Math 5800

$$
9 / 22 / 21
$$

Theorem: [Weir-Thm 1-py 31]
Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be a non-decreasing
sequence of step functions.
Suppose also that the sequence
$\underbrace{\left(\int \varphi_{n}\right)_{n=1}^{\infty} \text { converges. }}$

$$
\begin{aligned}
& \text { Then } \\
& S=\{x \in \mathbb{R} \mid \underbrace{\left(\varphi_{n}(x)\right)_{n=1}^{\infty} \text { does not converge }}_{\varphi_{1}(x), \varphi_{2}(x), \varphi_{3}(x), \ldots}\} \\
& \text { is a set of measure zero. }
\end{aligned}
$$

Then
is a set of measure zero.
Or equivalently
$\mathbb{R}-S=\left\{x \mid\left(\varphi_{n}(x)\right)_{n=1}^{\infty}\right.$ converges $\}$
is an almost everywhere set

Proof:
Claim 1: We may assume that $\varphi_{n}(x) \geqslant 0$ for all $n \geqslant 1$ and $x \in \mathbb{R}$
pf of claim 1:
Consider the sequence of step functions

$$
\left(\varphi_{n}-\phi_{1}\right)_{n=1}^{\infty}
$$

That is,

$$
\begin{aligned}
& \text { lat is, } \\
& \varphi_{1}-\varphi_{1}, \varphi_{2}-\varphi_{1}, \varphi_{3}-\varphi_{1}, \varphi_{4}-\varphi_{1}, \ldots \\
& \text {, decreasing we }
\end{aligned}
$$

Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is non-decreasing we know that $\varphi_{n}(x) \geqslant \varphi_{1}(x)$ for all $n \geqslant 1$ and $x \in \mathbb{R}$.
Thus, $\varphi_{n}(x)-\varphi_{1}(x) \geqslant 0$.
Se, $\left(\varphi_{n}-\varphi_{1}\right)(x) \geqslant 0$.

Also,

$$
\begin{aligned}
\left(\varphi_{n+1}-\varphi_{1}\right)(x) & =\varphi_{n+1}(x)-\varphi_{1}(x) \\
& \geqslant \varphi_{n}(x)-\varphi_{1}(x) \\
& =\left(\varphi_{n}-\varphi_{1}\right)(x)
\end{aligned}
$$

Thus, $\left(\varphi_{n}-\varphi_{1}\right)_{n=1}^{\infty}$ is a non-decreasing $\begin{gathered}\text { sequence. }\end{gathered}$
Since $\left(S \varphi_{n}\right)_{n=1}^{\infty}$ converges and

$$
\int\left(\varphi_{n}-\varphi_{1}\right)=\int \varphi_{n}-\underbrace{\int \varphi_{1}}_{\text {constant }}
$$

we know that

$$
\begin{aligned}
& \text { se know that } \\
& \left(\int\left(\varphi_{n}-\varphi_{1}\right)\right)_{n=1}^{\infty} \text { converges. }
\end{aligned}
$$

And,

$$
\left(\varphi_{n}-\varphi_{1}\right)(x)=\varphi_{n}(x)-\stackrel{\varphi_{1}(x)}{\text { constant }}
$$

converges as $n \rightarrow \infty$ iff $\varphi_{n}(x)$ converges.
Thus,
$T=\left\{x \mid\left(\varphi_{n}-\varphi_{1}\right)(x)\right.$ does not converge $\}$ equals S.
So, T has measure zero iff S does. Thus, we could prove the theorem by replacing $\left(\varphi_{n}\right)_{n=1}^{\infty}$ by $\left(\varphi_{n}-\varphi_{1}\right)_{n=1}^{\infty}$.

But we won't do this.
We will just assume $\Phi_{n}(x) \geqslant 0$ for all $n \geqslant 1$ and $x \in \mathbb{R}$
claim 1

Let ψ_{0} be the step function that

Then, $\underbrace{}_{0}(x) \leq \varphi_{n}(x) \leq \varphi_{n+1}(x)$ for all x and n.
claim 1
Thus, $\underbrace{\int \psi_{0}(x)}_{0} \leqslant \int \phi_{n} \leqslant \int \varphi_{n+1}$ for all n.
So, $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing, non-negative, convergent sequence of real numbers.
Since $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ converges, it is bounded.
So, $\exists K>0$ where $0 \leq \int \varphi_{n} \leqslant K$ for all $n \geqslant 1$.

