$$
\begin{aligned}
& \text { Math } 5800 \\
& 9 / 15 / 21
\end{aligned}
$$

- Last class it was noted that HW 3 problem 4 is not the same as how we stated it in class.
So I changed it to reflect the theorem from class.
The proof is similar to before.

Lemma: Given a step function (pg 2

$$
f=\sum_{i=1}^{n} k_{i} \cdot X_{J_{i}}
$$

we can re-write f as

$$
f=\sum_{j=1}^{m} c_{j} \cdot X_{I_{j}}
$$

where $I_{s} \cap I_{t}=\phi$ if $s \neq t$.
proof: Let $p_{1}, p_{2}, \ldots, \operatorname{pr}$ be the Ir distinct endpoints of $J_{1}, J_{2}, \ldots, J_{n}$ Where we anange them so that

$$
\text { where we } p_{1}<p_{2}<p_{r} \text {. }
$$

Construct the following $m=2 r-1$ intervals

$$
\begin{array}{cc}
\text { construct the following } \\
I_{1}=\left[p_{1}, p_{1}\right] & I_{r+1}=\left(p_{1}, p_{2}\right) \\
I_{2}=\left[p_{2}, p_{2}\right] & I_{r+2}=\left(p_{2}, p_{3}\right) \\
\vdots & \vdots \\
I_{r}=\left[p_{r}, p_{r}\right] & I_{2 r-1}=\left(p_{r-1}, p_{r}\right)
\end{array}
$$

Note by construction $I_{s} \cap I_{t}=\phi \quad p \mathrm{Pg} 3$ if $s \neq t$.
The I_{j} 's partition $\left[P_{1}, p_{r}\right.$] into 2r-1 disjoint sub-intenvals.
For any of the new intervals I_{j} and original interval J_{i}, either $I_{j} \subseteq J_{i}$ or $I_{j} \cap J_{i}=\phi$

Let

$$
c_{j}=\sum_{\substack{i \bar{i} e r e \\ I_{j} \leq J_{i}}} k_{i}
$$

If the sum is empty, then set $c_{j}=0$.
[In our example from last time this would go with c_{6}]
Now we show $f=\sum_{j=1}^{m} c_{j} X_{I_{j}}$

This follow from the construction. (pg Y Let $P_{1} \leq x \leq \operatorname{Pr}$.
Then x is in exactly one of the I_{s}.
And by construction if x is in some J_{i} we have $I_{s} \subseteq J_{i}$

Hence,

$$
f(x)=\sum_{i=1}^{n} k_{i} \cdot X_{J_{i}}(x)
$$

$$
=\sum_{\substack{i \\ \text { where } \\ x \in J_{j}}} k_{i}
$$

$$
=\sum_{\substack{i \\ \text { where } \\ I_{s} \leq J_{i}}} k_{i}=c_{s} .
$$

$$
\begin{aligned}
& \text { where } \\
& I_{s} \leq J_{i}
\end{aligned}
$$

Thus, $f=\sum_{j} c_{j} X_{I_{j}}$

Note: By merging adjacent interval terms with the same coefficients as we did in the example last time we can get a unique representation of f into the sum of the minimal number of disjoint terms.

Theorem [Thy 1.3.1 in WJ book] Pg 6 Let f be a step function with two different representations

$$
f=\sum_{j=1}^{m} c_{j} X_{I_{j}}=\sum_{i=1}^{n} k_{i} X_{J_{i}}
$$

Then the integral of f is well-defined, that is

$$
\begin{aligned}
& \text { well-defined, that is } \\
& \int f=\sum_{j=1}^{m} c_{j} l\left(I_{j}\right)=\sum_{i=1}^{n} k_{i} l\left(J_{i}\right)
\end{aligned}
$$

proof:

