
Fall 2023 Algebra Comprehensive Exam — Solutions

Linear Algebra

(L1) Let V be a vector space over a field F. Let W be a subspace of V . Fix an element
v0 ∈ V . Define the set W0 = {v0 + w : w ∈ W}. Prove that W0 is a subspace of V if
and only if v0 ∈ W .

Answer: Assume W0 is a subspace. Then,
−→
0 ∈ W0. That is, there exists w ∈ W

such that
−→
0 = v0 + w. So, v0 = −w ∈ W . Conversely, if v0 ∈ W then W0 6= ∅ :

v0 = v0 +
−→
0 ∈ W0. And if w,w′ ∈ W , (v0 +w) + (v0 +w′) = v0 + (w+ v0 +w′) ∈ W0.

Therefore, W0 is a subspace of V .

(L2) Let V be the real vector space of real functions spanned by {1, x, ex}, and let h : V →
V be defined by h(f) = f − f ′ for all f ∈ V , that is, h(f) is f minus its derivative.
No need to prove that h is a linear function.
(1) What is the dimension of V ?
(2) Find a basis for the space kerh = {f ∈ V : h(f) = 0}.
(3) Find a basis for the space imh = {h(f) : f ∈ V }.
Answer:

(1) We show that {1, x, ex} is linearly independent and hence dimV = 3. Suppose
that c1 + c2x + c3e

x = 0 for some c1, c2, c3 ∈ R. Plugging in x = −1, x = 0 and
x = 1 into this equation gives the system

c1 − c2 + c3e
−1 = 0

c1 + c3 = 0

c1 + c2 + c3e = 0

which can be solved to give c1 = c2 = c3 = 0.
Or, since differentiation is a linear function, setting x = 0 into c1+c2x+c3e

x = 0
and the first and second derivatives of this equation gives c1 + c3 = 0, c2 + c3 = 0
and c3 = 0, which is even easier to solve to get c1 = c2 = c3 = 0.

(2) If f = c1 + c2x + c3e
x for some c1, c2, c3 ∈ R, then h(f) = (c1 + c2x + c3e

x) −
(c2 + c3e

x) = (c1 − c2) + c2x. So f is in kerh if and only if c1 − c2 = c2 = 0 if
and only if c1 = c2 = 0, if and only if f = c3e

x for some c3 ∈ R. So a basis for
kerh is {ex}.

(3) Since, from above, h(f) = (c1 − c2) + c2x, {1, x} is a basis for imh.

(L3) Let T be an arbitrary linear operator on a vector space V , and let λ and µ be two
distinct eigenvalues of T .
(a) Prove or disprove: If v is an eigenvector of T with eigenvalue λ, and w is an

eigenvector of T with eigenvalue µ, then v + w is an eigenvector of T .
(b) Prove or disprove: If v and w are eigenvectors of T with eigenvalue λ, then v+w

is an eigenvector of T .
Answer: The statement in (a) is false. For instance, if V = R2 and T (x, y) =
(x, 2y), then (1, 0) has eigenvalue 1, and (0, 1) has eigenvalue 2. But (1, 0) +
(0, 1) = (1, 1), and (1, 1) is not an eigenvector since T (1, 1) = (1, 2) is not a
scalar multiple of (1, 1).
But (b) is true: T (v + w) = Tv + Tw = λv + λw = λ(v + w), so v + w is an
eigenvector with eigenvalue λ.
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Groups

(G1) Let G = Z4 × Z6 and H = 〈(2, 2)〉. What familiar group is G/H isomorphic to?
Answer: We have |G| = 24 and |H| = 6, and so |G/H| = 4. Hence G/H is

isomorphic to Z4 or Z2 × Z2. The elements of G/H are

H = {(0, 0), (2, 2), (0, 4), (2, 0), (0, 2), (2, 4)}
(1, 0) +H = {(1, 0), (3, 2), (1, 4), (3, 0), (1, 2), (3, 4)}
(1, 1) +H = {(1, 1), (3, 3), (1, 5), (3, 1), (1, 3), (3, 5)}
(0, 1) +H = {(0, 1), (2, 3), (0, 5), (2, 1), (0, 3), (2, 5)}

Since (1, 0) + (1, 0) = (2, 0) ∈ H, (1, 1) + (1, 1) = (2, 2) ∈ H and (0, 1) + (0, 1) =
(0, 2) ∈ H, all nonidentity elements of G/H have order 2 and so G/H ∼= Z2 × Z2.

(G2) Let G be a group. For x, y ∈ G, recall that x is conjugate to y in G if there exists
g ∈ G such that y = gxg−1. We will write x ∼ y to denote that x is conjugate to y
in G. Prove that the relation “∼” is an equivalence relation on G.
Answer: Let x, y, z ∈ G. The relation is reflexive because 1x 1−1 = x, so x ∼ x.

If x ∼ y, then y = gxg−1 for some g, so x = g−1y(g−1)−1, and so y ∼ x; thus the
relation is symmetric. And if x ∼ y and y ∼ z, then y = gxg−1 and z = hyh−1

for some g, h, so z = hgxg−1h−1 = (hg)x(hg)−1, and so x ∼ z; thus the relation is
transitive.

(G3) Let G be an Abelian group. Let H be the set of elements of G with finite order; that
is, H = {g ∈ G : |g| <∞}. Prove that H is a subgroup of G.
Answer: First of all, the identity of G has order 1, so it is in H. Now let g, h ∈ H.

This means that g and h have finite order; say |g| = m and |h| = n. Then gh has
finite order, because (gh)mn = gmnhmn (since G is Abelian), and gmn = (gm)n = 1
and hmn = (hn)m = 1. Thus gh ∈ H. Finally, g−1 has the same order as g, so
g−1 ∈ H.

Synthesis

(S1) Find a subgroup of GL2(C) that is isomorphic to Z4.
Answer: There are lots of answers. For example,{[

1 0
0 1

]
,

[
0 1
−1 0

]
,

[
−1 0

0 −1

]
,

[
0 −1
1 0

]}
{[

1 0
0 1

]
,

[
i 0
0 1

]
,

[
−1 0

0 1

]
,

[
−i 0

0 1

]}

(S2) Let H be the set of all matrices in GL2(R) with integer entries. Is H a subgroup of
GL2(R)? Prove your answer.

Answer: No, because it is not closed under inverses: for instance, if A =

[
2 0
0 2

]
,

then A ∈ H but A−1 =

[
1
2

0
0 1

2

]
6∈ H.
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(S3) Let n be a nonnegative integer. Recall that R∗ is the group of non-zero real numbers
under multiplication. Define φ : GLn(R) → R∗ by φ(A) = det(A), the determinant
of A.
(a) Use a property of determinants to explain why φ is a homomorphism.
(b) Determine ker(φ) and im(φ).
(c) Based on your answers to (a) and (b), use the First Isomorphism Theorem to

make a statement involving a quotient group of GLn(R).
Answer: (a) Note that φ(A · B) = det(A · B) = det(A) · det(B) = φ(A) · φ(B).

Therefore, φ is a homomorphism.
(b) ker(φ) = {A ∈ GLn(R) : det(A) = 1} = SLn(R).
im(φ) = R∗, because, for each r ∈ R∗, the diagonal matrixA with entries r, 1, 1, . . . , 1

has determinant r, so φ(A) = r.
(c) By the First Isomorphism Theorem, GLn(R)/ ker(φ) is isomorphic to R∗.
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