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Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Spring 2025 #1. Use the definition of continuity to show that the

function f : R → R defined by

f(x) = x2

is continuous at x = 1.

Solution: We wish to prove that f(x) = x2 is continuous at x = 1.

By definition of continuity at x = 1, we must show:

∀ε > 0, ∃δ > 0 such that
∣∣x− 1

∣∣ < δ =⇒
∣∣f(x)− f(1)

∣∣ < ε.

Here, f(1) = 12 = 1, so we need to ensure:

∣∣x2 − 1
∣∣ < ε whenever

∣∣x− 1
∣∣ < δ.

We begin by factoring the expression inside the absolute value:

|x2 − 1| = |(x− 1)(x+ 1)| = |x− 1| · |x+ 1|.

Our goal is to control this product by making |x− 1| sufficiently small.

Notice that if we require |x− 1| < 1, then:

|x+ 1| = |(x− 1) + 2| ≤ |x− 1|+ 2 < 1 + 2 = 3.

Hence, whenever |x− 1| < 1, we have
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|x2 − 1| = |x− 1| |x+ 1| < |x− 1| · 3.

To make sure |x2 − 1| < ε, it suffices to ensure 3 |x − 1| < ε, or

equivalently:

|x− 1| < ε

3
.

Thus, we can choose

δ = min
(
1,

ε

3

)
.

This choice of δ guarantees both |x − 1| < 1 (to control |x + 1|) and

3 |x− 1| < ε. Therefore, whenever |x− 1| < δ, it follows that

|x2 − 1| < ε.

Since our choice of δ depends only on ε and not on x, this completes

the proof of continuity of f(x) = x2 at x = 1 by the ε–δ definition.

(Note: This solution is AI-written but verified by a human committee

member.)

Spring 2025 #2. Let A = {x ∈ Q | 0 ≤ x ≤ 1}, where Q denotes

the set of rational numbers. Is A compact? Prove that your answer is

correct.

Solution. The set A is not compact. To see why, recall that A is com-

pact if and only if it is closed and bounded by the Heine-Borel theorem.

Since A is obviously bounded, it suffices to show it is not closed. Con-

sider the sequence {xn}∞n=1 where xn consists of the first n digits of
√
2.
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For example, x1 = 1, x2 = 1.4, x3 = 1.41, etc. Then it is clear that

limxn =
√
2.

In particular, each xn ∈ Q, xn ̸= 0 for any n.

Next, define a sequence yn by

yn =
1

xn

.

Since xn ∈ Q, then yn ∈ Q. By construction, we have

0 ≤ yn ≤ 1,

so that yn ∈ A for every n ∈ N. Moreover, we will have

lim yn =
1√
2
,

which is not an element of A. Thus A is not closed, so it is not compact.

□

Spring 2025 #3. Let {an} be a convergent sequence of real numbers,

and define a new sequence {bn} by

bn =
1

n
an.

(a) Prove that {bn} converges.

(b) Suppose limn→∞ an = L. What is limn→∞ bn? Justify your

answer.

Solution:

(a) Prove that {bn} converges. Since {an} is convergent, there exists

some real number L such that

lim
n→∞

an = L.

We do not need the value of L explicitly to show that {bn} converges;

only that {an} is bounded. Convergence implies boundedness, so there
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exists an M > 0 such that

|an| ≤ M for all n ∈ N.

Define bn = 1
n
an. Then

|bn| =

∣∣∣∣ 1nan
∣∣∣∣ =

1

n
|an| ≤ 1

n
M.

As n → ∞, we have M
n
→ 0. Therefore, the sequence {bn} is squeezed

between −M
n

and M
n
, both of which converge to 0. By the Squeeze

Theorem, {bn} converges, regardless of the specific limit of {an}.

(b) Suppose limn→∞ an = L. Find limn→∞ bn. From part (a) we have

established that bn converges. Now we use the fact that

lim
n→∞

an = L.

Consider

bn =
1

n
an.

We can rewrite the limit in terms of an and 1/n:

lim
n→∞

bn = lim
n→∞

( 1
n
an

)
.

If limn→∞ an = L and clearly limn→∞
1
n
= 0, then using standard limit

laws (product rule for limits) gives

lim
n→∞

(
1

n
an

)
=

(
lim
n→∞

1
n

) (
lim
n→∞

an
)
= 0 · L = 0.

Hence,

lim
n→∞

bn = 0.

Answer:

(a) {bn} converges because |bn| = 1
n
|an| ≤ M

n
for some bound M on

{|an|}, and thus bn → 0 by the Squeeze Theorem.

(b) If limn→∞ an = L, then by limit laws, limn→∞ bn = 0 · L = 0.
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(Note: This solution is AI-written but verified by a human committee

member.)

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.

Spring 2025 #4. Let X be a normed space with two equivalent

norms ∥ · ∥1 and ∥ · ∥2 defined on it. Show that a sequence {xn}∞n=1 in

X converges to x ∈ X with respect to the norm ∥ · ∥1 if and only if the

sequence converges to x with respect to the norm ∥ · ∥2.

