Math 5800

$$
9 / 1 / 21
$$

Lemma: Let $\left(b_{n}\right)_{n=1}^{\infty}$ be a convergent sequence of real numbers,

If there exists $c \in \mathbb{R}$ where $b_{n}<c$ for all $n \geqslant 1$, then $\lim _{n \rightarrow \infty} b_{n} \leq c$.
proof: Let $L=\lim _{n \rightarrow \infty} b_{n}$.
Suppose $L>C$.

Let $\varepsilon=L-c>0$.
Since $b_{n} \rightarrow L$, there exists
$N>0$ where if $n \geqslant N$
we have $L-\varepsilon<b_{n}<L+\varepsilon$
same as: $\left|b_{n}-L\right|<\varepsilon$
So for example, $L-\varepsilon<b_{N}<L+\varepsilon$
So, $L-\underbrace{(L-c)}_{\varepsilon}<b_{N}$
Thus, $c<b_{N}$
This cant happen.
Thus, $L \leq C$.

Theorem:
Let $A_{1}, A_{2}, A_{3}, \ldots$ be a countably infinite number of measure zero subsets of \mathbb{R}.
Then, $A=\bigcup_{k=1}^{\infty} A_{k}$ has measure zero.
proof is from
proof: Let $\varepsilon>0$. Weir pg 19

Since A, has measure zero there exists bounded open intervals $I_{11}, I_{12}, I_{13}, \ldots$
where $A_{1} \subseteq \bigcup_{j=1}^{\infty} I_{1 j}$ and $\sum_{j=1}^{\infty} l\left(I_{1 j}\right) \leqslant \frac{\varepsilon}{2}$
Since A_{2} has measure zere there exists bounded open intervals $I_{21}, I_{22}, I_{23}, \cdots$
where $A_{2} \subseteq \bigcup_{j=1}^{\infty} I_{2 j}$ and $\sum_{j=1}^{\infty} l\left(I_{2 j}\right) \leqslant \frac{\varepsilon}{2^{2}}$

In general, for each $k \geqslant 1$,
since A_{k} has measure zero there exists bounded open intervals

$$
I_{k 1}, I_{k 2}, I_{k 3}, \ldots
$$

where $A_{k} \subseteq \bigcup_{j=1}^{\infty} I_{k j}$
and $\sum_{j=1}^{\infty} l\left(I_{k j}\right) \leqslant \frac{\varepsilon}{2^{k}}$
Since $A=\bigcup_{k=1}^{\infty} A_{k}$ we
know that

$$
\begin{aligned}
& \text { now that } \\
& \qquad A \subseteq \bigcup_{k=1}^{\infty} \bigcup_{j=1}^{\infty} I_{k j} \text {. }
\end{aligned}
$$

We are gonna rearrange the ordering of the $I_{k j}$'s now.

Arrange the open intervals as follows: pg 5

We can thus order all these intervals as follows:

$$
\underbrace{I_{11}}_{\begin{array}{c}
\text { subscripts } \\
\text { add to }
\end{array}}, \underbrace{I_{12}, I_{21}}_{\begin{array}{c}
\text { add to to } 3
\end{array}}, \underbrace{I_{31}, I_{22}, I_{13}, \cdots}_{\begin{array}{c}
\text { subscripts add } \\
\text { to } 4
\end{array}}
$$

As we said before

$$
A \subseteq I_{11} \cup I_{12} \cup I_{21} \cup I_{31} \cup \cdots
$$

We want to sum the lengths of 1096 the intervals in ($*$) and show the infinite sum is $\leq \varepsilon$.

Suppose we look at the sum of the lengths of the first n terms in (*).
For example, if we calculate the sum of the lengths of the first $n=5$ terms in (*) we have:

$$
\begin{aligned}
& n=5 \text { terms } \\
& l\left(I_{11}\right)+l\left(I_{12}\right)+l\left(I_{21}\right)+l\left(I_{31}\right)+l\left(I_{22}\right) \\
&= \underbrace{l\left(I_{11}\right)+l\left(I_{12}\right)}_{A_{1}}+\underbrace{l\left(I_{21}\right)+l\left(I_{22}\right)}_{A_{2}}+l \underbrace{\left(I_{31}\right)}_{A_{3}} \\
& \leqslant \sum_{\substack{ \\
\left|\begin{array}{l}
\text { Corollary } \\
\text { last class }
\end{array}\right|}}^{\infty} l\left(I_{1 j}\right)+\sum_{j=1}^{\infty} l\left(I_{2 j}\right)+\sum_{j=1}^{\infty} l\left(I_{3 j}\right) \\
& 2^{2}+\frac{\varepsilon}{2^{3}}
\end{aligned}
$$

In general, if we look at the first n terms of (*) we will see that these sets are at most amongst the sets $I_{k j}$ that cover $A_{1}, A_{2}, \ldots, A_{n}$.
[Because we will get to at most the n-th row of our diagram]
Thus, the sum of the lengths of the first n terms of $(*)$ is less than or equal to

$$
\begin{aligned}
& \frac{\varepsilon}{2}+\frac{\varepsilon}{2^{2}}+\cdots+\frac{\varepsilon}{2^{n}} \\
= & \frac{\varepsilon}{2}\left[1+\frac{1}{2}+\frac{1}{2^{2}} \cdots+\frac{1}{2^{n-1}}\right] \\
= & \frac{\varepsilon}{2}\left[\frac{1-\frac{1}{2^{n}}}{1-\frac{1}{2}}\right]=\varepsilon\left(1-\frac{1}{2^{n}}\right)<\varepsilon \\
& 1+x+x^{2}+\cdots+x^{m}=\frac{1-x^{m+1}}{1-x}, x \neq 1
\end{aligned}
$$

Thus, the sequence of partial sums corresponding to adding up the length e of the sets from (\not)

$$
\begin{aligned}
& S_{1}=l\left(I_{11}\right) \\
& S_{2}=l\left(I_{11}\right)+l\left(I_{12}\right) \\
& S_{3}=l\left(I_{11}\right)+l\left(I_{12}\right)+l\left(I_{21}\right) \leftarrow n=3
\end{aligned}
$$

is a non-decreasing sequence of non-negative real \#s whose terms are always $<\varepsilon$.
By the monotone convergence theorem $\lim _{n \rightarrow \infty} s_{n}$ exists.
Since $s_{n}<\varepsilon$ for all $n \geqslant 1$, lemma we must have $\lim _{n \rightarrow \infty} s_{n} \leq \varepsilon$.
Thus, A has measure zero.

Corollary: Let $A_{1}, A_{2}, \ldots, A_{n} \quad \begin{gathered}p g \\ 9\end{gathered}$ be a finite number of sets of measure zero. Then,

$$
A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

has measure zero.
proof:
Define $A_{n+1}=\phi, A_{n+2}=\phi, \ldots$
Ie, $A_{k}=\phi$ for $k \geqslant n+1$. ϕ has measure zero.
And, $\bigcup_{k=1}^{n} A_{k}=$

$$
\begin{aligned}
& =A_{1} \cup A_{2} \cup \cdots \cup A_{n} \\
& =A_{1} \cup A_{2} \cup \cdots \cup A_{n} \cup \underbrace{A_{n+1}}_{\phi} \cup \underbrace{A_{n+2}}_{\phi} \underbrace{\infty}_{k=1} A_{k} \\
& =1
\end{aligned}
$$

Every set in the union has measure zero
Hence, $\bigcup_{k=1}^{\infty} A_{k}$ has measure zero.
So, $\bigcup_{k=1}^{n} A_{n}$ has measure zero.

