Math 5800 9/15/21

· Last class it was noted that HW 3 problem 4 15 not the same as how we stated it in cluss. So I changed it to reflect the theorem from class. The proof is similar to before.

Note by construction $I_s \cap I_t = \phi$ [Pg3 if $s \neq t$. The I_j 's partition [PipPr] into 2r-1 disjoint sub-intervals. For any of the new intervals I_j and original interval J_i , either $I_j \subseteq J_j$ or $I_j \cap J_i = \phi$

Let $c_{j} = \sum_{\substack{i \\ vinere \\ J_{j} \leq J_{i}}} k_{j}$ If the sum is empty, then set $c_j = 0$. L'In our example from last time this would go with <6] Now we show $f = \sum_{j=1}^{\infty} c_j X_{I_j}$

This follow from the construction. (Pg Y Let $P_{1} \leq X \leq P_{r}$. Then x is in exactly one of the Is. And by construction if x is in some J_{i} we have $T_{s} \in J_{i}$ Hence, n $I_s \leq J_z$ $= \sum_{i} k_{i}$ where $K \in J_{i}$ $I_s \subseteq J_5$ Example pic $= \sum k_i = C_S$. where $T_{s} \subseteq J_{t}$ $f = \sum_{j} c_{j} X_{I_{j}}$ Thus,

pg S

Note: By merging adjacent interval terms with the same Coefficients as we did in the example last time We can get a unique representation of f into the sum of the minimal number of disjoint terms.

Theorem [Thm 1.3.1 in WJ book] [Pg6 Let f be a step function with two different representations $f = \sum_{j=1}^{m} c_j \chi_{I_j} = \sum_{i=1}^{n} k_i \chi_{J_i}$ Then the integral of f is Well-defined, that is $\int f = \sum_{j=1}^{m} c_j \, l(\mathbf{I}_j) = \sum_{i=1}^{m} k_i \, l(\mathbf{J}_i)$

proof:

Let
$$q_{1j}q_{2j}\cdots q_r$$
 be the $p_{j} \neq$
r distinct endpoints of
 $I_{1j}I_{2j}\cdots J_{mj}J_{nj}J_{2j}\cdots J_{n}$
We arrange them in order so that
 $q_{1} < q_{2} < \cdots < q_{r}$
Construct the following $2r-1$ intervals
 $M_{1} = [q_{1j}q_{1}]$ $M_{r+1} = (q_{1j}q_{2})$
 $M_{2} = [q_{2j}q_{2}]$ $M_{r+2} = (q_{2j}q_{3})$
 $M_{2} = [q_{r}q_{r}]$ $M_{2r-1} = (q_{r-1}q_{r})$
 $M_{r} = [q_{r}q_{r}]$ $M_{2r-1} = (q_{r-1}q_{r})$
 $M_{r} = [q_{r}q_{r}]$ $M_{2r-1} = (q_{r})q_{r}$

Note that $M_s \cap M_t = \phi$ if [P98] $\sum f t$ Given Ms and IJ either $M_{s} \subseteq I_{j}$ or $M_{s} \cap I_{j} = \phi$ Given Ms and Ji either $M_{s} \subseteq J_{\tilde{\lambda}}$ or $M_{s} \cap J_{\tilde{\lambda}} = \phi$. Note that if $x \in M_s$ then $f(x) = \sum_{j} c_{j} = \sum_{i} k_{i}$ where $M_{s} \leq I_{j}$ M_s $\leq J_{i}$ Ms define Thus for each Σk, $O_s = \sum_{j \in J} c_j = Where$ where $M_{s} \subseteq J_{i}$ $M_{i} \subseteq I_{i}$

P9 9 Thus, 21-15 $f = \sum_{s=1}^{\infty} o_s \cdot \chi_{M_s}$ This is a disjoint representation for f. Claim: $\sum_{j=1}^{m} c_j l(I_j) = \sum_{s=1}^{2^{r-1}} o_s l(M_s)$ Pf of claim: By construction, for each j, we have $T_j = \bigcup_{where}^{S} M_s$ and the sum is disjoint. $l(I_{j}) = \sum_{s} l(M_{s})$ where And so, $M_{s} \leq I_{j}$

Pg 10

Thus,
$$C_{j} l(I_{j}) = \sum_{s \in j} c_{j} l(M_{s})$$
.
Where
 $M_{s} \in I_{j}$
Summing over all the I_{j} 's gives
 $\sum_{j=1}^{m} c_{j} l(I_{j}) = \sum_{j=1}^{m} \sum_{s \in I_{j}} c_{j} l(M_{s})$
 $J_{j=1} = \sum_{s \in I_{j}} c_{j} l(M_{s})$
 $V_{s} = I_{j}$
 $V_{s} = I_{j}$

(pg 11

Claim: $\sum_{j=1}^{n} k_j l(J_j) = \sum_{s=1}^{2^{r-1}} o_s l(M_s)$ pf: same as previous claim. [claim] Combining the two claims, $\sum_{j=1}^{m} c_j l(T_j) = \sum_{s=1}^{2^{r-1}} o_s l(M_s)$ $= \sum_{i=1}^{n} k_i l(J_i).$