(delsbck)); 

        error_curve(breakpt) = sum(abs(delsfwd))+ sum(abs(delsbck)); 

    else 

        error_curve(breakpt) = sqrt(sum(delsfwd.*delsfwd)) + sqrt(sum(delsbck.*delsbck)); 

    end 

end 

 

%find location of the min of the error curve 

[~,loc] = min(error_curve); 

res_x = x(loc); 

idx_of_result = idx(loc); 

end 

 

 

 

 

 

 

 

 

 