Let $\varepsilon>0$.
Define

$$
\int_{n}^{\varepsilon}=\left\{x \in \mathbb{R} \left\lvert\, \varphi_{n}(x) \geqslant \frac{K}{\varepsilon}\right.\right\} .
$$

Claim 2: $S_{n}^{\varepsilon} \in R$ for $n \geqslant 1$
proof of claim 2:
Let $\varphi_{n}=c_{1} X_{I_{1}}+c_{2} X_{I_{2}}+\ldots+c_{r} X_{I_{r}}$ where $I_{1}, I_{2}, \ldots, I_{r}$ are disjoint bounded intervals.
Pick the indices

$$
\begin{aligned}
& k \text { the indices } \\
& 1 \leq i_{1}<i_{2}<\cdots<i_{t} \leq r
\end{aligned}
$$

where

$$
c_{i_{1}}, c_{i_{2}}, \ldots, c_{i_{t}} \geqslant \frac{k}{\varepsilon} .
$$

So, $\varphi_{n}(x) \geqslant \frac{k}{\varepsilon}$ when $x \in I_{i_{s}}, 1 \leqslant s \leqslant t$.

Thus,

$$
S_{n}^{\varepsilon}=I_{i_{1}} \cup I_{i_{2}} \cup \ldots \cup I_{i_{t}}
$$

So, $S_{n}^{\varepsilon} \in \mathcal{R}$.
Note it could be that $\varphi_{n}(x) \geqslant \frac{k}{\varepsilon}$ is never satisfied.
In that special case,

$$
\begin{aligned}
& \text { that special case, } \\
& S_{n}^{\varepsilon}=\phi=(1,1) \in R \text {. } 1 \text { ai }
\end{aligned}
$$

(cain)
Claim 3: $\left(\frac{k}{\varepsilon}\right) X_{S_{n}^{\varepsilon}}(x) \leqslant \varphi_{n}(x)$
for all $x \in \mathbb{R}$ and $n \geqslant 1$.
pf of claim 3:
If $x \in S_{n}^{\varepsilon}$, then $\left(\frac{k}{\varepsilon}\right) \frac{1}{X_{S_{n}^{\varepsilon}}(x)}=\left(\frac{k}{\varepsilon}\right) \leqslant \varphi_{n}(x)$
If $x \notin S_{n}^{\varepsilon}$, then $\left(\frac{k}{\varepsilon}\right) \underbrace{X_{S_{n}^{\varepsilon}}^{2}(x)}_{0}=0 \leq \varphi_{n}(x)$
claim 1
Claim 3

Therefore,

$$
\begin{aligned}
&\left(\frac{k}{\varepsilon}\right) \ell\left(S_{n}^{\varepsilon}\right)=\left(\frac{k}{\varepsilon}\right) \int X_{S_{n}^{\varepsilon}}=\int\left(\frac{k}{\varepsilon}\right) X_{S_{n}^{\varepsilon}} \\
& \\
& \begin{array}{c}
S_{n}^{\varepsilon} \in R \\
l\left(S_{n}^{\varepsilon}\right)=\int X_{S_{n}^{\varepsilon}}
\end{array} \leq \int \varphi_{n}
\end{aligned}
$$

claim 3
Thus, $\left(\frac{K}{\varepsilon}\right) \ell\left(S_{n}^{\varepsilon}\right) \leq \int \varphi_{n} \leq K$.
So, $\ell\left(S_{n}^{\varepsilon}\right) \leqslant \varepsilon$ for all $n \geqslant 1$.

Claim 4: $S_{n}^{\varepsilon} \subseteq S_{n+1}^{\varepsilon}$ for all $n \geqslant 1 . \quad\left(\begin{array}{c}p g \\ 9\end{array}\right.$ of of claim:
Let $x \in S_{n}^{\varepsilon}$.
Then, $\frac{k}{\varepsilon} \leq \varphi_{n}(x) \leq \varphi_{n+1}(x)$
Thus, $x \in S_{n+1}^{\varepsilon}$
Claim 4

Thus,

$$
S_{1}^{\varepsilon} \subseteq S_{2}^{\varepsilon} \subseteq S_{3}^{\varepsilon} \subseteq S_{4}^{\varepsilon} \subseteq \cdots
$$

