$$
\begin{aligned}
& \text { Math } 5800 \\
& 9 / 20 / 21
\end{aligned}
$$

- In HW 4 un step functions I added pacts (d) and (e) to problem 7 .
[In case you already down loaded this file.]

Theorem: [Thy 1,3.2 in WJ book]
Let f and g be step functions and $a, b \in \mathbb{R}$.
Then
(1) $a f+b g$ is a step function
and (2) $\int(a f+b g)=a \int f+b \int g$
proof: Let $f=\sum_{j=1}^{n} c_{j} \cdot X_{I_{j}}$
and $g=\sum_{i=1}^{m} k_{i} \cdot X_{J_{i}}$ where

$$
\begin{aligned}
& \text { and } c_{1}, c_{2}, \ldots, c_{n}, k_{1}, k_{2}, \ldots, k_{m} \in \mathbb{R} \\
& \text { and } I_{1}, I_{2}, \ldots, I_{n}, J_{1}, J_{2}, \ldots, J_{m} \\
& \text { intervals. }
\end{aligned}
$$ are bounded intervals.

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \text { aft }+b=a\left(\sum_{j=1}^{n} c_{j} \cdot X_{I_{j}}\right) \\
& \quad+b\left(\sum_{i=1}^{n} k_{i} \cdot X_{J_{i}}\right) \\
& =\sum_{j=1}^{n}\left(a c_{j}\right) X_{I_{j}}+\sum_{i=1}^{n}\left(b k_{i}\right) \cdot X_{J_{i}}
\end{aligned}
$$

which is a step function. Furthermore,

$$
\begin{aligned}
& \int a f+b g= \\
& =\int\left[\sum_{j=1}^{n}\left(a c_{j}\right) X_{I_{j}}+\sum_{i=1}^{n}\left(b k_{i}\right) \cdot X_{J_{i}}\right] \\
& =\sum_{j=1}^{n}\left(a c_{j}\right) \cdot l\left(I_{j}\right)+\sum_{i=1}^{n}\left(b k_{i}\right) \cdot l\left(J_{i}\right) \\
& =a\left[\sum_{j=1}^{n} c_{j} \cdot l\left(I_{j}\right)\right]+b\left[\sum_{i=1}^{n} k_{i} \cdot l\left(J_{i}\right)\right] \\
& =a \int f+b \int g
\end{aligned}
$$

Theorem $[T h m$ 1.3.3 in WJ book]
Let f and g be step functions
where $f(x) \geqslant g(x)$ for all $x \in \mathbb{R}$.
[Sometimes written as $f \geqslant g$]
Then, $\int f \geqslant \int g$.
proof:
By the previous theorem, $f-g$ is a step function.
Thus, $f-g=\sum_{j=1}^{n} c_{j} \cdot X_{I_{j}}$ where $c_{j} \in \mathbb{R}$ and the intervals $I_{1}, I_{2}, \ldots, I_{n}$ are disjoint and bounded.
Since $(f-g)(x) \geqslant 0$ for all x and the intervals are disjoint we know that $c_{j} \geqslant 0$ for all $j_{\text {. }}$

Thus,

$$
\int(f-g)=\sum_{j=1}^{n} \underbrace{c_{j}}_{\geqslant 0} \cdot \underbrace{l\left(I_{j}\right)}_{\geqslant 0} \geqslant 0
$$

So, by the previous theorem

$$
\int f-\int g=\int(f-g) \geqslant 0
$$

Thus,

$$
\int f \geqslant \int g
$$

Def: [Weir book]
Let \mathcal{R} denote the set of all subsets of \mathbb{R} such that S can be written as

$$
\begin{equation*}
S=I_{1} \cup I_{2} \cup \cdots \cup I_{r} \tag{*}
\end{equation*}
$$

where $I_{1}, I_{2}, \ldots, I_{r}$ are disjoint bounded intervals.
Given $S \in g R$ where ($*$) is true, define

$$
\begin{aligned}
& \text { true, define } \\
& l(S)=l\left(I_{1}\right)+l\left(I_{2}\right)+\ldots+l\left(I_{r}\right)
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& S=[3,5) \cup[2,2] \cup(-1,0) \in R \\
& l(S)=l([3,5))+l([2,2]) \\
& +l((-1,0)) \\
& =2+0+1=3
\end{aligned}
$$