Solution: By definition of the equivalence of norms ∥ · ∥1 and ∥ · ∥2,
there exist positive constants α and β such that for every y ∈ X,

α∥y∥1 ≤ ∥y∥2 ≤ β∥y∥1.

We will use these inequalities to show the equivalence of convergence

under these norms.

(⇒) Suppose that xn → x with respect to ∥ · ∥1. This means that

lim
n→∞

∥xn − x∥1 = 0.

Using the inequality ∥y∥2 ≤ β∥y∥1, we have

∥xn − x∥2 ≤ β ∥xn − x∥1.

Taking the limit as n → ∞ shows

lim
n→∞

∥xn − x∥2 ≤ β lim
n→∞

∥xn − x∥1 = β · 0 = 0.

Hence ∥xn−x∥2 → 0, which implies that xn → x with respect to ∥ · ∥2.
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(⇐) Conversely, suppose that xn → x with respect to ∥ · ∥2. Then

lim
n→∞

∥xn − x∥2 = 0.

Using the inequality α∥y∥1 ≤ ∥y∥2, we obtain

α ∥xn − x∥1 ≤ ∥xn − x∥2.

Taking the limit as n → ∞ gives

α lim
n→∞

∥xn − x∥1 ≤ lim
n→∞

∥xn − x∥2 = 0,

which implies

lim
n→∞

∥xn − x∥1 = 0.

Hence xn → x with respect to ∥ · ∥1.

Since we have shown both directions, the convergence of {xn} to x

under ∥ · ∥1 is equivalent to the convergence under ∥ · ∥2.

(Note: This solution is AI-written but verified by a human committee

member.)

Spring 2025 #5. Let ℓ∞ be the set of all bounded sequences of real

numbers. In other words,

ℓ∞ = {(x1, x2, x3, . . . ) | ∃M ∈ R such that x1, x2, x3, · · · ∈ [−M,M ]}.

Here [−M,M ] ⊂ R denotes the closed interval from −M to M .

Let W be the subset of ℓ∞ consisting of all “eventually zero” sequences

of real numbers. That is, (x1, x2, x3, . . . ) ∈ W if and only if there is an

N such that xk = 0 for all k ≥ N .

(a) Prove that W is a linear subspace of ℓ∞.

Proof. First, observe that the zero vector in ℓ∞ is the sequence

0 = (0, 0, 0, 0, . . .).
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Note that this sequence is clearly “eventually zero”, so that 0 ∈ W .

Next, assume that

x = (x1, x2, x3, . . .)

and

y = (y1, y2, y3, . . .)

are elements of W . Then there exist N1, N2 ∈ N such that xk = 0 if

k ≥ N1, and yk = 0 if k ≥ N2. By definition, we have

x+ y = (x1 + y1, x2 + y2, x3 + y3, . . .)

It is easy to see that

xk + yk = 0

whenever k ≥ max{N1, N2}. Thus, the sequence x+y is also eventually

zero, so that x+ y ∈ W .

Finally, let c ∈ R. Then

cx = (cx1, cx2, cx3, . . .).

Moreover, since xk = 0 whenever k ≥ N1, then it must also be the case

that cxk = 0 whenever k ≥ N . Thus, whenever c ∈ R and x ∈ W ,

then cx ∈ W . We can thus conclude that W is a subspace. □

(b) Recall that the standard metric on ℓ∞ is given by

d((x1, x2, x3, . . . ), (y1, y2, y3, . . . )) = sup{|xi − yi | i ∈ N}.

With respect to this metric, is W a closed linear subspace of ℓ∞? Prove

that your answer is correct.

Proof. The space W is not a closed linear subspace of ℓ∞. To see why,

consider the sequence xm in W defined by

(xm)n =

 1
n

if n ≤ m

0 if n > m.
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It is clear that xm converges to the sequence

x =

(
1,

1

2
,
1

3
,
1

4
, . . .

)
,

because

d(xm, x) =
1

m
→ 0.

Note that x /∈ W , as it is not “eventually zero”. Thus W is not

closed. □

Spring 2025 #6. Let d(x, y) = ∥x − y∥ be the standard metric

induced by a norm on a real vector space X, and define a new function

ρ by:

ρ(x, y) =
d(x, y)

1 + d(x, y)
.

(a) Prove that ρ is a metric on X.

(b) Can ρ be induced by a norm? Justify your answer.

Solution:

(a) Prove that ρ is a metric onX. Recall that a function ρ : X×X → R
is a metric if it satisfies the following for all x, y, z ∈ X:

(i) ρ(x, y) ≥ 0 and ρ(x, y) = 0 if and only if x = y.

(ii) ρ(x, y) = ρ(y, x) (symmetry).

(iii) ρ(x, z) ≤ ρ(x, y) + ρ(y, z) (triangle inequality).

(i) Nonnegativity and Identity of Indiscernibles.

Since d(x, y) = ∥x− y∥ ≥ 0, clearly

ρ(x, y) =
d(x, y)

1 + d(x, y)
≥ 0.
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Furthermore, ρ(x, y) = 0 if and only if d(x, y) = 0, which occurs if and

only if x = y. Thus,

ρ(x, x) = 0 and ρ(x, y) = 0 =⇒ x = y.

