Math 5800 10/4/21

Since f is an increasing function
$$\begin{bmatrix} Pg \\ 3 \end{bmatrix}$$

 $Y_n(x) = \inf \{f(t) \mid t \in I_{n,k}\}$
 $= f(\frac{k-1}{2^n}) = \frac{k-1}{2^n}$
f of left-endpoint of $\begin{bmatrix} \frac{k-1}{2^n}, \frac{k}{2^n} \\ 2^n, \frac{k}{2^n} \end{bmatrix}$
Since f is an increasing function

| P) | Y trom the picture we see that at most $|\mathcal{Y}_n(x) - f(x)| < \frac{1}{2^n}$ Now suppose X=1. Then, $\mathcal{V}_{n}(\mathbf{x}) = \mathcal{V}_{n}(\mathbf{1}) = \frac{2^{n}-1}{2^{n}}$ So, 0≤×≤1) then $|\mathcal{Y}_n(x) - f(x)| \leq \frac{1}{2^n}$. S6, if Part 1

۲9 5 Part 2: $\lim_{n \to \infty} \mathcal{V}_n(x) = f(x)$ Recall we are assuming O<X<) pfofpart 2: Let 270. We know that $|\delta_n(x) - f(x)| \leq \frac{1}{2^n}$. And, $\frac{1}{2^n} < \Sigma$ $iff \frac{1}{\epsilon} < 2^{\circ}$ iff $\log_2\left(\frac{1}{\varepsilon}\right) < 0$. Set N>10g2(主). n> log2(を) Then if n>N, then and we will have $|\delta_n(x) - f(x)| \le \frac{1}{2n} < \varepsilon$ Part 2 claim

[0,1]. But we can modify f. $\frac{Ex:}{g(x)} = \begin{cases} x \\ 0 \end{cases}$ $if x \in [0, i]$ otherwise. the same standard construction $\forall n$ as f does on [0,1] = 0because f(x)=g(x)for all $x \in [0,1]$ And we just say that $V_n(x) \rightarrow g(x)$ If $x \notin [0,1]$, $\forall_n(x) = 0 = g(x) \forall_n \ge 1$ and so $\forall_n(x) \rightarrow g(x)$ Thus xThus, Nn > g pointwise on all of R. EZ

Theorem: Let
$$f: \mathbb{R} \to \mathbb{R}$$

be bounded on $[a,b]$.
Let $(\chi_n)_{n=1}^{\infty}$ be the standard
Construction for f on $[a,b]$.

Then:
()
$$(Y_n)_{n=1}^{\infty}$$
 is a non-decreasing
sequence of step functions
 $Y_n(x) \leq f(x)$
for all $n \not = 1$ and $x \in [a,b]$

$$\frac{\text{proof:}}{\text{(I) Let } X \in [a,b] \text{ and } n \geq 1.}$$

$$(\text{I) Let } X \in [a,b] \text{ and } n \geq 1.$$

$$Then, \quad \forall_n(x) = \sum_{i=1}^{2^n} m_{n,i} \cdot \chi(x)$$

$$T_{n,i}$$
and
$$\forall_{n+i}(x) = \sum_{j=1}^{2^{n+1}} m_{n+1,j} \cdot \chi(x)$$

$$T_{n+1,j}$$

 $L_{n+1,l}$

Thus,

$$\begin{cases} f(t) \mid t \in I_{n+1, k} \\ f(t) \mid t \in I_{n+1, k} \\ f(t) \mid t \in I_{n, k} \\ f(t) \mid$$

رم (

 $\gamma_{n+1}(x) = m_{n+1} \chi$ $= \inf \{ \{ f(t) \mid t \in \mathbb{T}_{n+1}, k \}$ $\geq \inf \{f(t) \mid t \in I_{n,k}\}$ $= m_{n,k} = \mathcal{Y}_{n}(x).$ $A \leq B$ inf(A) \geqslant inf(B)

(2) Let $X \in [a,b]$ and $n \ge 1$. [Pg 10] Let $In_{n,k}$ be the subinterval that x is in with $1 \le k \le 2$?

Then,

 $= \inf \{f(t) \mid t \in \mathbb{T}_{n,k}\}$ $\gamma_n(x) = m_{n,k}$ $\leq f(x)$ because XEIn,k

Pg II Def: Let $(f_n)_{n=1}^{\infty}$ be a sequence of functions defined on $S \subseteq \mathbb{R}$. So, $f_n: S \rightarrow \mathbb{R}$ for all $n \ge 1$. Let $f: S \rightarrow \mathbb{R}$. We say that fn converges to f almost everywhere in S the following are true: ① there exists A⊆S where $\lim_{x \to \infty} f_{n}(x) = f(x)$ for all XEA. and 2 S-A has measure Zero.

If S=R in the previous [Pg12 definition and (1) and (2) are true then we are saying that $f_n \rightarrow f$ on some almost everywhere set $A \subseteq \mathbb{R}$. In this special case we just say that <u>fn</u> converges to f almost everywhere instead of saying "f, converger to f in R" almost everywhere