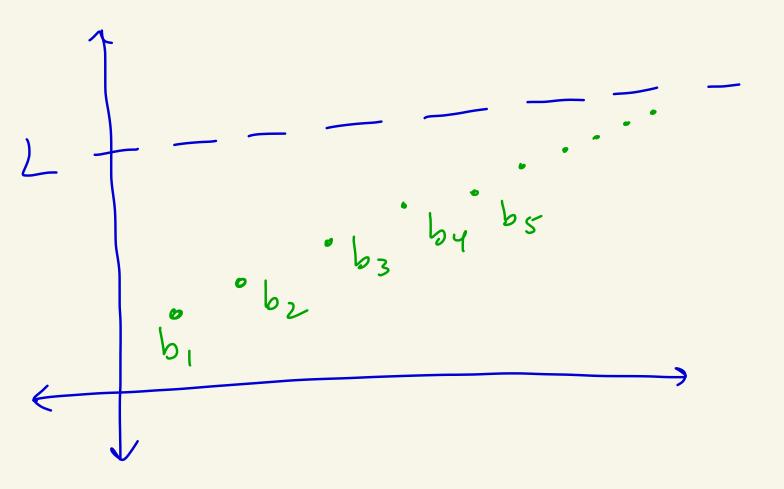
Math 5800 8/30/21

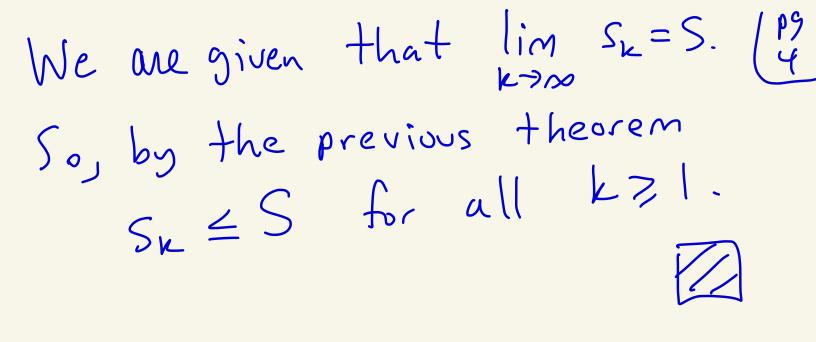
Office hours Monday 12:30-1:30 Tuesday 12:30-2:00

Zoom link is on canvas "Office hours" page Under

lheorem: Let (bn) n=1 be a non-decreasing sequence of real numbers that converges Then, $b_n \leq L$ for all $n \geq l$. to L. proof: HW 2

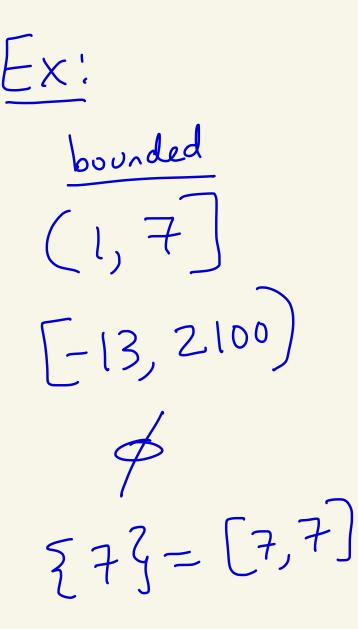


Corollary: Let $\sum_{n=1}^{\infty} a_n$ be $\begin{bmatrix} pg \\ 3 \end{bmatrix}$ an infinite sum that converges to S and also a, > 0 for all nzl. Then, $S_k = a_1 + a_2 + \dots + a_k \leq S.$ Proof: We have $S_k = a_1 + a_2 + \dots + a_k$ are the partial sums. Since each a, 7, 0, the sequence S₁, S₂, S₃, ... a, a, + az, a, + az + az, ... 15 non-decreasing.



Topic 3 - Measure Zero 5 Def: An interval I is called a bounded interval if I is of the form (a,b), (a,b], [a,b), or [a,b] where $a, b \in \mathbb{R}$ and $a \leq b$. I is called an unbounded interval if I is of the form (a, ∞), [a,∞), $(-\infty, a), (-\infty, a), or (-\infty, \infty).$ If a=b, then $[a,b]=[a,a]=\{a\}$ and $(a,b)=(a,a)=\varphi'$ are both bounded.

