Math 5800 8/25/21

Theorem: Let A and B be sets with $A \neq \phi, B \neq \phi$
If $A \subseteq B$ and B is countable, then A is countable.
proof: If B is finite, then since $A \subseteq B$ we know A is finite.
Thus, A is countable.
Now suppose B is countably infinite. Then,
we can enumerate the elements of B in a sequence with no repeats, that is

$$
\begin{aligned}
& B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}
\end{aligned}
$$

Since $A \subseteq B$ we can go through B's sequence and pick out the elements of A and skip the others and you'll get a sub-sequence enumerating A, that is

$$
A=\left\{b_{i_{1}}, b_{i_{2}}, b_{i_{3}}, \ldots\right\}
$$

Where $i_{1}<i_{2}<i_{3}<\ldots$
Thus, A is countable.

Def: Let S be a set,
with $S \neq \phi$.
If S is not countable then we say that S is uncountable.

Ex: Some uncountable numbers
\mathbb{R}
$\mathbb{R}-\mathbb{C} \leftarrow$ irrationals
$[0,1]$
$(10,10.5)$

Topic 2-4650 Review
Def: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. Let $L \in \mathbb{R}$.
We say that $\lim _{n \rightarrow \infty} a_{n}=L$ if for every $\varepsilon>0$ there exists $N>0$ where if $n \geqslant N$ then $\left|a_{n}-L\right|<\varepsilon$

If such an L exists then we say that the sequence $\left(a_{n}\right)_{n=1}^{\infty}$ converges. If no such L exists then we say that the sequence diverges

Recall: Let $a, b, c \in \mathbb{R}$ with $c>0$.
Then,

$$
\begin{aligned}
& \text { Then, } \\
& |a-b|<c \text { iff } b-c<a<b+c
\end{aligned}
$$

So,

$$
\text { So, }\left|a_{n}-L\right|<\varepsilon \text { iff } L-\varepsilon<a_{n}<L+\varepsilon
$$

Theorem: Let $\left(a_{n}\right)_{n=1}^{\infty}$ converge $\left(\begin{array}{c}p g \\ 6\end{array}\right.$ to A and $\left(b_{n}\right)_{n=1}^{\infty}$ converge to B. Let $\alpha, \beta \in \mathbb{R}$.
Then,
(1) $\lim _{n \rightarrow \infty}\left[\alpha a_{n}+\beta b_{n}\right]=\alpha A+\beta B$
(2) $\lim _{n \rightarrow \infty}\left[a_{n} b_{n}\right]=A B$
(3) $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{A}{B}$, if $B \neq 0$ $b_{n} \neq 0$ for all n

Def: Given a sequence of real numbers

$$
a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, \ldots
$$

define

$$
\begin{aligned}
& S_{1}=a_{1} \\
& S_{2}=a_{1}+a_{2} \\
& S_{3}=a_{1}+a_{2}+a_{3} \\
& \vdots \\
& S_{k}=\sum_{n=1}^{k} a_{n}=a_{1}+a_{2}+\ldots+a_{k} \\
& \begin{array}{l}
S_{k} \text { is } \\
\text { called } \\
\text { the } k \text {-th } \\
\text { partial sum }
\end{array} \\
& \hline
\end{aligned}
$$

If $\lim _{k \rightarrow \infty} s_{k}=\lim _{k \rightarrow \infty} \sum_{n=1}^{k} a_{k}$ converges to a real number L, then we say that $\sum_{n=1}^{\infty} a_{n}$ converges to L and write $\sum_{n=1}^{\infty} a_{n}=L$

Ex: Show that

$$
\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n}=2
$$

$$
\begin{aligned}
& \text { Ie have } \\
& \begin{aligned}
S_{k}=\sum_{n=0}^{k} \frac{1}{2^{n}} & =1+\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{k}} \\
& =1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\ldots+\left(\frac{1}{2}\right)^{k} \\
x=\frac{1}{2} & \frac{1-\left(\frac{1}{2}\right)^{k+1}}{1-\frac{1}{2}}
\end{aligned}
\end{aligned}
$$

If $x \in \mathbb{R}$
and $x \neq 1$$\quad$ So,

$$
\begin{aligned}
& \text { then } \\
& \begin{array}{l}
1+x+x^{2}+\cdots+x^{m} \\
=\frac{1-x^{m+1}}{1-x}
\end{array}
\end{aligned}
$$

Geometric
series

$$
\begin{aligned}
& \text { So, } \\
& \lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left[\frac{1-\left(\frac{1}{2}\right)^{k+1}}{1-\frac{1}{2}}\right] \\
& \quad \overline{\overline{4}}\left[\frac{1-0}{1-\frac{1}{2}}\right] \\
& \left.\begin{array}{l}
\lim ^{n} r^{n}=0 \\
\text { if }-1<r<1
\end{array}\right\}=2
\end{aligned}
$$

Def: Let $\left(b_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers.
We say that $\left(b_{n}\right)_{n=1}^{\infty}$ is bounded if there exists $M>0$ where $\left|b_{n}\right| \leq M$. for all $n . \quad-M \leqslant b_{n} \leqslant M$

Theorem: Let $\left(b_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. If $\left(b_{n}\right)_{n=1}^{\infty}$ converges, then $\left(b_{n}\right)_{n=1}^{\infty}$ is bounded.
proof: HW.

Def: Let $\left(a_{n}\right)_{n=1}^{\infty}$ be a sequence of real numbers. We say that $\left(a_{n}\right)_{n=1}^{\infty}$ is non-decreasing if $a_{n} \leq a_{n+1}$ for all n.

We say that $\left(a_{n}\right)_{n=1}^{\infty}$ is non-increasing if
$a_{n+1} \leq a_{n}$ for all n.

Theorem: (Monotone Convergence Theorem)
(1) If $\left(a_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence that is bounded from above, then $\left(a_{n}\right)_{n=1}^{\infty}$ converges.
Bounded from above means there] exists $M \in \mathbb{R}$ where $a_{n} \leq M$ for all n.

(2) If $\left(a_{n}\right)_{n=1}^{\infty}$ is a non-increasiny sequence that is bounded from below, then $\left(a_{n}\right)_{n=1}^{\infty}$ converges.
Bounded from below means there] exists $M \in \mathbb{R}$ where $M \leq a_{n}$ for all n.

