Linear Algebra

(L1) Let V be a vector space over a field \mathbb{F} . Let W be a subspace of V. Fix an element $v_0 \in V$. Define the set $W_0 = \{v_0 + w : w \in W\}$. Prove that W_0 is a subspace of V if and only if $v_0 \in W$.

Answer: Assume W_0 is a subspace. Then, $\overrightarrow{0} \in W_0$. That is, there exists $w \in W$ such that $\overrightarrow{0} = v_0 + w$. So, $v_0 = -w \in W$. Conversely, if $v_0 \in W$ then $W_0 \neq \emptyset$: $v_0 = v_0 + \overrightarrow{0} \in W_0$. And if $w, w' \in W$, $(v_0 + w) + (v_0 + w') = v_0 + (w + v_0 + w') \in W_0$. Therefore, W_0 is a subspace of V.

- (L2) Let V be the real vector space of real functions spanned by $\{1, x, e^x\}$, and let $h: V \to V$ be defined by h(f) = f f' for all $f \in V$, that is, h(f) is f minus its derivative. No need to prove that h is a linear function.
 - (1) What is the dimension of V?
 - (2) Find a basis for the space ker $h = \{f \in V : h(f) = 0\}$.
 - (3) Find a basis for the space im $h = \{h(f) : f \in V\}$. Answer:
 - (1) We show that $\{1, x, e^x\}$ is linearly independent and hence dim V = 3. Suppose that $c_1 + c_2 x + c_3 e^x = 0$ for some $c_1, c_2, c_3 \in \mathbb{R}$. Plugging in x = -1, x = 0 and x = 1 into this equation gives the system

$$c_1 - c_2 + c_3 e^{-1} = 0$$

 $c_1 + c_3 = 0$
 $c_1 + c_2 + c_3 e = 0$

which can be solved to give $c_1 = c_2 = c_3 = 0$. Or, since differentiation is a linear function, setting x = 0 into $c_1 + c_2x + c_3e^x = 0$ and the first and second derivatives of this equation gives $c_1 + c_3 = 0$, $c_2 + c_3 = 0$ and $c_3 = 0$, which is even easier to solve to get $c_1 = c_2 = c_3 = 0$.

- (2) If $f = c_1 + c_2 x + c_3 e^x$ for some $c_1, c_2, c_3 \in \mathbb{R}$, then $h(f) = (c_1 + c_2 x + c_3 e^x) (c_2 + c_3 e^x) = (c_1 c_2) + c_2 x$. So f is in ker h if and only if $c_1 c_2 = c_2 = 0$ if and only if $c_1 = c_2 = 0$, if and only if $f = c_3 e^x$ for some $c_3 \in \mathbb{R}$. So a basis for ker h is $\{e^x\}$.
- (3) Since, from above, $h(f) = (c_1 c_2) + c_2 x$, $\{1, x\}$ is a basis for im *h*.
- (L3) Let T be an arbitrary linear operator on a vector space V, and let λ and μ be two distinct eigenvalues of T.
 - (a) Prove or disprove: If v is an eigenvector of T with eigenvalue λ , and w is an eigenvector of T with eigenvalue μ , then v + w is an eigenvector of T.
 - (b) Prove or disprove: If v and w are eigenvectors of T with eigenvalue λ, then v + w is an eigenvector of T.
 Answer: The statement in (a) is false. For instance, if V = ℝ² and T(x, y) = (x, 2y), then (1,0) has eigenvalue 1, and (0,1) has eigenvalue 2. But (1,0) + (0,1) = (1,1), and (1,1) is not an eigenvector since T(1,1) = (1,2) is not a scalar multiple of (1,1).

But (b) is true: $T(v+w) = Tv + Tw = \lambda v + \lambda w = \lambda(v+w)$, so v+w is an eigenvector with eigenvalue λ .

Groups

- (G1) Let $G = \mathbb{Z}_4 \times \mathbb{Z}_6$ and $H = \langle (2,2) \rangle$. What familiar group is G/H isomorphic to? **Answer:** We have |G| = 24 and |H| = 6, and so |G/H| = 4. Hence G/H is isomorphic to \mathbb{Z}_4 or $\mathbb{Z}_2 \times \mathbb{Z}_2$. The elements of G/H are
 - $H = \{(0,0), (2,2), (0,4), (2,0), (0,2), (2,4)\}$ (1,0) + H = {(1,0), (3,2), (1,4), (3,0), (1,2), (3,4)} (1,1) + H = {(1,1), (3,3), (1,5), (3,1), (1,3), (3,5)} (0,1) + H = {(0,1), (2,3), (0,5), (2,1), (0,3), (2,5)}

Since $(1,0) + (1,0) = (2,0) \in H$, $(1,1) + (1,1) = (2,2) \in H$ and $(0,1) + (0,1) = (0,2) \in H$, all nonidentity elements of G/H have order 2 and so $G/H \cong \mathbb{Z}_2 \times \mathbb{Z}_2$.