Ex: $S=(-1,5) \cup(3,7]$

So, $S=(-1,7] \in R$

$$
\ell(S)=8
$$

Note: Is leS) for $S \in R \quad \log 8$ well-defined?
Let $S \in R$ with

$$
S=I_{1} \cup I_{2} \cup \cdots \cup I_{r}
$$

where $I_{1}, I_{2}, \ldots, I_{r}$ are disjoint bounded intervals.
By HW 4 problem 4, we have that

$$
X_{S}=X_{I_{1}}+X_{I_{2}}+\ldots+X_{I_{r}}
$$

and thus

$$
\begin{aligned}
& \int X_{s}
\end{aligned}=\int X_{I_{1}}+\int X_{I_{2}}+\ldots+\int X_{I_{r}} .
$$

So we could have defined

$$
l(s)=\int X_{s}
$$

Since

$$
X_{S}=X_{I_{1}}+X_{I_{2}}+\ldots+X_{I_{r}}
$$

is a step function it doesn't matter how we decompose S into disjoint bounded intervals, we will always get the same value for $\int X_{s}$ by our theorems on step functions.
Hence $l(s)$ for $s \in R R$ is well-defined.

Note

HoW 4 problem 7
(a) $S \in R$ iff X_{S} is a step function.
(b) If $S, T \in R$, then SUI, $S \cap T, S-T$ are all in $R R$
(c) If $S, T \in R$ and $S \subseteq T$, then $l(S) \leq \ell(T)$.
(d) If $A=\bigcup_{i=1}^{S} A_{i}$ where each A_{i} is a bounded interval. Then $A \in \sigma R$
(e)
(e) Let $I_{1}, I_{2}, \ldots, I_{r}$ be disjoint bounded intervals. Suppose that there exist bounded intervals $J_{1}, J_{2}, \ldots, J_{t}$ where

$$
\bigcup_{j=1}^{r} I_{j} \subseteq \bigcup_{i=1}^{t} J_{i}
$$

Then

$$
\sum_{j=1}^{r} l\left(I_{j}\right) \leq \sum_{i=1}^{t} l\left(J_{i}\right)
$$

Def: Let $\left(f_{n}\right)_{n=1}^{\infty}$
be a sequence of functions
where $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ for each $n \geqslant 1$.
Think of it as

$$
f_{1}, f_{2}, f_{3}, f_{4}, \ldots
$$

We say that $\left(f_{n}\right)_{n=1}^{\infty}$ is non-decreasing if

$$
f_{n}(x) \leqslant f_{n+1}(x)
$$

for all $n \geqslant 1$ and all $x \in \mathbb{R}$.

Ex: Let

$$
f_{n}(x)= \begin{cases}n x & \text { if } x \geqslant 0 \\ 0 & \text { if } x<0\end{cases}
$$

for $n \geqslant 1$

Then, $\left(f_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of functions.

Ex:
Let $\varphi_{n}=X_{\left[\frac{1}{n}, 2\right]}$

HW 4-\#2
If $S \subseteq T$, then $X_{S}(x) \leq X_{T}(x)$ for all x

Thus for all $x \in \mathbb{R}$ we have

$$
\begin{aligned}
& \text { Thus for all } \varphi_{n}(x)=X_{\left[\frac{1}{n}, 2\right]}(x) \leq X_{\left[\frac{1}{n+1}, 2\right]}(x)=\varphi_{n+1}(x)
\end{aligned}
$$

for any $n \geqslant 1 . \quad\left[\frac{1}{n}, 2\right] \subseteq\left[\frac{1}{n+1}, 2\right]$

Thus, $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a
non-decreasing sequence of step functions.

Note,

$$
\begin{aligned}
\int \varphi_{n} & =\int X_{\left[\frac{1}{n}, 2\right]} \\
& =1 \cdot l\left(\left[\frac{1}{n}, 2\right]\right) \\
& =2-\frac{1}{n}
\end{aligned}
$$

So,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int \varphi_{n} & =\lim _{n \rightarrow \infty}\left(2-\frac{1}{n}\right) \\
& =2-0 \\
& =2
\end{aligned}
$$