Let

$$
S^{\varepsilon}=\bigcup_{n=1}^{\infty} S_{n}^{\varepsilon}
$$

Claim 5: $S \subseteq S^{\varepsilon}$
$\overline{\text { Recall } S}=\left\{x \in \mathbb{R} \mid\left(\varphi_{n}(x)\right)_{n=1}^{\infty}\right.$ diverges $\}$
pf of claim:
Let $x \in S$.
Then, $\left(\varphi_{n}(x)\right)_{n=1}^{\infty}$ does not converge.
Because $\left(\varphi_{n}(x)\right)_{n=1}^{\infty}$ is non-decreasing by the monotone convergence theorem $\left(\varphi_{n}(x)\right)_{n=1}^{\infty}$ is not bounded.
Thus, there must exist some $N>0$ where $\varphi_{N}(x) \geqslant \frac{K}{\Sigma}$.
Hence, $x \in S_{N}^{\varepsilon} \subseteq S^{\varepsilon}$.

$$
\begin{aligned}
S^{\varepsilon}= & \bigcup_{n=1}^{\infty} S_{n}^{\varepsilon} \\
& \text { Claim } 5
\end{aligned}
$$

Therefore, we can show that S^{ε} has measure zero and then this will imply that S has measure zero.
By a theorem from last time, since $S_{n+1}^{\varepsilon} \in R$ and $S_{n}^{\varepsilon} \in R$ for all $n \geqslant 1$ we know that

$$
S_{n+1}^{\varepsilon}-S_{n}^{\varepsilon} \in R
$$

$$
\begin{aligned}
& \text { Because } \\
& S_{1}^{\varepsilon} \subseteq S_{2}^{\varepsilon} \subseteq S_{3}^{\varepsilon} \subseteq S_{4}^{\varepsilon} \subseteq \cdots
\end{aligned}
$$

Because
and $S^{\varepsilon}=\bigcup_{n=1}^{\infty} S_{n}^{\varepsilon}$ we know that

$$
\begin{aligned}
& \text { and } S^{\varepsilon}=S_{n=1}^{\varepsilon} S_{n}^{\varepsilon} \\
& S^{\varepsilon}=S_{1}^{\varepsilon} \cup\left(S_{2}^{\varepsilon}-S_{1}^{\varepsilon}\right) \cup\left(S_{3}^{\varepsilon}-S_{2}^{\varepsilon}\right) \cup \cdots \\
& \text { disjoint union giving } S
\end{aligned}
$$

is a disjoint union giving S.

From above we can write

$$
\begin{gathered}
S_{1}^{\varepsilon}=I_{1} \cup I_{2} \cup \ldots \cup I_{n_{1}} \\
S_{2}^{\varepsilon}-S_{1}^{\varepsilon}=I_{n_{1}+1} \cup I_{n_{1}+2} \cup \ldots \cup I_{n_{2}} \\
S_{3}^{\varepsilon}-S_{2}^{\varepsilon}=I_{n_{2}+1} \cup I_{n_{2}+2} \cup \ldots \cup I_{n_{3}} \\
\vdots
\end{gathered}
$$

Where all the above I_{k} are bounded intervals and disjoint from each other.

$$
\begin{aligned}
& \text { Then, } \\
& \begin{aligned}
S^{\varepsilon} & =S_{1}^{\varepsilon} \cup\left(S_{2}^{\varepsilon}-S_{1}^{\varepsilon}\right) \cup\left(S_{3}^{\varepsilon}-S_{2}^{\varepsilon}\right) \cup \cdots \\
& =\bigcup_{k=1}^{\infty} I_{k}
\end{aligned}
\end{aligned}
$$

Then,

So the I_{k} cover S^{ε}.

Given $n \geqslant 1$, there exists j where
$n \leqslant n_{j}$ and so for this n we have that

$$
\begin{array}{r}
\quad \text { we have that } \\
\sum_{k=1}^{n} l\left(I_{k}\right) \leq \sum_{k=1}^{n_{j}} l\left(I_{k}\right)=l\left(S_{j}^{\varepsilon}\right) \leqslant \varepsilon \\
\begin{array}{c}
S_{j}^{\varepsilon}=\left(S_{j}^{\varepsilon}-S_{j-1}^{\varepsilon}\right) \cup\left(S_{j-1}^{\varepsilon}-S_{j-2}^{\varepsilon}\right) \\
\cup \cdots \cup\left(S_{2}^{\varepsilon}-S_{1}^{\varepsilon}\right) \cup S_{1}^{\varepsilon}
\end{array}
\end{array}
$$

Thus, $\sum_{k=1}^{n} l\left(I_{k}\right) \leq \varepsilon$ for all $n \geqslant 1$.
So, $\sum_{k=1}^{\infty} \ell\left(I_{k}\right) \leqslant \varepsilon$.
Thus, S^{ε} has measure zero.
So, S has measure zero.

