Math 5800

$$
10 / 6 / 21
$$

Ex: Let $f_{n}: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f_{n}(x)=\frac{x}{n}$.
We saw that $f_{n} \rightarrow f_{0}$ on all of \mathbb{R} where $f_{0}(x)=0 \quad \forall x \in \mathbb{R}$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be

Here $f_{n} \rightarrow g$ on $R-\mathbb{R}$ and Q has measure zero.
So, $f_{n} \rightarrow g$ on almost all of \mathbb{R}.
Or, $f_{n} \rightarrow g$ almost everywhere.

Topic 7-The Lebesgue Integral
Note: Let $\left(\phi_{n}\right)_{n=1}^{\infty}$ be a non-decreasing sequence of step functions where $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ is a convergent sequence. or equivalently, as we saw, that $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ is bounded

$$
\begin{aligned}
& \text { Let } \\
& A=\left\{x \in \mathbb{R} \mid\left(\varphi_{n}(x)\right)_{n=1}^{\infty} \text { converges }\right\} \\
& \mathbb{R}-A \text { has }
\end{aligned}
$$

Let

We showed that $\mathbb{R}-A$ has measure zero.
So A is an almost everywhere set.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any function
where $f(x)=\lim _{n \rightarrow \infty} \varphi_{n}(x)$
for all $x \in A$.
So, $f(x)$ can be anything if $x \notin A$.
Then,
$\begin{aligned} & Q_{n} \rightarrow f \\ & \text { pointwise on } A .\end{aligned} f(x)=\left\{\begin{array}{cl}\lim _{n \rightarrow \infty} \phi_{n}(x) & \text { if } x \in A \\ 0 & \text { if } x \notin A\end{array}\right.$
So, $\phi_{n} \rightarrow f$
almost everywhere because
$\mathbb{R}-A$ has measure zero.
Note

Def: [Def 1.S.1 in WJ]
Let L° denote the set of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that
(1) there exists a non-decreasing sequence of step functions
$\left(\varphi_{n}\right)_{n=1}^{\infty}$ that converges almost everywhere to f.
and
(2) $\lim _{n \rightarrow \infty} \int \varphi_{n}$ converges
[equivalent to $\left(S \varphi_{n}\right)_{n=1}^{\infty}$ bounded]
We define the integral for such an f as

$$
\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}
$$

In Weir, L° is denoted $\quad \begin{gathered}p 9 \\ 6\end{gathered}$ by $L^{\text {inc. }}$
In Haaser/Sullivan its denoted by $\widetilde{\mathcal{J}}$.

Ex: Let

$$
f(x)= \begin{cases}1 & \text { if } x \in(0,2] \\ 0 & \text { if } x \notin(0,2]\end{cases}
$$

Let $\varphi_{n}=X_{\left[\frac{1}{n}, 2\right]}$

We showed previously that $\varphi_{n} \rightarrow f$ on all of \mathbb{R}. So, $\phi_{n} \rightarrow f$ almost everywhere on \mathbb{R}.
We showed $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a nondecreasing sequence of step functions with $\lim _{n \rightarrow \infty} \int \varphi_{n}=2$.

So, $f \in L^{0}$.
And, $\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}=2$.
Note: $f=X_{(0,2]}$ is
a step function.
We could have used $\phi_{n}=X_{(0,2]}$.
So our non-derearing sequence would be

$$
X_{(0,2]}, X_{(0,2]}, X_{(0,2])}, \ldots
$$

This converges to f everywhere and so $f \in L^{\circ}$ and

$$
\begin{aligned}
\int f=\lim _{n \rightarrow \infty} \int \varphi_{n} & =\lim _{n \rightarrow \infty} \int x_{(0,2]} \\
& =\lim _{n \rightarrow \infty} 2=2
\end{aligned}
$$

Ex: Let

$$
g(x)= \begin{cases}x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

Let's show that $g \in L^{0}$ and $\int g=\frac{1}{2}$.
Let $\left(\gamma_{n}\right)_{n=1}^{\infty}$ be

the standard construction for g on $[0,1]$. We know that
(1) $\left(\gamma_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions
and (2) $\gamma_{n} \rightarrow g$ on all of \mathbb{R} [and hence almost everywhere]

Let's show that $\lim _{n \rightarrow \infty} \int \gamma_{n}$ exists. $\begin{aligned} & p 9 \\ & 10\end{aligned}$
Recall

$$
\begin{aligned}
& \gamma_{n}=0 \cdot X_{\left[0, \frac{1}{2^{n}}\right)}+\frac{1}{2^{n}} \cdot X_{\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right)} \\
& +\frac{2}{2^{n}} \cdot X_{\left(\frac{2}{2^{n}}, \frac{3}{2^{n}}\right)}+\ldots+\frac{2^{n}-1}{2^{n}} X_{\left[\frac{2^{n}-1}{2^{n}}, 1\right]}
\end{aligned}
$$

Then,

$$
\begin{aligned}
& \text { Then, } \\
& \int \gamma_{n}=0 \cdot l\left(\left[0, \frac{1}{2^{n}}\right)\right)+\frac{1}{2^{n}} \cdot l\left(\left[\frac{1}{2^{n}}, \frac{2}{2^{n}}\right)\right) \\
& \left.\left.+\frac{2}{2^{n}} \cdot l\left(\left[\frac{2}{2^{n}}, \frac{3}{2^{n}}\right)\right)+\ldots+\frac{2^{n}-1}{2^{n}} l\left(\left[\frac{2^{n}-1}{2^{n}}\right)\right]\right]\right) \\
& =\underbrace{0 \cdot \frac{1}{2^{n}}}_{0}+\frac{1}{2^{n}} \cdot \frac{1}{2^{n}}+\frac{2}{2^{n}} \cdot \frac{1}{2^{n}}+\cdots+\frac{2^{n}-1}{2^{n}} \cdot \frac{1}{2^{n}} \\
& =\frac{1}{2^{n} \cdot 2^{n}}\left[1+2+3+\cdots+\left(2^{n}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2^{n} \cdot 2^{n}}\left[1+2+3+\cdots+\left(2^{n}-1\right)\right] \\
& =\frac{1}{2^{n} \cdot 2^{n}}\left[\frac{\left(2^{n}-1\right)\left(2^{n}-1+1\right)}{2}\right] \\
& \frac{\left.m=2^{n}-1\right]}{1+2+3+\cdots+m=\frac{m(m+1)}{2}} \\
& =\frac{1}{2^{n} \cdot 2^{n}} \cdot \frac{\left(2^{n}-1\right)\left(2^{n}\right)}{2}=\frac{2^{n}-1}{2 \cdot 2^{n}}
\end{aligned}
$$

So, $\int \gamma_{n}=\frac{2^{n}-1}{2 \cdot 2^{n}}$
Thus, $\lim _{n \rightarrow \infty} \int \gamma_{n}=\lim _{n \rightarrow \infty} \frac{1-\frac{1}{2^{n}}}{2}$ $\underset{\substack{\text { divide } \\ \text { top bet them } \\ \text { by } 2^{n}}}{\text { an } n \rightarrow \infty}=\frac{1-0}{2}=\frac{1}{2}$

Thus, $g \in L^{0}$ and

$$
\int g=\lim _{n \rightarrow \infty} \int \gamma_{n}=\frac{1}{2}
$$

HW: If f is a step function then $f \in L^{\circ}$
step functions

$$
x_{(0,2]}-5 \cdot x_{[3,4]}
$$