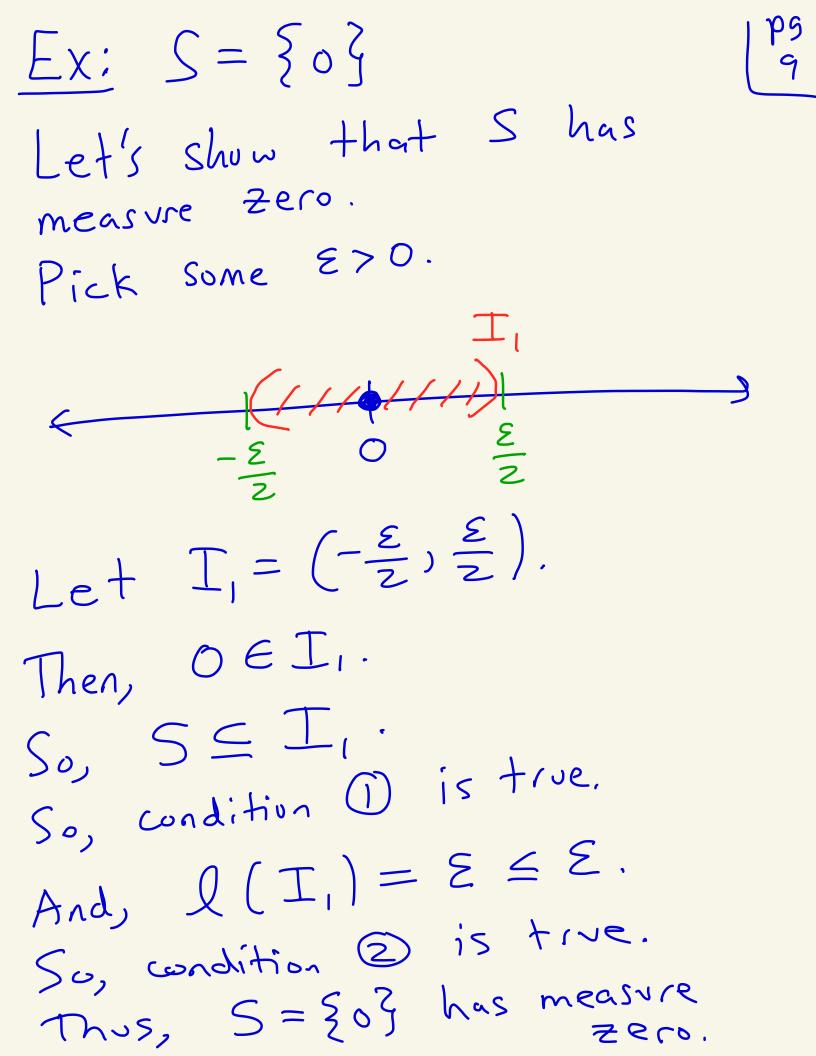
Similarly, is bounded $(a,a] = \phi$



Unbounded $R = (-\infty,\infty)$ $(5,\infty)$

of a bounded [P9 as follows: 7 Def: The length interval is defined l((a,b)) = b-al([a,b)) = b - al ((a,b])=b-a Q ([a,b]) = b-a Ex. l((5,7]) = 7-5=2 $l(\phi) = l((1,1)) = |-|=0$ l(273) = l(277) = 7-7 = 0Def: A bounded open interval is one of the form (a,b)where $a \leq b$.

