Math 5800 9/8/21

| P9 | | Def: Let $S \subseteq \mathbb{R}$. We say that S is an almost everywhere set if $R-S = \{x \mid x \in \mathbb{R} \text{ and } x \notin S\}$ measure Zero has Ex: Let S be the set of irrational numbers. Then, R-S=QWhich has measure Zero because Q is countable. Thus, S is an almost everywhere

Theorem: If Si, Sz, ..., Sn are almost everywhere sets, then MSk is an almost k=1 everywhere set. Pf: HW = For proofs use: $R- \bigcap S_k = U(R-S_k)$ k = kK Theorem: Let Sij Szj Szj ... be a countably infinite number of almost everywhere sets. is an almost everywhere set, $\bigwedge^{\infty} S_{k}$ k=1Then, pf: HW 0

We will now give an example of a set that doesn't have measure zero. But first a lemma.

P9 3

Lemma: Let
$$a, b \in \mathbb{R}$$
 with
 $a < b$. If $I_1, I_2, ..., I_n$
are n bounded open intervals
where $\prod_{k=1}^{n} T_k$

then

$$\int_{k=1}^{n} \left(I_{k} \right) > b - a$$

$$\int_{I_{2}}^{I_{2}} I_{3}$$

$$\int_{I_{1}}^{I_{2}} \left(J_{2} \right) \int_{I_{3}}^{I_{3}} \int_{I_{1}}^{I_{3}} \int_{I_{1}}^{I_{2}} \int_{I_{3}}^{I_{3}} \int_{I_{1}}^{I_{3}} \int_{I_{3}}^{I_{3}} \int_{I$$

proof by induction: Let S(n) be the statement of the lemma. a, b e R base case S(1): Suppose with a < b. Suppose I, bounded open interval is a with $[a,b] \subseteq I_1$. $T_{1} = (P, q).$ Let p<a<b<q. A Then, $l(I_1) = q - p > b - a$ And, S(1) picture

Induction step: Let
$$n \ge 1$$
 and $[\stackrel{Pg}{S}]$
suppose $S(n)$ is true.
We now prove $S(n+1)$ is true.
Let $a, b \in | \mathbb{R}$ with $a < b$.
Let $a, b \in | \mathbb{R}$ with $a < b$.
Suppose $[a, b] \subseteq \bigcup_{k=1}^{n+1} \mathbb{R}]$
where $I_{1}, I_{2}, \dots, I_{n}, I_{n+1}$ are
bounded open intervals.
Since $[a, b] \subseteq I_{1} \cup I_{2} \cup \dots \cup I_{n} \cup I_{n+1} .$
We must have that $b \in I_{k}$
for some k .
By relabeling the intervals we
By relabeling the intervals we

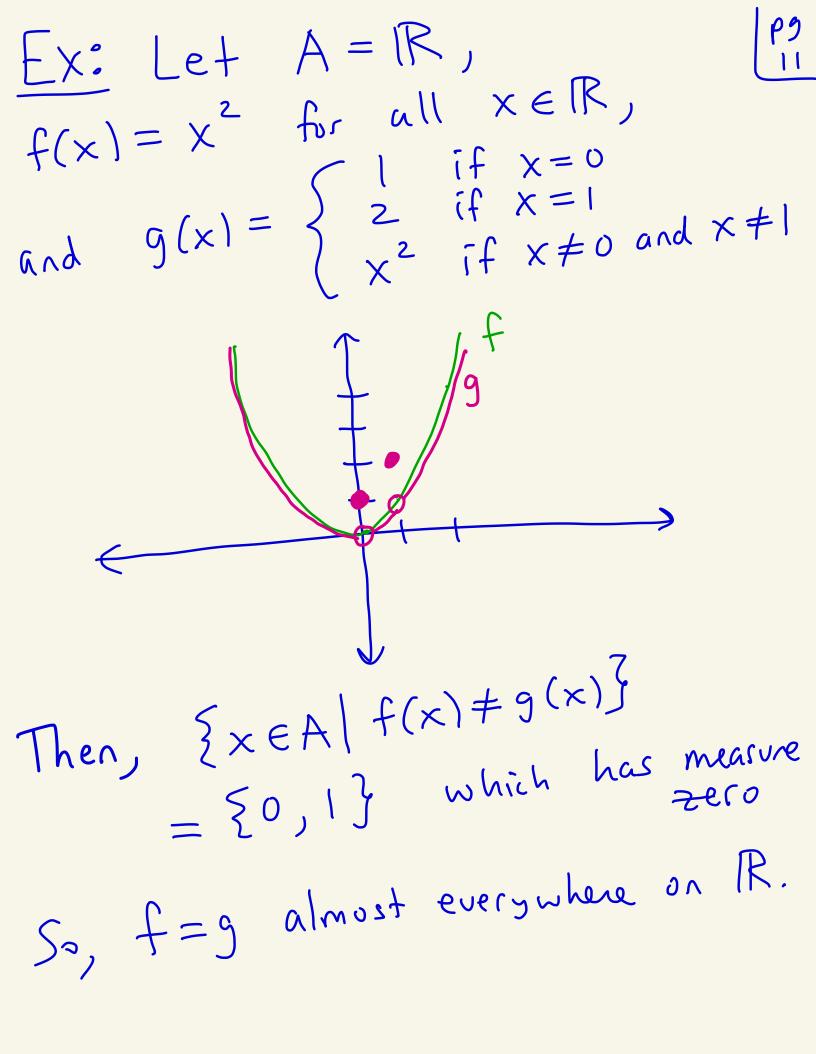
 $Suppose T_{n+1} = (c,d).$ Since bE Inti, we know c < b < d. Case l' Suppose c < a. $\begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array}$ T_{n+1} Then, $l(I_{n+1}) = d - c \ge b - a$ $d \ge b - a$ $d \ge b$ $-c \ge -a$ $\sum_{k=1}^{n+1} l(\mathbf{I}_{k}) = \left(\sum_{k=1}^{n} l(\mathbf{I}_{k})\right) + \frac{l(\mathbf{I}_{n+1})}{2}$ k = 1 > 0Thus, $> b - \alpha$

