Fall 2023 Algebra Comprehensive Exam - Solutions

Linear Algebra

(L1) Let V be a vector space over a field \mathbb{F}. Let W be a subspace of V. Fix an element $v_{0} \in V$. Define the set $W_{0}=\left\{v_{0}+w: w \in W\right\}$. Prove that W_{0} is a subspace of V if and only if $v_{0} \in W$.

Answer: Assume W_{0} is a subspace. Then, $\overrightarrow{0} \in W_{0}$. That is, there exists $w \in W$ such that $\overrightarrow{0}=v_{0}+w$. So, $v_{0}=-w \in W$. Conversely, if $v_{0} \in W$ then $W_{0} \neq \emptyset$: $v_{0}=v_{0}+\overrightarrow{0} \in W_{0}$. And if $w, w^{\prime} \in W,\left(v_{0}+w\right)+\left(v_{0}+w^{\prime}\right)=v_{0}+\left(w+v_{0}+w^{\prime}\right) \in W_{0}$. Therefore, W_{0} is a subspace of V.
(L2) Let V be the real vector space of real functions spanned by $\left\{1, x, e^{x}\right\}$, and let $h: V \rightarrow$ V be defined by $h(f)=f-f^{\prime}$ for all $f \in V$, that is, $h(f)$ is f minus its derivative. No need to prove that h is a linear function.
(1) What is the dimension of V ?
(2) Find a basis for the space $\operatorname{ker} h=\{f \in V: h(f)=0\}$.
(3) Find a basis for the space $\operatorname{im} h=\{h(f): f \in V\}$.

Answer:
(1) We show that $\left\{1, x, e^{x}\right\}$ is linearly independent and hence $\operatorname{dim} V=3$. Suppose that $c_{1}+c_{2} x+c_{3} e^{x}=0$ for some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$. Plugging in $x=-1, x=0$ and $x=1$ into this equation gives the system

$$
\begin{aligned}
c_{1}-c_{2}+c_{3} e^{-1} & =0 \\
c_{1}+c_{3} & =0 \\
c_{1}+c_{2}+c_{3} e & =0
\end{aligned}
$$

which can be solved to give $c_{1}=c_{2}=c_{3}=0$.
Or, since differentiation is a linear function, setting $x=0$ into $c_{1}+c_{2} x+c_{3} e^{x}=0$ and the first and second derivatives of this equation gives $c_{1}+c_{3}=0, c_{2}+c_{3}=0$ and $c_{3}=0$, which is even easier to solve to get $c_{1}=c_{2}=c_{3}=0$.
(2) If $f=c_{1}+c_{2} x+c_{3} e^{x}$ for some $c_{1}, c_{2}, c_{3} \in \mathbb{R}$, then $h(f)=\left(c_{1}+c_{2} x+c_{3} e^{x}\right)-$ $\left(c_{2}+c_{3} e^{x}\right)=\left(c_{1}-c_{2}\right)+c_{2} x$. So f is in ker h if and only if $c_{1}-c_{2}=c_{2}=0$ if and only if $c_{1}=c_{2}=0$, if and only if $f=c_{3} e^{x}$ for some $c_{3} \in \mathbb{R}$. So a basis for ker h is $\left\{e^{x}\right\}$.
(3) Since, from above, $h(f)=\left(c_{1}-c_{2}\right)+c_{2} x,\{1, x\}$ is a basis for im h.
(L3) Let T be an arbitrary linear operator on a vector space V, and let λ and μ be two distinct eigenvalues of T.
(a) Prove or disprove: If v is an eigenvector of T with eigenvalue λ, and w is an eigenvector of T with eigenvalue μ, then $v+w$ is an eigenvector of T.
(b) Prove or disprove: If v and w are eigenvectors of T with eigenvalue λ, then $v+w$ is an eigenvector of T.
Answer: The statement in (a) is false. For instance, if $V=\mathbb{R}^{2}$ and $T(x, y)=$ $(x, 2 y)$, then $(1,0)$ has eigenvalue 1 , and $(0,1)$ has eigenvalue 2. But $(1,0)+$ $(0,1)=(1,1)$, and $(1,1)$ is not an eigenvector since $T(1,1)=(1,2)$ is not a scalar multiple of $(1,1)$.
But (b) is true: $T(v+w)=T v+T w=\lambda v+\lambda w=\lambda(v+w)$, so $v+w$ is an eigenvector with eigenvalue λ.

