$$
\begin{aligned}
& \text { Math } 5800 \\
& 11 / 3 / 21
\end{aligned}
$$

Topic 8 continued...

Recap from last time

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded on $[a, b]$ and vanishes outside of $[a, b]$. Let $E=\{x \in(a, b) \mid f$ is discontinuous at $x\}$
If E has measure zero, then $f \in L^{\circ}$ and so $f \in L^{\prime}$.
And $\int f=\lim _{n \rightarrow \infty} \int \gamma_{n}$
where γ_{n} is the s tandond construction for f on $[a, b]$.

Corollary: If $f: \mathbb{R} \rightarrow \mathbb{R}$ and f is bounded on $[a, b]$

$$
E=\{x \in(a, b) \mid f \text { is discontinuous at } x\}
$$ and has measure zero, then

$$
f \in L^{\prime}([a, b])
$$

proof:
Let

$$
g=f \cdot X_{[a, b]}
$$

By the previous
theorem $g \in L^{\prime}$.
Thus, $f \in L^{\prime}([a, b])$.

Ex: Let
$f(x)=X_{[0, \pi]}(x) \cdot \sin (x)=\left\{\begin{array}{cl}\sin (x) & \text { if } 0 \leq x \leq \pi \\ 0 & \text { otherwise }\end{array}\right.$

$$
f \in L^{0} \text { and } \int f=\lim _{n \rightarrow \infty} \int \gamma_{n}
$$

Where γ_{n} is the standard construction on $[0, \pi]$.

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded on $[a, b]$.
Then f is $\frac{\text { Riemann integrable }}{\text { (Math 4660) }}$
on $[a, b]$ if and only if
$E=\{x \in(a, b) \mid f$ is discontinuous at $x\}$
has measure zero.
Furthermore, if f is Riemann integrable on $[a, b]$ then f is Lebesgue integrable on $[a, b]$ (ie $f \in L^{\prime}([a, b])$) and

$$
\int_{[a, b]} f=\frac{\int_{a}^{b} f(x) d x}{\text { Riemann integral on }[a, b]}
$$

Lebesgue integral on $[a, b]$

Ex: Let

$$
f(x)= \begin{cases}0 & \text { if } x \notin[0,1] \\ 1 & \text { if } x \text { is irrational and } \\ 0 & \text { if } x \in[0,1] \\ x \in[0,1]\end{cases}
$$

So, f is not Riemann integrable on $[0,1]$.

Note that

$$
X_{[0,1]}(x)=f(x)
$$

everywhere except at $\mathbb{Q} \cap[0,1]$.

And $\operatorname{C} \cap[0,1]$ has measure zero, because $C h \cap[0,1] \subseteq C$ and Q has measure zero.
So, $X_{[0,1]}=f$ almost everywhere.
Consider the constant sequence $\varphi_{n}=X_{[0,1]}$ for all $n \geqslant 1$, ie

$$
\begin{aligned}
& \varphi_{n}=X_{[0,1]} \\
& X_{[0,1]}, X_{[0,1]}, X_{[0,1]}, \ldots
\end{aligned}
$$

$$
[0,1], \varphi_{1}, \quad \varphi_{3}, \ldots
$$

Then, $\lim _{n \rightarrow \infty} \varphi_{n}(x)=X_{[0,1]}(x)=f(x)$ for all $x \notin G \cap[0,1]$.
So, $\varphi_{n} \rightarrow f$ almost everywhere and $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence and $\int \varphi_{n}=\int X_{[0,1]}=1$ and so $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ is a bounded sequence.
Thus, $f \in L^{0}$.
So, $f \in L^{\prime}$ and is Lebesgue integrable and

$$
\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}=1
$$

So, f is not Riemann integrable on $[0,1]$ but it is Lebesgue integrable on $[0,1]$.

