Math 5800 11/17/21

We continue from last time

P9

Theorem: Let
$$f:\mathbb{R} \to \mathbb{R}$$
.
 f is measurable iff there
 $exists$ a sequence $(f_n)_{n=1}^{\infty}$
 of L' functions where
 $f_n \to f$ almost everywhere.

$$\begin{array}{c} \underline{Proof:}\\ (\underline{\leftarrow}) & We \ did \ this \ last \ Week. \\ (\underline{\leftarrow}) & Suppose \ that \ f \\ (\underline{\leftarrow}) & Suppose \ that \ f \\ is \ measurable. \\ Let \\ g_n = n \cdot \chi_{[-n,n]} \\ for \ n \geq 1 \end{array}$$

Note, $g_n(x) \ge 0$ for all $x \in \mathbb{R}$ and $n \ge 1$. (9 2 So, gn≥D, ie gn is non-negative. Also, g, EL because $g_n = n \cdot \chi_{[-n,n]}$ is a step function. Let $f_n = mid \{2 - g_n, f_j, g_n\}$ Let's draw a picture.

So,
$$f_n = \text{mid} \{-g_n, f, g_n\}$$
 (P94)
truncates f into a $2n \times 2n$
box centered at the origin.
Claim 1: $f_n \rightarrow f$ on all of IR
pf of claim 1: This is HW 9
 $\# 2$. (We don't even need
 $\# 2$. (We will show lim
 $h \infty$
 $\# 0$. (X) = f(X).
 $\# 0$. (Y) = f(X).(Y) = f(X).
 $\# 0$. (Y) = f(X).
 $\# 0$. (Y) = f(X).(Y) = f

Thus,

$$-M \leq f(x) \leq M \quad and \quad -M \leq x \leq M.$$

$$So, \quad -g_{M}(x) = -M \cdot \chi_{[-H,H]}(x)$$

$$= -M \leq f(x) \leq M$$

$$= M \cdot \chi_{[-H,M]}(x) = g_{M}(x).$$

$$1$$
That is,
$$-g_{M}(x) \leq f(x) \leq g_{M}(x).$$

$$So, \quad 1$$

$$F_{M}(x) = mid\{2-g_{M}(x), f(x), g_{M}(x)\} = f(x).$$
Note that if $n \geq M$, then

$$Note that if n \geq M$$
, then

$$X \in [-M,M] \leq [-n,n] \quad and \quad so$$

$$\chi_{[-M,M]}(x) = I = \chi_{[-n,n]}(x).$$

Thus, if
$$n \ge M$$
 then

$$-g_{n}(x) = -n \cdot \chi_{[-n,n]}(x)$$

$$= -n \le -M = -M \cdot \chi_{[-n,n]}(x)$$

$$= -g_{m}(x) \le f(x) \le g_{m}(x)$$

$$= M \cdot \chi_{[-m,m]}(x)$$

$$= M \le n = n \cdot \chi_{[-n,n]}(x)$$

$$= g_{n}(x).$$
Therefore if $n \ge M$, then

$$-g_{n}(x) \le f(x) \le g_{n}(x).$$

So, if n>M then $f_n(x) = mid \{2-g_n, f, g_n\}(x)$ = mid $\{2-g_n(x), f(x), g_n(x)\}$ = f(x) $\left[-9_{n}(x) \leq f(x) \leq 9_{n}(x)\right]$ Thus if E>O and n=M $|f_{n}(x) - f(x)| = |f(x) - f(x)|$ we have Thus, $\lim_{x \to \infty} f_n(x) = f(x)$. Since x was arbitrary, $f_n \rightarrow f$ on all of \mathbb{R} . Claim 1

Claim 2:
$$f_n \in L'$$
 for $n \ge 1$
proof of claim 2:
Because f is measurable
and $g_n \in L'$ and $g_n \ge 0$
and $g_n \in L'$ and $g_n \ge 0$
we know by def of
We know by def of
measurable that $mid \{2-g_n, f, g_n\}$
measurable that $mid \{2-g_n, f, g_n\} \in L'$
Thus, $f_n = mid \{2-g_n, f, g_n\} \in L'$
Claim 2

ר

By claim 1 and claim 2,

$$(f_n)_{n=1}^{\infty}$$
 is a sequence of L'
functions with $f_n \rightarrow f$
on all of \mathbb{R} ,

Since fn = X (-n, n) is a step function we know $f_{\Lambda} \in L'$. So, we have a sequence (fn)n=, of L' functions that converge to f=XR on all of R. Thus, by the previous theorem, f is measurable.