Groups

(G1) Let $G=\mathbb{Z}_{4} \times \mathbb{Z}_{6}$ and $H=\langle(2,2)\rangle$. What familiar group is G / H isomorphic to?
Answer: We have $|G|=24$ and $|H|=6$, and so $|G / H|=4$. Hence G / H is isomorphic to \mathbb{Z}_{4} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. The elements of G / H are

$$
\begin{aligned}
H & =\{(0,0),(2,2),(0,4),(2,0),(0,2),(2,4)\} \\
(1,0)+H & =\{(1,0),(3,2),(1,4),(3,0),(1,2),(3,4)\} \\
(1,1)+H & =\{(1,1),(3,3),(1,5),(3,1),(1,3),(3,5)\} \\
(0,1)+H & =\{(0,1),(2,3),(0,5),(2,1),(0,3),(2,5)\}
\end{aligned}
$$

Since $(1,0)+(1,0)=(2,0) \in H,(1,1)+(1,1)=(2,2) \in H$ and $(0,1)+(0,1)=$ $(0,2) \in H$, all nonidentity elements of G / H have order 2 and so $G / H \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
(G2) Let G be a group. For $x, y \in G$, recall that x is conjugate to y in G if there exists $g \in G$ such that $y=g x g^{-1}$. We will write $x \sim y$ to denote that x is conjugate to y in G. Prove that the relation " \sim " is an equivalence relation on G.

Answer: Let $x, y, z \in G$. The relation is reflexive because $1 x 1^{-1}=x$, so $x \sim x$. If $x \sim y$, then $y=g x g^{-1}$ for some g, so $x=g^{-1} y\left(g^{-1}\right)^{-1}$, and so $y \sim x$; thus the relation is symmetric. And if $x \sim y$ and $y \sim z$, then $y=g x g^{-1}$ and $z=h y h^{-1}$ for some g, h, so $z=h g x g^{-1} h^{-1}=(h g) x(h g)^{-1}$, and so $x \sim z$; thus the relation is transitive.
(G3) Let G be an Abelian group. Let H be the set of elements of G with finite order; that is, $H=\{g \in G:|g|<\infty\}$. Prove that H is a subgroup of G.

Answer: First of all, the identity of G has order 1, so it is in H. Now let $g, h \in H$. This means that g and h have finite order; say $|g|=m$ and $|h|=n$. Then $g h$ has finite order, because $(g h)^{m n}=g^{m n} h^{m n}$ (since G is Abelian), and $g^{m n}=\left(g^{m}\right)^{n}=1$ and $h^{m n}=\left(h^{n}\right)^{m}=1$. Thus $g h \in H$. Finally, g^{-1} has the same order as g, so $g^{-1} \in H$.

Synthesis

(S1) Find a subgroup of $G L_{2}(\mathbb{C})$ that is isomorphic to \mathbb{Z}_{4}.
Answer: There are lots of answers. For example,

$$
\begin{gathered}
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\right\} \\
\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
i & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
-1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{rr}
-i & 0 \\
0 & 1
\end{array}\right]\right\}
\end{gathered}
$$

(S2) Let H be the set of all matrices in $G L_{2}(\mathbb{R})$ with integer entries. Is H a subgroup of $G L_{2}(\mathbb{R})$? Prove your answer.

Answer: No, because it is not closed under inverses: for instance, if $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, then $A \in H$ but $A^{-1}=\left[\begin{array}{cc}\frac{1}{2} & 0 \\ 0 & \frac{1}{2}\end{array}\right] \notin H$.
(S3) Let n be a nonnegative integer. Recall that \mathbb{R}^{*} is the group of non-zero real numbers under multiplication. Define $\phi: G L_{n}(\mathbb{R}) \rightarrow \mathbb{R}^{*}$ by $\phi(A)=\operatorname{det}(A)$, the determinant of A.
(a) Use a property of determinants to explain why ϕ is a homomorphism.
(b) Determine $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$.
(c) Based on your answers to (a) and (b), use the First Isomorphism Theorem to make a statement involving a quotient group of $G L_{n}(\mathbb{R})$.
Answer: (a) Note that $\phi(A \cdot B)=\operatorname{det}(A \cdot B)=\operatorname{det}(A) \cdot \operatorname{det}(B)=\phi(A) \cdot \phi(B)$.
Therefore, ϕ is a homomorphism.
(b) $\operatorname{ker}(\phi)=\left\{A \in G L_{n}(\mathbb{R}): \operatorname{det}(A)=1\right\}=S L_{n}(\mathbb{R})$.
$\operatorname{im}(\phi)=\mathbb{R}^{*}$, because, for each $r \in \mathbb{R}^{*}$, the diagonal matrix A with entries $r, 1,1, \ldots, 1$ has determinant r, so $\phi(A)=r$.
(c) By the First Isomorphism Theorem, $G L_{n}(\mathbb{R}) / \operatorname{ker}(\phi)$ is isomorphic to \mathbb{R}^{*}.

