Math 5800 9/8/21

Def: Let $S \subseteq \mathbb{R}$.
We say that S is an almost everywhere set if

$$
\mathbb{R}-S=\{x \mid x \in \mathbb{R} \text { and } x \notin S\}
$$

has measure zero

Ex: Let S be the set of irrational numbers.
Then, $\mathbb{R}-S=\mathbb{Q}$
which has measure zero because Q is countable.
Thus, S is an almost everywhere set.

Theorem: If $S_{1}, S_{2}, \ldots, S_{n}$ are almost everywhere sets, then $\bigcap_{k=1}^{n} S_{k}$ is an almost every where set.
pf: HW $\& \begin{aligned} & \text { For proofs use: } \\ & \mathbb{R}-\bigcap_{k} S_{k}=\bigcup_{k}\left(\mathbb{R}-S_{k}\right)\end{aligned}$

Theorem: Let

$$
S_{1}, S_{2}, S_{3}, \ldots
$$

be a countably infinite number of almost everywhere sets.
Then, $\bigcap_{k=1}^{\infty} S_{k}$ is an almost everywhere set,
$p f: H W$

We will now give an example of a set that doesn't have measure zero. But first a lemma.

Lemma: Let $a, b \in \mathbb{R}$ with $a<b$. If $I_{1}, I_{2}, \ldots, I_{n}$ are n bounded open intervals where

$$
[a, b] \subseteq \bigcup_{k=1}^{n} I_{k}
$$

then
proof by induction:
Let $S(n)$ be the statement of the lemma.
base case S(1): Suppose $a, b \in \mathbb{R}$
with $a<b$. Suppose I_{1} is a bounded open interval with $[a, b] \subseteq I_{1}$.
Let $I_{1}=(p, q)$.
Then, $p<a<b<q$.
And, $l\left(I_{1}\right)=q-p>b-a$
\& $\begin{gathered}q>b \\ -p>-a\end{gathered}$

Induction step: Let $n \geqslant 1$ and suppose $S(n)$ is true.
We now prove $S(n+1)$ is true.
Let $a, b \in \mathbb{R}$ with $a<b$.

$$
\begin{aligned}
& \text { Let } a, b \in \mathbb{K} w_{1}+n+1 \\
& \text { Suppose }[a, b] \subseteq \bigcup_{k=1}^{n+1} I_{k}
\end{aligned}
$$

where $I_{1}, I_{2}, \ldots, I_{n}, I_{n+1}$ are bounded open intervals.
Since $[a, b] \subseteq I_{1} \cup I_{2} \cup \ldots \cup I_{n} \cup I_{n+1}$.
we must have that $b \in I_{k}$ for some k.
By relabeling the intervals we can assume that $b \in I_{n+1}$.

Suppose $I_{n+1}=(c, d)$.
Since $b \in I_{n+1}$, we know $c<b<d$.
Case 1: Suppose $c \leq a$.

Then,

$$
l\left(I_{n+1}\right)=d-c \geqslant b-a
$$

Thus,

$$
\begin{aligned}
\sum_{k=1}^{n+1} \ell\left(I_{k}\right) & =\underbrace{\left[\sum_{k=1}^{n} l\left(I_{k}\right)\right]}_{>0}+\underbrace{l\left(I_{n+1}\right)}_{\geqslant b-a} \\
& >b-a
\end{aligned}
$$

Case 2: Suppose $a<c$

Then, $a<c<b<d$.
And, $[a, c] \subseteq \bigcup_{k=1}^{n} I_{k}(*)$
By the induction hypothesis applied to $(*)$ we get that

$$
\sum_{k=1}^{n} l\left(I_{k}\right)>c-a
$$

$$
\begin{aligned}
\substack{k=1 \\
U S_{j} \\
\sum_{k=1}^{n+1} l\left(I_{k}\right)} & {\left[\sum_{k=1}^{n} l\left(I_{k}\right)\right]+l\left(I_{n+1}\right) } \\
& >(c-a)+(d-c) \\
& =d-a>b-a .
\end{aligned}
$$

Thus,

By case) and case 2, $S(n+1)$ is true when $S(n)$ is true. By induction we are done.

