$$
\begin{gathered}
\text { Math } 5800 \\
8 / 23 / 21
\end{gathered}
$$

- I'll use your calstatela.edu email to mass email the class announcements. If you want me to use a different email just let me know.
- Tests are done on canvas. No class on the test day. The test will appear on canvas at $6 a m$ on the test day and dissapear at noon the following day.
[Ex: Mon Gam - Tues noon]
During that window you pick a 2.5 hour time to take the test. When you open the fest canvas will time you. When done scan and upload as a $p d f$.

Topic 1 - Countable and Uncountable sets

Def: We say that a set S is countably infinite if S is infinite and the elements of S can be arranged in a sequence without repeats, that is S is of the form

$$
S=\left\{s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\}
$$

Another def is S is countably infinite if there exists a bijection $f: N \rightarrow S$. Then,

$$
\begin{aligned}
& N \rightarrow S . \quad \text { Then, } \\
& S=\{f(1), f(2), f(3), f(4), \ldots\}
\end{aligned}
$$

Def: We say that S is countable if S is finite or S is countably infinite.

Ex: Some countable sets:

$$
\begin{align*}
& S=\{5,10, \pi, 3\} \leftarrow \text { finite } \\
& \mathbb{N}=\{1,2,3,4,5, \ldots\} \leftarrow \text { countably } \\
& \mathbb{Z}=\{0,1,-1,2,-2, \\
& 3,-3,4,-4, \ldots\}
\end{align*}
$$

Theorem: Let A and B be countable. Then $A \cup B$ is countable.
proof:
Case 1: If A and B are both finite then $A \cup B$ is finite and so its countable.
case 2: Suppose $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ is finite and

$$
\begin{aligned}
& \text { finite and } \\
& B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}
\end{aligned}
$$

is countably infinite.

$$
\left.A \cup B=\left\{a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}\right\}
$$

Then
is an enumeration of $A \cup B$. Skip any duplicates when you enumerate.
case 3: If B is finite and A is countably infinite do the same thing as case 2 .
case 4: Suppose

$$
A=\left\{a_{1}, a_{2}, a_{3}, a_{4}, \ldots\right\}
$$

and

$$
B=\left\{b_{1}, b_{2}, b_{3}, b_{4}, \ldots\right\}
$$

are both countably infinite and the above are enumerations without duplicates.

$$
A \cup B=\left\{a_{1}, b_{1}, a_{2}, b_{2}, a_{3}, b_{3}, \ldots\right\}
$$

Then

Skip any repeats.
So, $A \cup B$ is countable.

Theorem: The rational numbers $C R$ is countable.
proof: Let $\mathbb{Q}_{+}=\{r \mid r>0, r \in \mathbb{Q}\}$ and $Q_{-}=\{r \mid r<0, r \in Q\}$.
Then, $Q=Q_{+} \cup Q_{-} \cup\{0\}$. Let's show that Q_{+}is countable. Consider the following way to arrange Ch+ where we cross out any elements not in lowest form and circle the elements of Q_{+}.

$$
\begin{aligned}
& \left(\frac{1}{1},\left(\frac{1}{2},\left(\frac{1}{3}\right), \frac{1}{4}, \frac{1}{5}, \cdots\right.\right. \\
& \left(\frac{2}{1}\right), \frac{4}{2}, \frac{2}{3}, \frac{24}{4}, \frac{2}{5}, \cdots \\
& \left(\frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{3}{5}, \cdots\right. \\
& \frac{4}{1}, \frac{4}{2}, \frac{4}{3}, \frac{4}{4}, \frac{4}{5}, \cdots \\
& \left(\frac{5}{1}, \frac{5}{2}, \frac{5}{3}, \frac{5}{4}, \frac{5}{5}, \cdots\right. \\
& 0
\end{aligned}:
$$

Continuing in this way forever yields a sequence which enumerates C_{+}without repeats. That is,

$$
\begin{array}{r}
C_{+} \text {without repeals }=\left\{1, \frac{1}{2}, 2,3, \frac{1}{3}, \frac{1}{4}, \frac{2}{3}, \frac{3}{2}\right. \text {, } \\
4,5,1 / 5, \ldots\}
\end{array}
$$

So, C_{+}is countable.
Similarly Q_{-}is countable. Also, $\{0\}$ is countable.
Thus, by the previous theorem

$$
C h=Q_{+} \cup C h-U\{0\}
$$

is countable.

Theorem: The union of a countable number of countable sets is countable.
proof:
case 1: Suppose we have a finite number of countable sets $S_{1}, S_{2}, S_{3}, \ldots, S_{n}$.
Then by iterating the theorem on page 4 we have that

$$
S_{1} \cup S_{2} \cup S_{3} \cup \cdots \cup S_{n}
$$ is countable.

Case 2: Suppose we have a countably infinite number of countable sets $S_{1}, S_{2}, S_{3}, S_{4}, \ldots$

Suppose

$$
S_{i}^{\text {pose }}=\left\{S_{i 1}, S_{i 2}, S_{i 3}, \cdots\right\}
$$

Arrange the rets as follows and enumerate like with \mathbb{R}_{+}:
$S_{11} S_{12} S_{13} S_{14}^{l} S_{15} \ldots S_{1}$ $\mathrm{S}_{21} \mathrm{~S}_{22} \mathrm{~S}_{23} \mathrm{~S}_{24} \mathrm{~S}_{25} \ldots \mathrm{~S}_{2}$ $\left(S_{31} S_{32} S_{33} S_{34} S_{35} \ldots \leftarrow S_{3}\right.$ $S_{41}^{\ell} S_{42} S_{43} S_{44} S_{45} \ldots \leftarrow S_{4}$ $\left(\begin{array}{ccccccc}S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & \ldots & \in S_{5} \\ 9 & \vdots & \vdots & \vdots & \vdots & & \end{array}\right.$

List out

$$
\begin{aligned}
& \text { isp out } \\
& \bigcup_{i=1}^{\infty} S_{i}=\left\{S_{11}, S_{12}, S_{21}, S_{31}, S_{22}, S_{13}, \cdots\right\}
\end{aligned}
$$

as above, skipping any repeats, to show that $\bigcup_{i=1}^{\infty} S_{i}$ is countable.

