Math 5800 10/6/21

Topic 7- The Lebesgue Integral
$$Pg_3$$

Note: Let $(q_n)_{n=1}^{\infty}$ be a
non-decreasing sequence of step
functions where $(Sq_n)_{n=1}^{\infty}$
is a convergent sequence.
Or equivalently, as we saw,
that $(Sq_n)_{n=1}^{\infty}$ is bounded
Let
 $A = \sum x \in \mathbb{R} | (q_n(x))_{n=1}^{\infty}$ converges?
We showed that \mathbb{R} -A has
measure zero.
So A is an almost everywhere
set.

Let f: R-) R be any function [P9] where $f(x) = \lim_{n \to \infty} \Phi_n(x)$ for all $x \in A$. So, f(x) can be anything if $x \notin A$. Then, $q_n \rightarrow f$ $p_{ointwise on A}$. For example, $f(x) = \begin{cases} \lim_{n \to \infty} q_n(x) \\ n \to \infty \end{cases}$ $f(x) = \begin{cases} 0 \\ 0 \\ 0 \end{cases}$;f xeA if x∉A almost everywhere because R-A has measure zero. Note

(2)
$$\lim_{n \to \infty} \int P_n \text{ converges} \\ [equivalent to $(\int P_n)_{n=1}^{\infty} \text{ bounded}]$
We define the integral for
Such an f as
 $\int f = \lim_{n \to \infty} \int P_n$$$

So,
$$f \in L^{\circ}$$
.
And, $\int f = \lim_{n \to \infty} \int \varphi_n = 2$.
Note: $f = X(o,2)$ is
a step function.
We could have used $\varphi_n = X(o,2)$.
So our non-decreasing sequence would be
 $X(o,2)$, $X(o,2)$, $X(o,2)$, ...
This converses to f everywhere and
so $f \in L^{\circ}$ and
 $\int f = \lim_{n \to \infty} \int \varphi_n = \lim_{n \to \infty} \int X(o,2)$
 $= \lim_{n \to \infty} 2 = 2$

 $g(x) = \begin{cases} x & if x \in [0,1] \\ 0 & otherwise \end{cases}$ F9 9 Let's show that $g \in L^{\circ}$ and $\int g = \frac{1}{2}$. Let $(\Im_{n})_{n=1}^{\infty}$ be the start. the standard construction for g on [0,1]. We know that (Vn)n=, is a non-decreasing sequence of step functions and $(2) \tilde{v}_n \rightarrow g$ on all of \mathbb{R} [and hence almost everywhere]

Let's show that lim (in exists. [Pg n700 Jon exists. [Pg Recall
$$\begin{split} \chi_{n} &= O \cdot \chi_{\left[0, \frac{1}{2^{n}}\right]} + \frac{1}{2^{n}} \cdot \chi_{\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right]} \\ &+ \frac{2}{2^{n}} \cdot \chi_{\left(\frac{2}{2^{n}}, \frac{3}{2^{n}}\right)} + \dots + \frac{2^{n}-1}{2^{n}} \chi_{\left[\frac{2^{n}-1}{2^{n}}, 1\right]} \end{split}$$

 $\int \delta_{n} = 0 \cdot l([0, \frac{1}{2}n)) + \frac{1}{2}n \cdot l([\frac{1}{2}n, \frac{2}{2}n))$ $+ \frac{2}{2}n \cdot l([\frac{2}{2}n, \frac{3}{2}n)) + \dots + \frac{2^{n}-1}{2n} l([\frac{2^{n}-1}{2}n, 1])$ $= 0 \cdot \frac{1}{2n} + \frac{1}{2^{n}} \cdot \frac{1}{2n} + \frac{2}{2n} \cdot \frac{1}{2n} + \dots + \frac{2^{n}-1}{2n} \cdot \frac{1}{2n} \cdot \frac{1}{2n}$ Then, $= \frac{1}{2^{n} \cdot 2^{n}} \left[1 + 2 + 3 + \dots + (2^{n} - 1) \right]$

 $= \frac{1}{2^{2} \cdot 2^{2}} \left[1 + 2 + 3 + \dots + (2^{2} - 1) \right]$ $= \frac{1}{2^{n} \cdot 2^{n}}$ $-(2^{-1})(2^{-1}+1)$ m(m+1)(+2+3+...+m= $(2^{n}-1)(2^{n})$ $\frac{2^{-1}}{2 \cdot 2^{-1}}$ 2.2 $\int \mathcal{V}_n = \frac{2^n}{2 \cdot 2^n}$ ره ک Zn - lim n-joo 182 lim n700 Thus, $\frac{-0}{2} = \frac{1}{2}$ divide bottom 2 64

Thus, gel and P9 $\int g = \lim_{n \to \infty} \int \partial_n = \frac{1}{2}.$ HW: If f is a step function then $f \in L^{\circ}$ step functions X (0,2] 5. X [3,4]