$$
\text { Math } 5800
$$

$$
11 / 17 / 21
$$

We continue from last time

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$. f is measurable if there exists a sequence $\left(f_{n}\right)_{n=1}^{\infty}$ of L^{\prime} functions where $f_{n} \rightarrow f$ almost everywhere.
proof:
$\frac{(\rightharpoonup)}{}$ We did this last week. (∇) Suppose that f is measurable. Let

$$
g_{n}=n \cdot X_{[-n, n]}
$$

for $n \geq 1$

Note, $g_{n}(x) \geqslant 0$ for all $x \in \mathbb{R} \mid \rho g$ and $n \geqslant 1$.

So, $g_{n} \geqslant 0$, ie g_{n} is non-negative.
Also, $g_{n} \in L^{\prime}$ because
$g_{n}=n \cdot X_{[-n, n]}$ is a step function.

Let

$$
f_{n}=\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}
$$

Let's draw a picture.

So, $f_{n}=\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}$
truncates f into a $2 n \times 2 n$ box centered at the origin.
Claim 1: $f_{n} \rightarrow f$ on all of \mathbb{R}
pf of claim 1: This is HW 9
\#2. (We don't even need
f to be measurable for claim 1.) Fix some $x \in \mathbb{R}$.
We will show $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$.
Pick $N_{1}>0$ large enough so that $-N_{1} \leq f(x) \leq N_{1}$ Pick $N_{2}>0$ large enough so that

$$
-N_{2} \leq x \leq N_{2}
$$

Set $M=\max \left\{N_{1}, N_{2}\right\}$

Thus,
$-M \leq f(x) \leq M$ and $-M \leq x \leq M$.

$$
\left.\begin{array}{rl}
\text { So, } \\
-g_{M}(x) & =-M \cdot \overbrace{X_{[-M, M]}(x)}^{1} \\
& =-M \leq M(x \underbrace{f(x)}_{1} \leq M \\
& =M \cdot X_{[-M, M]}(x)
\end{array}\right)=g_{M}(x) .
$$

$$
\begin{aligned}
& \text { That is, }-g_{M}(x) \leq f(x) \leq g_{M}(x) \\
& \text { So, } \\
& f_{M}(x)=\operatorname{mid}\left\{-g_{M}(x), f(x), g_{M}(x)\right\} \stackrel{\neq f(x)}{=} . \\
& \quad \text { if } n \geqslant M, \text { then }
\end{aligned}
$$

Note that if $n \geqslant M$, then $x \in[-M, M] \subseteq[-n, n]$ and so $X_{[-M, M]}(x)=1=X_{[-n, n]}(x)$.

Thus, if $n \geqslant M$ then

$$
\begin{aligned}
-g_{n}(x) & =-n \cdot \underbrace{X_{[-n, n]}(x)}_{1} \\
& =-n \leq-M=-M \cdot \underbrace{X_{[-M, M]}(x)}_{1} \\
& =-g_{M}(x) \leq f(x) \leq g_{M}(x) \\
& =M \cdot \underbrace{X_{[-M, M]}(x)}_{1} \\
& =M \leq n=n \cdot \underbrace{X_{[-n, n]}}_{1} \\
& =g_{n}(x)
\end{aligned}
$$

Therefore if $n \geqslant M$, then

$$
-g_{n}(x) \leq f(x) \leq g_{n}(x)
$$

So, if $n \geqslant M$ then

$$
\begin{aligned}
& f_{n}(x)=\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}(x) \\
&=\operatorname{mid}\left\{-g_{n}(x), f(x), g_{n}(x)\right\} \\
&=f(x) \\
& 4
\end{aligned}
$$

Thus if $\varepsilon>0$ and $n \geqslant M$

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right|=|f(x)-f(x)| \\
& =0<\varepsilon \\
& \text { Thus, } \lim _{n \rightarrow \infty} f_{n}(x)=f(x) \text {. }
\end{aligned}
$$

Since x was arbitrary, $f_{n} \rightarrow f$ on all of \mathbb{R}.
claim 1

Claim 2: $f_{n} \in L^{\prime}$ for $n \geqslant 1$
proof of claim 2:
Because f is measurable and $g_{n} \in L^{\prime}$ and $g_{n} \geqslant 0$ we know by def of measurable that $\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}$ is in L^{\prime}.
Thus, $f_{n}=\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\} \in L^{\prime}$
Claim 2

By claim 1 and claim 2, $\left(f_{n}\right)_{n=1}^{\infty}$ is a sequence of L^{\prime} functions with $f_{n} \rightarrow f$ on all of \mathbb{R}.
$E X_{:}$Let $f=X_{\mathbb{R}}$
We know $f \notin L^{\prime}$.
Let $g_{n}=n \cdot X_{[-n, n]}$ as in the previous theorem.
Let $f_{n}=\operatorname{mid}\left\{-g_{n}, f, g_{n}\right\}$
Then,

$$
f_{n}=X_{[-n, n]}
$$

By HW 9 problem 2, $f_{n} \rightarrow f$ on all of \mathbb{R}.

Since $f_{n}=X_{[-n, n]}$ is a
step function we know

$$
f_{n} \in L^{\prime}
$$

So, we have a sequence
$\left(f_{n}\right)_{n=1}^{\infty}$ of L^{\prime} functions
that converge to $f=X_{\mathbb{R}}$ on all of \mathbb{R}.

Thus, by the previous theorem, f is measurable.

- $X_{\mathbb{R}}$
- handout I emailed
L^{0}
any
step function
f bounded on $[a, b]$ continuous almost everywhere on (a, b) vanishes outside $[a, b]$