(ii) Symmetry.

Since d(x, y) = d(y, x) for the usual norm-induced metric, we have

ρ(x, y) =
∥x− y∥

1 + ∥x− y∥
=

∥y − x∥
1 + ∥y − x∥

= ρ(y, x).

(iii) Triangle Inequality.

We need to show:

ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Using the definition of ρ, this is equivalent to:

d(x, z)

1 + d(x, z)
≤ d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)
.

Since d(x, z) = ∥x − z∥, by the triangle inequality for the norm ∥ · ∥,
we know

d(x, z) = ∥x− z∥ ≤ ∥x− y∥+ ∥y − z∥ = d(x, y) + d(y, z).

Thus

d(x, z) ≤ d(x, y) + d(y, z).

Define A = d(x, y) and B = d(y, z), so d(x, z) ≤ A+B. Then

ρ(x, z) =
d(x, z)

1 + d(x, z)
≤ A+B

1 + (A+B)
=

A+B

1 + A+B
.

We wish to compare this with

ρ(x, y) + ρ(y, z) =
A

1 + A
+

B

1 +B
.
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It is a known fact (and can be shown by direct algebraic manipulation

or by a more general property of such “bounded metrics”) that

A+B

1 + A+B
≤ A

1 + A
+

B

1 +B
,

for all A,B ≥ 0. A straightforward approach is to set up the difference(
A

1 + A
+

B

1 +B

)
− A+B

1 + A+B
,

and verify it is nonnegative by putting everything over a common de-

nominator. (See below for more details.)

Hence

ρ(x, z) =
d(x, z)

1 + d(x, z)
≤ A+B

1 + A+B
≤ A

1 + A
+

B

1 +B
= ρ(x, y)+ρ(y, z).

This completes the verification that ρ satisfies the triangle inequality.

Therefore, ρ is a metric on X.

(b) Can ρ be induced by a norm? To be induced by a norm ∥ · ∥∗ on

X, we would need

ρ(x, y) = ∥x− y∥∗

for some norm ∥·∥∗. A standard requirement for a norm is homogeneity:

∥tv∥∗ = |t| ∥v∥∗ for any scalar t and vector v.

If ρ were induced by a norm, we would expect a relationship of the

form

ρ(tx, ty) = |t| ρ(x, y) for all t ∈ R.

However, from the definition

ρ(x, y) =
∥x− y∥

1 + ∥x− y∥
,

if we scale x and y by t ̸= 0, we get

ρ(tx, ty) =
∥tx− ty∥

1 + ∥tx− ty∥
=

|t| · ∥x− y∥
1 + |t| · ∥x− y∥

.
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In general,
|t| · ∥x− y∥

1 + |t| · ∥x− y∥
̸= |t| · ∥x− y∥

1 + ∥x− y∥
.

To exhibit a specific counterexample: Because X ̸= 0, we know that

X contains a unit vector x. (To see that, take 0 ̸= v ∈ X, then let

x = v/||v||.) Let y = 0 and t = 2. Substituting into the expressions

above gives us

|t| · ∥x− y∥
1 + |t| · ∥x− y∥

=
2

1 + 2
̸= 2 · 1

2
= |t| · ∥x− y∥

1 + ∥x− y∥
.

This shows that ρ does not satisfy the necessary homogeneity for being

induced by a norm.

(Note: This solution was AI-written but then edited by a human com-

mittee member.)

Answer:

(a) ρ is a metric because it is nonnegative, equals zero only when

x = y, is symmetric, and satisfies the triangle inequality (by

leveraging the fact that d(x, y) itself is a metric).

(b) ρ cannot be induced by a norm since it does not scale linearly

under scalar multiplication of vectors (fails the homogeneity

condition).

Spring 2025 #7. Let f(t) = |t| for t ∈ [−π, π], and extend it to be

2π-periodic on R.

(a) Prove that f is an even function.

(b) Find the Fourier series of f(t) in trigonometric form.

Hint: Use (a).

Answer:
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(a) By definition, f(t) is an even function if

f(−t) = f(t).

This holds for f(t) = |t| because

f(−t) = | − t| = |t| = f(t).

(b) Since f(t) is even, then f(t) sin(nt) is odd, so that∫ π

−π

f(t) sin(nt) dt = 0.

Thus, all the Fourier coefficients corresponding to the sine terms

are zero.

For the coefficients corresponding to the cosine terms, we

observe that

c0 =

∫ π

−π

1√
2π

|t| dt

=
π

3
2

√
2

and, for n ≥ 1,

cn =

∫ π

−π

1√
π
|t| cos(nt) dt

=
2 (πn sin (πn) + cos (πn)− 1)√

π n2

=
2 ((−1)n − 1)√

π n2
.

Thus, the Fourier series for f(t) is

f(t) ∼ π
3
2

√
2
+

∞∑
n=1

2 ((−1)n − 1)√
π n2

cos(nt).