Let $q_{1}, q_{2}, \ldots, q_{r}$ be the r distinct endpoints of

$$
I_{1}, I_{2}, \ldots, I_{m}, J_{1}, J_{2}, \ldots, J_{n}
$$

We arrange them in order so that

$$
q_{1}<q_{2}<\ldots<q_{r}
$$

Construct the following $2 r-1$ intervals

$$
\begin{array}{lc}
\text { Instruct the following } & M_{r+1}=\left(q_{1}, q_{2}\right) \\
M_{1}=\left[q_{1}, q_{1}\right] & M_{r+2}=\left(q_{2}, q_{3}\right) \\
M_{2}=\left[q_{2}, q_{2}\right] & \vdots \\
\vdots & \vdots \\
M_{r}=\left[q_{r}, q_{r}\right] & M_{2 r-1}=\left(q_{r-1}, q_{r}\right) \\
k_{2} X_{J_{2}}
\end{array}
$$

Note that $M_{s} \cap M_{t}=\phi$ if $\lcm{\rho 98} 8$ $s \neq t$

Given M_{s} and I_{j} either

$$
M_{s} \subseteq I_{j} \text { or } M_{s} \cap I_{j}=\phi
$$

Given M_{s} and J_{i} either

$$
M_{s} \subseteq J_{i} \text { or } M_{s} \cap J_{i}=\phi
$$

Note that if $x \in M_{s}$ then

$$
f(x)=\sum_{\substack{j \\ \text { where } \\ M_{s} \subseteq I_{j}}} c_{j}=\sum_{\substack{i \\ M_{s} \text { wee } \\ M_{s}}} k_{i}
$$

Thus for each M_{s} define

$$
\theta_{s}=\sum_{\substack{j_{j} \\ M_{s} \leq I_{j}}} c_{j}=\sum_{\substack{i \\ \text { where } \\ M_{s} \leq J_{i}}} k_{i}
$$

Thus,

$$
f=\sum_{s=1}^{2 r-1} \theta_{s} \cdot X_{M_{s}}
$$

This is a disjoint representation for f.

$$
\text { Claim: } \sum_{j=1}^{m} c_{j} l\left(I_{j}\right)=\sum_{s=1}^{2 r-1} \theta_{s} l\left(M_{s}\right)
$$

pf of claim: By construction, for each j, we have $I_{j}=\bigcup_{\text {where }} M_{s}$

$$
\begin{aligned}
& \text { where } \\
& M_{s} \subseteq I_{j}
\end{aligned}
$$

and the sum is disjoint. And so,

$$
\begin{aligned}
& \text { where } \\
& M_{s} \leq I_{j}
\end{aligned}
$$

Thus, $c_{j} l\left(I_{j}\right)=\sum_{\substack{s \\ \text { where } \\ M_{s} \leq I_{j}}} c_{j} l\left(M_{s}\right)$.

$$
M_{s} \subseteq I_{j}
$$

Summing over all the I_{j} 's gives

$$
\begin{aligned}
& \sum_{j=1}^{m} c_{j} l\left(I_{j}\right)=\sum_{j=1}^{m} \sum_{\text {where }} c_{j} l\left(M_{s}\right) \\
& \underbrace{j}_{\substack{\text { Sums } \\
\text { over }}} M_{s} \subseteq I_{j}
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left.\sum_{\substack{j=1 \\
\text { where } \\
M_{s} \leq I_{j}}}^{2 r-1} c_{j} l\left(M_{s}\right)\right)}_{\substack{\text { sums }}} \\
& \xrightarrow[\substack{\text { Sums } \\
\text { over } \\
\text { Ms }}]{\text { Sumsover. }} \underbrace{M_{s} \leqslant I_{j}}_{\text {supine }} \\
& \begin{array}{l}
\text { Sumsover } \\
I_{j} \text { containing } M_{s}
\end{array} \\
& =\sum_{s=1}^{2 r-1} \theta_{s} \ell\left(M_{s}\right) \text { claim }
\end{aligned}
$$

Claim: $\sum_{i=1}^{n} k_{i} l\left(J_{i}\right)=\sum_{s=1}^{2 r-1} \theta_{s} l\left(M_{s}\right)$
pf: same as previous claim. Claim

Combining the two claims,

$$
\begin{aligned}
\sum_{j=1}^{m} c_{j} l\left(I_{j}\right) & =\sum_{s=1}^{2 r-1} \theta_{s} l\left(M_{s}\right) \\
& =\sum_{i=1}^{n} k_{i} l\left(J_{i}\right)
\end{aligned}
$$

