Math 5800 12/1/21

Recall: Let E be a [Pg]
measurable set [means
$$X_E$$
 is a
measurable function].
Then,
 $U(E) = \begin{cases} \int X_E & \text{if } E \text{ is } \\ \text{integrable} \end{cases} \begin{cases} \chi_E \\ \text{is in } \\ \chi_E \\ \text{otherwise} \end{cases}$

Proved:
E has measure zero iff
E is measurable and
$$\mu(E) = 0$$

Pg 2

HW 9 #81 Let f,g be measurable functions Then the following and deR. are all measurable functions $f+g, \alpha f, \min\{f,g\}, \max\{f,g\}$ $min \{f, g\}(x) = min \{f(x), g(x)\}$ $max \{f,g\}(x) = max \{f(x),g(x)\}$

(:) Lot F. FEM.	P9 4
Then, XE and XF are	
measurable functions.	ר
Claim: $\chi_{EVF} = \max \{\chi_{E}, \chi_{F}\}$	5
pf of claim: Let XER.	
Suppose XEEUF. eq	.ua
Then, $\chi_{EUF}(x) = 1$. Then, $\chi_{EUF}(x) = 1$.	50
And either $x \in E$ or $\chi_{E}(x) = $	l.
either $\chi_{\varepsilon}(x) = [$ $\chi_{\varepsilon}(x) = [$	4
Thus, max 2'XELAI, I'	
Suppose XEEVF. Equa)
Then, XEVF (X)=0 Then, XEVF (X)=0	7
And $X \notin E$ when $X_{E}(x) = \max \{0\}$,0))
JO, MULLIEL) = O TE	laim)

Since XE and XF are P95 both measurable functions, by HW 9 #8(d), $\chi_{EVF} = \max \{\chi_{E}, \chi_{F}\}$ is also a measurable function. Thus, EUF is a measurable set. What about E-F? One can show that $\chi_{E-F} = \chi_E - \min \{\chi_E, \chi_F\}$ Try it out. By Hw 9 #8 since XE, XF so is min ZXE, XF are measurable and min EXE, XF3 Thus, since XE are measurable, $X_{E-F} = X_E - \min \{X_E, X_F\}$ is measurable. Thus, E-FEM.

P9 6 (iii) Suppose E1, E2, E3,... are measurable sets. Let $E = \bigcup E_{k=1}$ and $S_n = \bigcup_{k=1}^n E_k = E_1 \cup E_2 \cup \cdots \cup E_n$ Let $f = \chi_E$ and $f_n = \chi_{s_n}$ for n≥1. E1, E2,..., En By part (ii) since are measurable, so is $S_n = E_1 U E_2 U \cdots U E_n$. Thus, $f_n = X_{s_n}$ is a measurable function for n>1.

$$\frac{Claim:}{n \to \infty} \lim_{n \to \infty} f_n(x) = f(x) \text{ for all } x \in \mathbb{R}$$

$$\frac{proof of claim:}{n \to \infty} \quad Let \quad x \in \mathbb{R}.$$

$$\frac{case \ 1:}{case \ 1:} \quad Suppose \quad x \notin E = \bigcup_{k=1}^{\infty} E_k.$$

$$Then, \quad x \notin S_n = \bigcup_{k=1}^{n} E_k \text{ for all } n \ge 1.$$

$$Thus, \quad \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} 0 = 0 = \chi_E(x)$$

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} 0 = 0 = \chi_E(x).$$

$$\frac{case \ 2:}{\chi_{S_n}(x)} \quad = E = \bigcup_{k=1}^{\infty} E_k.$$

$$Let \quad E > 0.$$

$$Then \quad x \in E_N \text{ for some } N \ge 1.$$

$$Thus, \quad X \in S_n = \bigcup_{k=1}^{n} E_k \text{ for all } n \ge N.$$

Thus if NZN we have [Pg 8 $\left[f_{n}(x) - f(x)\right] = \left[\chi_{S_{n}}(x) - \chi_{E}(x)\right]$ = | |-| |= 0 < 2 So, $\lim_{n \to \infty} f_n(x) = f(x)$ if $x \in E$. Claim So, fn is a sequence of measurable functions that converges everywhere to f. By a theorem on Monday f is measurable. Thus, since $f = X_E$ we Know E is a measurable set.

Lemma: Suppose A and B Pg 10are measurable sets and $A \leq B$. If B is integrable, then A is integrable. So, if A is not integrable, then B is not integrable Suppose A, BEM and A = B. Suppose B is integrable. proof: Then, $X_{B} \in L'$. Since $A \subseteq B$ we know $X_{A}(x) \leq X_{B}(x)$ for all X. $J_{\#2}$ Then, $\chi_{B} \in L'$. Since A is a measurable set we know X_A is a measurable function.

Note $\chi_B \ge 0$ and $\chi_B \in L^1$. [Pg] Thus, mid $\{-\chi_B, \chi_A, \chi_B\} \in L'$. Using X_A is a measurable function and $g = X_B$ But, $-\chi_{B}(x) \leq \chi_{A}(x) \leq \chi_{B}(x)$ tor all X. Thus, mid $\xi - \chi_B, \chi_A, \chi_B \zeta = \chi_A$. So, $X_A \in L'$. Thus, A is integrable.