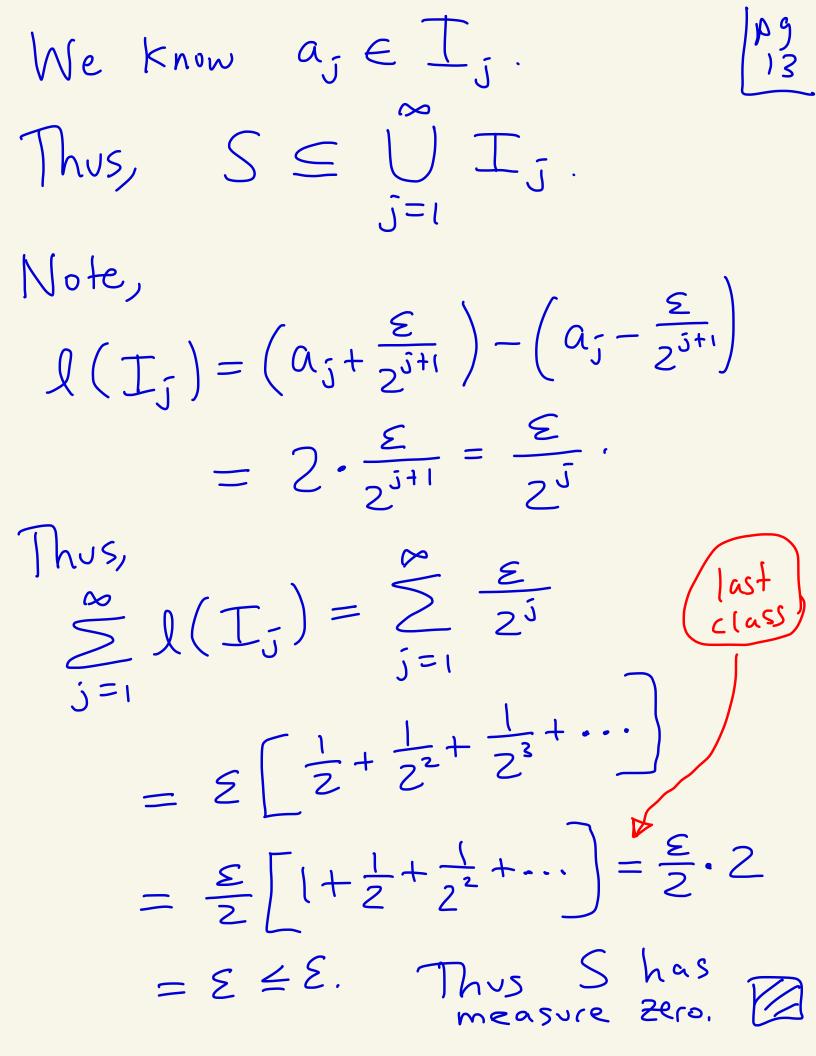
Def: Let S⊆R. We say that S has measure Zero, or that S is a null set, if for every E>O there exists a sequence of bounded open intervals Τ,, Τ₂, Τ₃, Τ₄,... (which may be finite) $I S \subseteq UI_n$ where and $(2) \geq l(I_n) \leq \mathcal{E}$.



LX: (WJ book ex 1.2.1) P9 (0 Let $S \subseteq \mathbb{R}$ be a finite set. Then S has measure Zero. Proof: Let $S = \{a_1, a_2, \dots, a_n\}$ Fix 270. pîcture for n=3 Let $T_j = (a_j - \frac{\varepsilon}{2n}, a_j + \frac{\varepsilon}{2n}).$ Then, $a_j \in I_j$ and $\mathcal{L}(\mathcal{I}_{j}) = (a_{j} + \frac{\varepsilon}{2n}) - (a_{j} - \frac{\varepsilon}{2n}) = \frac{\varepsilon}{n}$

So, $S \subseteq \bigcup_{j=1}^{n} \mathbb{T}_{j}$ n of these And $\sum_{j=1}^{n} \int (I_j) = \sum_{n=1}^{\infty} + \sum_{n=1}^{\infty} + \dots + \sum_{n=1}^{\infty}$ $= \Sigma \leq \Sigma,$ measure zero. S has Thus,

Theorem: Let SER. If S is countably infinite, then S has measure Zero. Proof: Suppose $S = \{2\alpha_1, \alpha_2, \alpha_3, \dots \}$ For each J, define $T_{j} = \left(\alpha_{j} - \frac{\varepsilon}{2^{j+1}}, \alpha_{j} + \frac{\varepsilon}{2^{j+1}} \right)$ $\begin{array}{c} -j \\ (11) (11) \\ a_{j} \\ z_{j \neq j} \\ z_{j \neq j} \end{array}$



14 14 $E_X: N, Q, Z$ all have measure zero Since they are countable. Ex: The empty set has measure Zero. Let $\varepsilon > 0$. Define $I_1 = (-\frac{\varepsilon}{2}, \frac{\varepsilon}{2})$. Then,

Theorem: Let A S IR and $B \subseteq R$. If $A \subseteq B$ and B has measure Zero, then A has measure Proof: In HW. Zero. Theorem: [Prop 3, pg 19, Weir] Let A, Az, Az, ... be a countably infinite number of measure zero sets. Then, UAk has measure k=1 Zero. Proof: On wednesday. P