Math 5800 11/10/21

HW typos

HW 7 # II(a) - I had the graphs labelled g_{13}, g_{13}, g_{1} . It should be g_{1}, g_{2}, g_{3} . I fixed this in the solutions.

Hw 7 #10- On the second page of the rolution I had $X_{I}(x) = 0$ and h(x)=1 when $x \in OhnI$. It should be $X_{I}(x)=0$. I be $X_{I}(x)=1$ and h(x)=0. I fixed this in the solutions.

HW 6 #6 – In the problem Statement I put $f_n \rightarrow g$ almost everywhere. It should be $f_n \rightarrow f$ almost everywhere. It's fixed NOW. HW 6 - 4(b) When calculating $\mathcal{Y}_n(1)$ I forgot to square the value. Its fixed Online NOW.

|P9 | 4 $Vef: Let f: \mathbb{R} \to \mathbb{R}$. We say that f is measurable if for every GEL' where g is non-negative (ie g > 0) We have that $mid \{2-9, f, g\} \in L'$. We will denote the space of measurable functions by M.

Idea: f is measurable means that if we truncate f by an integrable [integrable means L] 970 then that truncation mid Z-g,f,gg will be integrable.

HW9 #5-Let h, kel. Then, min Zh, kz and max Zh, kz [9] are in L'. Here $\max \{ \{ \}, k \}(x) = \max \{ \{ \}, k(x) \}$ $\min \{ \}, k \}(x) = \min \{ \}(x), k(x) \}$ Theorem: $L' \subseteq \tilde{M}$ That is, if f is integrable, then f is measurable. Proof: Let fel. Pick some gEL' with g > 0. We need to show that mid z - g, f, g z is in L. By Hw 9 # 5, $min \{2f, g\} \in L'$. Thus again by HW 9 # 5max $\{-9, \min \{2f, 9\}\} \in L^1$.

Thus $mid \{2-9, f, g\} = max \{-9, min \{2, g\}\} \begin{bmatrix} P9 \\ 6 \end{bmatrix}$ is in L. Thus, f is measurable. Theorem (Dominated Convergence theorem) Let $(f_n)_{n=1}^{\infty}$ be a sequence of L'Évactions. Suppose that f: IR->IR and $f_n \rightarrow f$ almost everywhere. Suppose that there exists gEL, gzo, where $|f_n| \leq g$ for all $n \geq 1$. $[means: |f_n(x)| \leq g(x) \text{ for all } x \in \mathbb{R}]$ Then, FEL and Proof: $\int f = \lim_{n \to \infty} \int f_n$ Handout.

Theorem: Let $f: \mathbb{R} \to \mathbb{R}$. f is measurable iff there exists a sequence $(f_n)_{n=1}^{\infty}$ of L' functions such that $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all $x \in \mathbb{R}$.

Proof: $(=) Let f: \mathbb{R} \rightarrow \mathbb{R}.$ Suppose (fn)n=1 is a sequence of L'functions and $\lim_{n \to \infty} f_n(x) = f(x)$ for almost all $x \in \mathbb{R}$. Let's show that fEM.

Pick any
$$g \in L'$$
 with $g \ge 0$.
We want to show that
mid $\{-g, f, g\}$ is in L' .
Let $h_n = \operatorname{mid} \{-g, f_n, g\}$ for $n \ge 1$.
Then since $-g, f_n, g \in L'$ we
know that
 $h_n = \operatorname{mid} \{2-g, f_n, g\} = \max \{2-g, \min \{f_n, g\}\}$
 $h_n = \operatorname{mid} \{2-g, f_n, g\} = \max \{2-g, \min \{f_n, g\}\}$
is in L' .
Note that
 $\int 1-g(x)|$ if $f_n(x) < -g(x)$
 $|f_n(x)| = \begin{cases} 1-g(x)| & \text{if } f_n(x) < -g(x) \\ |f_n(x)| & \text{if } g(x) < f_n(x) \\ |g(x)| & \text{if } g(x) < f_n(x) \end{cases}$

We have
$$|-g(x)| = g(x) \leftarrow g \ge 0$$

Also, when $-g(x) \le f_n(x) \le g(x)$
then $|f_n(x)| \le g(x)$.
And, $|g(x)| = g(x)$.
Thus, $|h_n(x)| \le g(x)$ for all x
and $n \ge 1$.
HW 9 # 7(b) - $(f_n)_{n=1}^{n=1}$ is a sequence
of functions $f_n: \mathbb{R} \to \mathbb{R}$, $g \ge 0$,
of functions $f_n: \mathbb{R} \to \mathbb{R}$, $g \ge 0$,
 $f: \mathbb{R} \to \mathbb{R}$ with $f_n \to f$ almost everywhere.
 $f: \mathbb{R} \to \mathbb{R}$ with $f_n \to f$ almost everywhere.
Then, $\lim_{n \to \infty} \min\{2 - 9, f_n, 9\}(x) = \min\{2 - 9, f_n, 9\}(x)$
for almost all \times
By $Hw 9 \# 7(b)$,
 $\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \min\{2 - 9, f_n, 9\}(x)$
 $\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \min\{2 - 9, f_n, 9\}(x)$
 $\lim_{n \to \infty} h_n(x) = \lim_{n \to \infty} \min\{2 - 9, f_n, 9\}(x)$
for almost all \times .

Thus,
$$(h_n)_{n=1}^{\infty} = (mid\{-9, f_n, 9\})_{n=1}^{\infty}$$
 [pg
is a sequence of L' functions
that converges almost everywhere
to mid{ $\{-9, f, 9\}$ and
 $|h_n(x)| = |mid\{-9, f_n, 9\}(x)|$
 $\leq g(x)$ [where $g \in L$]
for all $x \in \mathbb{R}$ and $n \not = 1$.
Thus, by the dominated convergence
Thus, by the dominated convergence
theorem, mid{ $\{-9, f, 9\} \in L$.
(Imp)]