

Theorem: Let A and B P^9 be sets with $A \neq \phi$, $B \neq \phi$. IF A = B and B is countable, then A is countable. proof: If B is finite, then since $A \subseteq B$ we Know A is finite. Thus, A is countable. Now suppose B is countably infinite. Then, elements We can enumerate the with of B in a sequence no repeats, that is $B = \{b_1, b_2, b_3, b_4, \dots\}$

Since A = B we can go through B's sequence and pick out the elements of A and skip the otherr and you'll get a sub-sequence envmerating A, that is $A = \{ b_{i_1}, b_{i_2}, b_{i_3}, \dots \}$ Where i, < i2 < i3 < ... Thus, A is countable.

pgz

P 9 3 Let S be a set, Def: $S \neq \phi$. With S is not countable TFwe say that S is uncountable. then EX: Some uncountable numbers IR *e irrationals* R-Q $\left[0,1 \right]$ (10, 10.5)

If such an Lexists P9 5 then we say that the sequence (a) n=1 converges. If no such L exists then we say that the sequence diverges Recall: Let a,b,c E R with cro. la-bl<c iff b-c<a<b+c Then, b-c b b+c So $So_{n-L} < \Sigma$ iff $L-\Sigma < a_n < L+\Sigma$

Converge (6 Theorem: Let $(a_n)_{n=1}^{\infty}$ to A and $(b_n)_{n=1}^{\infty}$ converge to B. Let X, BER. Then, $(I) \lim_{n \to \infty} [\chi a_n + \beta b_n] = \chi A + \beta B$ $2 \lim_{n \to \infty} [a_n b_n] = AB$;f B=0 $\begin{array}{c} \hline 3 \\ n \rightarrow \infty \end{array} \begin{array}{c} \partial_n \\ \hline b_n \end{array} = \begin{array}{c} A \\ B \end{array} \end{array}$ and bn =0 for all n

Def: Given a sequence of
$$[Pg]_{\overline{T}}$$

real numbers
 $a_1, a_2, a_3, a_4, a_5, \cdots$
define
 $S_1 = a_1$
 $S_2 = a_1 + a_2$
 $S_3 = a_1 + a_2 + a_3$
 \vdots
 k
 $S_k = \sum_{n=1}^{k} a_n = a_1 + a_2 + \cdots + a_k$
If $\lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=1}^{k} a_k$ converges
to a real number L , then we
say that $\sum_{n=1}^{\infty} a_n = c_n$

Ex: Show that	pg 8
$\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = 2$	
We have $S_{k} = \sum_{n=0}^{k} \frac{1}{2^{n}} = \left + \frac{1}{2} + \frac{1}{2^{2}} + \cdots + \frac{1}{2^{k}} + \frac{1}{2^{$	
$(x=z) = \frac{1}{2} - \frac{1}{2} + \frac{1-(\frac{1}{2})^{k+l}}{1-\frac{1}{2}}$	
If $x \in \mathbb{R}$ and $x \neq 1$ then z y^m $\lim_{k \to \infty} S_k = \lim_{k \to \infty} \frac{1 - (\frac{1}{2})^k}{1 - \frac{1}{2}}$	
$\begin{array}{c} +\chi + \chi + \cdots + \chi \\ = \frac{1 - \chi^{m+1}}{1 - \chi} \\ \hline \\ $	

Def: Let $(b_n)_{n=1}^{\infty}$ be a sequence of real numbers. We say that (bn) is bounded if there exists M > 0 where $|b_n| \leq M$. $-M \leq b_n \leq M$ for all n.

Theorem: Let
$$(b_n)_{n=1}^{\infty}$$

be a sequence of real numbers.
If $(b_n)_{n=1}^{\infty}$ converges,
then $(b_n)_{n=1}^{\infty}$ is bounded.
Proof: HW.
Def: Let $(a_n)_{n=1}^{\infty}$ be a sequence
of real numbers. We say that
 $(a_n)_{n=1}^{\infty}$ is non-decreasing if
 $a_n \leq a_{n+1}$ for all n.
 $a_n \leq a_{n+1}$ for all n.
 $a_n \leq a_{n+1}$ for all n.

P9 12

Theorem. (Monotone Convergence Theorem) DIF (an) n=1 is a non-decreasing sequence that is bounded from above, then $(a_n)_{n=1}^{\infty}$ Bounded from above means there exists $M \in \mathbb{R}$ where $a_n \leq M$ for all n. Converges.

(PS 13

 $2TF(a_n)_{n=1}^{\infty}$ is a non-increasing sequence that is bounded from below, then (an) and

Bounded from below means there exists MER where $M \leq a_n$ for all n. Converges.

