MATH 5800

$$
11 / 1 / 21
$$

Grading schemes

Syllabus
test 1-1/3
test $2-1 / 3$
final - $1 / 3$
drop one
$\max \{+$ test 1, test 2$\}-1 / 2$
final -1/2

I will pick the better of "syllabus" or "drop one" method for each student.

Test 2
Monday Nov 15
covers HW 6 and HW 7

Topic 8 -More on integrable functions
Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded on $[a, b]$ and vanish outside of $[a, b]$ $[$ That is, $f(x)=0$ for all $x \notin[a, b]$].

Let
$E=\{x \in(a, b) \mid f$ is discontinuous at $x\}$
If E has measure zero, then f is integrable [indeed, we will show $f \in L$] Furthermore, if this is the case then

$$
\begin{aligned}
& \text { Fur thermore, if this is the } \\
& \qquad \int f=\lim _{n \rightarrow \infty} \int \gamma_{n} \\
& \text { where } \gamma_{n} \text { is the } \\
& \text { standard construction } \\
& \text { on }[a, b] \text {. }
\end{aligned}
$$

proof: Suppose E has measure zero.
Let $E^{\prime} \subseteq[a, b]$ consist of all the endpoints of all the $I_{n, k}$ for every subdivision of $[a, b]$ into 2^{n} subintervals via the standard construction.

So,

$$
\begin{aligned}
& \text { So, } \\
& E^{\prime}=\left\{a, b, \frac{b-a}{2}, a+\frac{b-a}{2^{2}},\right. \\
& a+2 \cdot \frac{b-a}{2^{2}}, a+3 \cdot \frac{b-a}{2^{2}}, \\
& \left.a+\frac{b-a}{2^{3}}, a+2 \cdot\left(\frac{b-a}{2^{3}}\right) \cdots\right\}
\end{aligned}
$$

Then, E^{\prime} is countable and so E^{\prime} has measure zero.

Let $F=E \cup E^{\prime}$.
Then F has measure zero.
Let $\left(\gamma_{n}\right)_{n=1}^{\infty}$ be the standard construction for f on $[a, b]$.
Claim 1: $\left(\int \gamma_{n}\right)_{n=1}^{\infty}$ is bounded
proof of claim 1:
Since f is bounded on $[a, b]$

$$
\begin{aligned}
& \text { Since } f \text { is bounded } \\
& \text { there exists } k>0 \text { where } \\
& |f(x)| \leq K \text { for all } x \in[a, b] \text {. } \\
& -k \leq f(x) \leq K
\end{aligned}
$$

Let $m=2^{n}$. Then,

$$
\begin{aligned}
& \text { Let } m=2^{n} \text {. } \\
& \gamma_{n}=c_{n, 1} X_{I_{n, 1}}+c_{n, 2} X_{I_{n, 2}}+\ldots+c_{n, m} X_{I_{n, m}}
\end{aligned}
$$

where $c_{n, k}=\inf \left\{f(t) \mid t \in I_{n, k}\right\} \leq K$

Thus,

$$
\begin{aligned}
\gamma_{n} & \leqslant K \cdot X_{I_{n, 1}}+K \cdot X_{I_{n, 2}}+\ldots+K \cdot X_{I_{n, m}} \\
& =K \cdot X_{[a, b]}
\end{aligned}
$$

because $[a, b]$ is the disjoint union of $I_{n, 1}, I_{n, 2}, \ldots, I_{n, m}$.

Thus,

$$
\begin{aligned}
\int \gamma_{n} & \leq \int K \cdot X_{[a, b]} \\
& =K \cdot(b-a) . \quad \text { Claim I }
\end{aligned}
$$

Since $\left(\gamma_{n}\right)_{n=1}^{\infty}$ is a non-decreasing Sequence of step functions with $\left(\int \gamma_{n}\right)_{n=1}^{\infty}$ bounded we know that $\left(\gamma_{n}(x)\right)_{n=1}^{\infty}$ converges for almost all X.
We want to show that $\gamma_{n} \rightarrow f$ for a lost all x.
Since $\gamma_{n}(x)=0=f(x)$ for all $x \notin[a, b]$.
So, $\gamma_{n}(x) \rightarrow f(x)$ for $a \| x \notin[a, b]$.