Case 2: Suppose a<C $(-) I_{n+1} \begin{pmatrix} pg \\ 7 \end{pmatrix}$ $\leftarrow \begin{bmatrix} & & & \\ & &$ Then, a<c < b < d. And, $[a,c] \subseteq \hat{U} I_k$ (+) By the induction hypothesis applied to (+) we get that $\sum_{k=1}^{n} \left(\left(\mathbf{I}_{k} \right) \right) > \mathbf{C} - \mathbf{A}.$ $\underbrace{\underbrace{\underbrace{}}_{k=1}^{n} \left(\left[\mathbf{I}_{k} \right] \right) = \left[\underbrace{\underbrace{\underbrace{}}_{k=1}^{n} \left(\left[\mathbf{I}_{k} \right] \right) + \left[\left(\mathbf{I}_{n+1} \right) \right] \right]$ hus, >(c-a)+(d-c)= d - a > b - a. By case I and case 2, S(n+1) is true when S(n) is true. By induction we are done.

Theorem: Let a, b E IR 8 with a < b. Then [a,b] dues not have measure zero. proof: Suppose $T_{1}, T_{2}, T_{3}, \cdots$ bounded open is a sequence of intervals with open Cover $\begin{bmatrix} a,b \end{bmatrix} \subseteq \bigcup_{k=1}^{k-1} K^{k}$ of [a,b] ([a,b) is closed and bounded 4650: (Heine-Borel) Every open cover of a closed, bounded subset of IR has a finite sub-cover

By Heine-Borel, there must be n71 where P9 9 $\begin{bmatrix} a,b \end{bmatrix} \subseteq \bigcup_{k=1}^{n} \mathbb{T}_{k}$ By the lemma, $\sum_{k=1}^{n} l(J_k) > b-a$. Thus, $\hat{\sum}_{k=1}^{\infty} l(I_k) \neq \hat{\sum}_{k=1}^{\infty} l(I_k) > b - a$. Therefore, if say you pick $\mathcal{E}=b-a$ there is no sequence of bounded open intervals I_{1}, I_{2}, \dots with $[a, b] \in \bigcup_{k=1}^{\infty} I_{k}$ and $\sum_{k=1}^{\infty} l(I_k) < 2$ (because $\tilde{\sum} l(I_k) > b - h$) Thus, [a,b] does not have measure Zero.

10 Def: Let A S R and $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ We say that f=9 almost everywhere on A , or f=g a.e. on A, if e^{xet} $\begin{cases} x \in A \mid f(x) \neq g(x) \end{cases}$ the set has measure zero. Note: If A = R and f=g almost everywhere on R, then we just say f=9 almost everywhere



 E_X : Let A = [0,1]. P9 12 Let $f: [0, 1] \rightarrow \mathbb{R}$ and $g: [o, I] \rightarrow \mathbb{R}$ be defined as follows: g(x) = 1 for all $x \in [0,1]$ $f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1] \\ 1 & \text{otherwise} \end{cases}$ $\sum_{x \in [0, 1]} f(x) \neq g(x)$ Then, $= Q \cap [0,1].$ and Since Ohn [0,1] = Oh Q has measure zero, we Know QNCO, 1) has measure Zero. Thus, f=g almost every-where on (0,1).