

HW 8 #2 In the solutions I had " $f = f \cdot \chi_{[0,47]}$ almost everywhere (except at x=0, 4)''It should say e very where " $(f = f \cdot \chi_{(0, 4)})$ emailed about test 2 W Plan: Topic lo Finish Topic 9 Questions / Review Topic 10 Final

وم | 2 | Iheorem: Let f:R→R. Let $(f_n)_{n=1}^{\infty}$ be a sequence of measurable functions where $\lim_{x \to \infty} f_n(x) = f(x)$ for almost all x in R. Then f is measurable. Proof: We need to show that $mid \{\xi-g,f,g\} \in L'$ for all gel' with g>0. Let gel with gzo. Let $h = mid \sum_{j=0}^{\infty} f_{j}g_{j}$ Let h_=mid 2-9, fn, gf.

(pg 3 We saw previously that $|h_n(x)| = |mid\{-g(x), f_n(x), g(x)\}|$ $\leq g(x)$ for all XEIR and n>1. Since fn is measurable for each $n \geq l$, we know $h_n = mid \geq -g_1 + f_1, g \geq 0$ is in L'for each n=1. By Hw 9 #7, since $f_n \rightarrow f$ almost everywhere, $h_n = \operatorname{mid} \{\overline{2} - 9, f_n, 9\} \longrightarrow h = \operatorname{mid} \{\overline{2} - 9, f_n\}$ almost everywhere.

Thus,

$$(h_n)_{n=1}^{\infty}$$
 is a sequence of L'
functions
 $h_n \rightarrow h$ almost everywhere
 $|h_n(x)| \leq g(x)$ for all
 $x \in IR$ and $n \geq I$ where
 $g \in L'$.
By the dominated convergence
theorem, $h = mid \geq -9, f, g \geq EL'$.
Thus, f is measurable.

pg 5

heorem: Let f: R->R and E= { x E R | f is discontinuous at x } If E has measure zero, is measurable. then f Proof: HW 9.

Topic 10-Measurable sets

Def: Let $E \subseteq \mathbb{R}$. We say that E is measurable if XE is a measurable function $[ie, X \in \widetilde{M}].$ We denote the set of measurable sets by M. We say that E is <u>integrable</u> if XE is an integrable function [ie, $\chi_{E} \in L'$].

pg 6

<u>Ex:</u> Let E= (-2,5] Pg 7 $\chi_{E} = \chi_{(-2,5]}$ is a step function, and so $X_E \in L'$. Thus, E = (-2,5) is an integrable Since L' = M, Xe is also a measurable function, $S_{o} = (-2, 5)$ is a measurable set. So, EEM.

p.9 8 Ex: E=Rpreviously that We showed but $X_E \in M$. XFEL not integrable So, Eis measurable. but E is Theorem: Let E S R. IF E is integrable, then E is measurable. proof: Suppose E is integrable. Then $X_E \in L'$. Since $L' \leq M$, we have X_E 15 measurable, Thus, E is measurable.

Def:
$\frac{1}{1} R = R U \le \infty $
where ∞ is thought of as a symbol with the following
properties: for all $a \in \mathbb{R}$
• $\alpha < \infty$ for all $\alpha \in \mathbb{R}$ • $\alpha + \infty = \infty$ for all $\alpha \in \mathbb{R}$
• $\infty + \infty = 1$ • $\sum_{n=1}^{\infty} \alpha_n$ is an infinite sum • $\sum_{n=1}^{\infty} \alpha_n$ is an infinite sum • $\sum_{n=1}^{\infty} \alpha_n \beta_n \beta_n$ for
with $a_n \in \mathbb{N}_{\infty}$ with $a_n \in \mathbb{N}_{\infty}$ then if all $n \geq 1$, then if $a_n \equiv \infty$ then $\sum_{n=1}^{\infty} a_n = \infty$.

Pg 10

$$\underbrace{Ex:}_{i} \quad Let \quad E = \{1, 2, 10\}$$

$$\underbrace{Pg}_{11} \\
 \underbrace{Y}_{i} = \chi_{[1,1]} + \chi_{[2,2]} + \chi_{[10,10]} \\
 \text{is a step function, so } \chi_{E} \in L^{1}. \\
 \text{Thus, } \mu(E) = \int \chi_{E} \\
 = \int \chi_{(1,1)} + \chi_{(2,2]} + \chi_{(10,10]} \\
 = (1-1) + (2-2) + (10-10) \\
 = 0 \\
 \underbrace{Ex:}_{i} \quad E = (1, 10] \\
 \chi_{E} = \chi_{(1,10]} \text{ is a step function, so} \\
 \chi_{E} \in L^{1}. \quad \text{Thus, } \mu(E) = \int \chi_{E} \\
 = |0-1| = 9$$

Ex: E=Ris measurable from earlier. F $\chi_{\epsilon} \notin L'$, ie E is not integrable. Thus, $\mu(E) = \mu(\mathbb{R}) = \infty$

Theorem: Let $E \subseteq \mathbb{R}$. E has measure zero [Topic 3 def] iff E is measurable and $\mu(E) = 0$.

proof: has measure (=>) Suppose E in topic 3. Zero as defined if xe E nen, $\chi_{E}(x) = \begin{cases} 1\\ 0 \end{cases}$ Then, if x&E Zero $\chi_{\varepsilon}(x) = \chi_{\phi}(x)$ $\forall x \notin E$ χ_{ϕ} is equal to the function X\$ almost everywhere.

Since $X_{\varphi} \in L'$ and $X_{E} = X_{\varphi} \begin{bmatrix} P_{9} \\ I_{4} \end{bmatrix}$ almost everywhere, we know $\chi_{\epsilon} \in L'$ and $\int \chi_{\epsilon} = \int \chi_{\phi} = 0$ Thus, E is integrable and hence measurable. And, $\mu(E) = \int \chi_E = \int \chi_{\phi} = 0.$ (A=) Now suppose E is a measurable set and $\mu(E)=0$. By def of μ_{j} since $\mu(E) = O$ we know E is integrable and $\mu(E) = \int \chi_E = 0.$ Since E is integrable, $X_E \in L'$.

Thus,
$$X_E \in L'$$
 and $X_E \ge 0$ $\begin{bmatrix} Pg \\ IS \end{bmatrix}$
and $\int X_E = 0$.
By a theorem in class during
topic 7, this implies that
 $X_E(x) = 0$ for almost all X.
That is,
 $X_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E \end{cases}$
is 0 almost everywhere.
Thus, $R-E$ is an almost everywhere
set.

Thus, E has measure zero [Topic 3].