(G2) Let G be a group. For $x, y \in G$, recall that x is *conjugate* to y in G if there exists $g \in G$ such that $y = gxg^{-1}$. We will write $x \sim y$ to denote that x is conjugate to y in G. Prove that the relation "~" is an equivalence relation on G.

Answer: Let $x, y, z \in G$. The relation is reflexive because $1 x 1^{-1} = x$, so $x \sim x$. If $x \sim y$, then $y = gxg^{-1}$ for some g, so $x = g^{-1}y(g^{-1})^{-1}$, and so $y \sim x$; thus the relation is symmetric. And if $x \sim y$ and $y \sim z$, then $y = gxg^{-1}$ and $z = hyh^{-1}$ for some g, h, so $z = hgxg^{-1}h^{-1} = (hg)x(hg)^{-1}$, and so $x \sim z$; thus the relation is transitive.

(G3) Let G be an Abelian group. Let H be the set of elements of G with finite order; that is, $H = \{g \in G : |g| < \infty\}$. Prove that H is a subgroup of G.

Answer: First of all, the identity of G has order 1, so it is in H. Now let $g, h \in H$. This means that g and h have finite order; say |g| = m and |h| = n. Then gh has finite order, because $(gh)^{mn} = g^{mn}h^{mn}$ (since G is Abelian), and $g^{mn} = (g^m)^n = 1$ and $h^{mn} = (h^n)^m = 1$. Thus $gh \in H$. Finally, g^{-1} has the same order as g, so $g^{-1} \in H$.

Synthesis

(S1) Find a subgroup of $GL_2(\mathbb{C})$ that is isomorphic to \mathbb{Z}_4 . Answer: There are lots of answers. For example,

$\left\{ \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} \right.$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -1 \end{bmatrix}, \begin{bmatrix} 0\\ 1 \end{bmatrix}$	$\begin{bmatrix} -1 \\ 0 \end{bmatrix} \bigg\}$
$\left\{ \begin{bmatrix} 1\\ 0 \end{bmatrix} \right.$	$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} i\\0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -1\\0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix}, \begin{bmatrix} -i\\0 \end{bmatrix}$	$\begin{bmatrix} 0\\1 \end{bmatrix} \Big\}$

(S2) Let H be the set of all matrices in $GL_2(\mathbb{R})$ with integer entries. Is H a subgroup of $GL_2(\mathbb{R})$? Prove your answer.

Answer: No, because it is not closed under inverses: for instance, if $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$,

then
$$A \in H$$
 but $A^{-1} = \begin{bmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{bmatrix} \notin H.$

- (S3) Let n be a nonnegative integer. Recall that \mathbb{R}^* is the group of non-zero real numbers under multiplication. Define $\phi : GL_n(\mathbb{R}) \to \mathbb{R}^*$ by $\phi(A) = \det(A)$, the determinant of A.
 - (a) Use a property of determinants to explain why ϕ is a homomorphism.
 - (b) Determine $\ker(\phi)$ and $\operatorname{im}(\phi)$.
 - (c) Based on your answers to (a) and (b), use the First Isomorphism Theorem to make a statement involving a quotient group of $GL_n(\mathbb{R})$.

Answer: (a) Note that $\phi(A \cdot B) = \det(A \cdot B) = \det(A) \cdot \det(B) = \phi(A) \cdot \phi(B)$. Therefore, ϕ is a homomorphism.

(b) $\operatorname{ker}(\phi) = \{A \in GL_n(\mathbb{R}) : \det(A) = 1\} = SL_n(\mathbb{R}).$

 $\operatorname{im}(\phi) = \mathbb{R}^*$, because, for each $r \in \mathbb{R}^*$, the diagonal matrix A with entries $r, 1, 1, \ldots, 1$ has determinant r, so $\phi(A) = r$.

(c) By the First Isomorphism Theorem, $GL_n(\mathbb{R})/\ker(\phi)$ is isomorphic to \mathbb{R}^* .