Let $p \in[a, b]-F$.
Claim 2: $\gamma_{n}(p) \rightarrow f(\rho)$ as $n \rightarrow \infty$
proof of claim 2:
Let $\varepsilon>0$
Since $p \notin E$ we know that f is continuous at p.
Thus, there exists $\delta>0$ where if $|x-p|<\delta$, then $|f(x)-f(\rho)|<\frac{\varepsilon}{2}$
Note: Since $p \notin F$ we know $p \neq a$ and $p \neq b$. Thus we may pick δ small enough so that $(p-\delta, p+\delta) \subseteq(a, b)$ which will ensure that if $|x-p|<\delta$ then $x \in(a, b)$.

Choose $N>0$ where $\frac{b-a}{2^{N}}<\delta$.
Let $I_{N, k}$ be the sub-interval that p is in on the N-th Subdivision of $[a, b]$ in the standard construction.
Since $l\left(I_{N, k}\right)=\frac{b-a}{2^{N}}<\delta$,
we have that $|x-p|<\delta$ for all $x \in I_{N, k}$.

So, $|f(x)-f(\rho)|<\frac{\varepsilon}{2}$
for all $x \in I_{N, k}$.
Thus, $f(p)-\frac{\varepsilon}{2}<f(x)<f(p)+\frac{\varepsilon}{2}$ for all $x \in I_{N, k}$

$$
\begin{aligned}
& |x-y|<z \\
& y-z<x<y+z
\end{aligned}
$$

Recall that

$$
\begin{aligned}
& \text { Recall that } \\
& \gamma_{N}(p)=\inf \left\{f(t) \mid t \in I_{N, k}\right\}
\end{aligned}
$$

Since $f(p)-\frac{\varepsilon}{2}$ is a lower bound on $\left\{f(t) \mid t \in I_{N, k}\right\}$ we know that $f(\rho)-\frac{\varepsilon}{2} \leq \gamma_{N}(\rho)$.
Also, $\gamma_{N}(\rho) \leq f(\rho)$.
Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& f(p)-\varepsilon<f(p)-\frac{\varepsilon}{2} \leq \gamma_{N}(p) \leq f(p)<f(p)+\varepsilon
\end{aligned}
$$

Thus,

$$
f(p)-\varepsilon<\gamma_{N}(p)<f(p)+\varepsilon .
$$

Since $\left(\gamma_{n}\right)_{n=1}^{\infty}$ is non-decreasing we know that if $n \geqslant N$ then $\gamma_{N}(\rho) \leq \gamma_{n}(\rho)$.
Also, $\gamma_{n}(\rho) \leqslant f(\rho)$ for all n.
So, if $n \geqslant N$, then

$$
f(\rho)-\varepsilon<\gamma_{N}(\rho) \leqslant \gamma_{n}(\rho) \leqslant f(\rho)<f(\rho)+\varepsilon
$$

So if $n \geqslant N$, then

$$
\begin{aligned}
& \text { if } n \geqslant N \text {, then } \\
& f(p)-\varepsilon<\gamma_{n}(p)<f(p)+\varepsilon \\
& \text { then }
\end{aligned}
$$

Thus, if $n \geqslant N$, then

$$
\left|\gamma_{n}(\rho)-f(\rho)\right|<\varepsilon
$$

Claim 2

Summarizing, $\left(\gamma_{n}\right)_{n=1}^{\infty}$ is
a non-decreasing sequence of Step functions and $\left(\int \gamma_{n}\right)_{n=1}^{\infty}$ is a bounded sequence.
And $\gamma_{n}(x) \rightarrow f(x)$ for all $x \notin F$.
Since F has measure zero,
$\gamma_{n} \rightarrow f$ almost everywhere in \mathbb{R}.
Thus, $f \in L^{0}$ and $\int f=\lim _{n \rightarrow \infty} \int \gamma_{n}$
So, $f \in L^{\prime}$ and is integrable.