Theorem: Let $a, b \in \mathbb{R}$ with $a<b$. Then $[a, b]$ does not have measure zero.
proof: Suppose

$$
I_{1}, I_{2}, I_{3}, \ldots
$$

is a sequence of bounded open intervals with

$$
\begin{aligned}
& \text { intervals with } \\
& {[a, b] \subseteq \bigcup_{k=1}^{\infty} I_{k} . \&\left[\begin{array}{l}
\text { open } \\
\text { cover } \\
\text { of } \\
{[a, b]}
\end{array}\right.} \\
& \text { (a,b) ind closed bounded }
\end{aligned}
$$

4650: (Heine-Borel)
Every open cover of a closed, bounded subset of \mathbb{R} has a finite sub-cover

By Heine-Borel, there must be $n \geqslant 1$ where

$$
[a, b] \subseteq \bigcup_{k=1}^{n} I_{k}
$$

By the lemma, $\sum_{k=1}^{n} l\left(I_{k}\right)>b-a$.
Thus, $\sum_{k=1}^{\infty} l\left(I_{k}\right) \geqslant \sum_{k=1}^{n} l\left(I_{k}\right)>b-a$.
Therefore, if say you pick $\varepsilon=b-a$ there is no sequence of bounded open intervals I_{1}, I_{2}, \ldots with $[a, b] \subseteq \bigcup_{k=1}^{\infty} I_{k}$ and $\sum_{k=1}^{\infty} \ell\left(I_{k}\right)<\varepsilon$

$$
\begin{aligned}
& \text { and } \sum_{k=1} l\left(I_{k}\right) \\
& \text { [because } \left.\sum_{k=1}^{\infty} l\left(I_{k}\right)>b-a\right]
\end{aligned}
$$

Thus, $[a, b]$ does not have measure zero.

Def: Let $A \subseteq \mathbb{R}$ and
$f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$
We say that $\frac{f=g \text { almost }}{} \begin{aligned} & \text { everywhere on or }\end{aligned}$
e, on everywhere on A, or $f=g$ a.e. on A, if the set

$$
\{x \in A \mid f(x) \neq g(x)\}
$$

has measure zero.
Note: If $A=\mathbb{R}$ and $f=g$ almost everywhere on \mathbb{R}, then we just say $f=9$ almost everywhere

Ex: Let $A=\mathbb{R}$,
$f(x)=x^{2}$ for all $x \in \mathbb{R}$,
and $g(x)= \begin{cases}1 & \text { if } x=0 \\ 2 & \text { if } x=1 \\ x^{2} & \text { if } x \neq 0 \text { and } x \neq 1\end{cases}$

Then, $\{x \in A \mid f(x) \neq g(x)\}$
$=\{0,1\}$ which has measure
So, $f=g$ almost everywhere on \mathbb{R}.

Ex: Let $A=[0,1]$
Let

$$
f:[0,1] \rightarrow \mathbb{R} \text { and }
$$

$$
g:[0,1] \rightarrow \mathbb{R}
$$

be defined as follows:

$$
\begin{aligned}
& \text { defined as follows: } \\
& g(x)=1 \text { for all } x \in[0,1] \\
& \text { if } x \in Q \cap[0,1]
\end{aligned}
$$

$$
\begin{aligned}
& g(x)=1 \\
& f(x)= \begin{cases}0 & \text { for all } x \in Q \cap[0,1] \\
1 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& \text { hen, } \\
& \qquad\{x \in[0,1] \mid f(x) \neq g(x)\} \\
& =Q \cap[0,1] .
\end{aligned}
$$

Then,

Q $C_{h} \cap[0,1] \subseteq Q_{\text {h }}$ and Ch has measure zero, we
know $C Q \cap[0,1]$ has measure zero. Thus, $f=9$ almost every-

