Math 5800

$$
10 / 4 / 21
$$

$E x_{0}$ Last time we had $f(x)=x$ for all $x \in \mathbb{R}$.
We constructed the standard construction for f on $[0,1]$

Claim: $\gamma_{n} \rightarrow f$ pointulise on $[0,1]$.
proof of claim:
Let $x \in[0,1]$.
We want to show $\lim _{n \rightarrow \infty} \gamma_{n}(x)=f(x)$.
part 1: One has that

$$
\left|\gamma_{n}(x)-f(x)\right| \leqslant \frac{1}{2^{n}}
$$

proof of part 1:
We break this into two cases.
Suppose first that $0 \leq x<1$,
Then $x \in\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)$ where

$$
\begin{aligned}
& \text { where } \\
& k=1,2, \ldots, 2^{n}
\end{aligned}
$$

Since f is an increasing function

$$
\begin{aligned}
\gamma_{n}(x) & =\inf \left\{f(t) \mid t \in I_{n, k}\right\} \\
& =f\left(\frac{k-1}{2^{n}}\right)=\frac{k-1}{2^{n}}
\end{aligned}
$$

f of left-endpoint of $\left[\frac{k-1}{2^{n}}, \frac{k}{2^{n}}\right)$ Since f is an increasing function

From the picture we see that $\quad \begin{gathered}p g \\ 4\end{gathered}$ at most

$$
\left|\gamma_{n}(x)-f(x)\right|<\frac{1}{2^{n}}
$$

Now suppose $x=1$.
Then, $\gamma_{n}(x)=\gamma_{n}(1)=\frac{2^{n}-1}{2^{n}}$

$$
\begin{aligned}
& \text { So, } \\
& \begin{aligned}
\left|\gamma_{n}(1)-f(1)\right| & =\left|\frac{2^{n}-1}{2^{n}}-1\right| \\
& =\left|-\frac{1}{2^{n}}\right|=\frac{1}{2^{n}} .
\end{aligned} .
\end{aligned}
$$

So, if $0 \leq x \leq 1$, then $\left|\gamma_{n}(x)-f(x)\right| \leq \frac{1}{2^{n}}$.

Part 1

Part 2: $\lim _{n \rightarrow \infty} \gamma_{n}(x)=f(x)$
Recall we are assuming $0 \leq x \leq 1$
of of part 2: Let $\varepsilon>0$.
We know that $\left|\gamma_{n}(x)-f(x)\right| \leq \frac{1}{2^{n}}$.
And, $\frac{1}{2^{n}}<\varepsilon$
iff $\frac{1}{\varepsilon}<2^{n}$
iff $\log _{2}\left(\frac{1}{\varepsilon}\right)<n$.
Set $N>\log _{2}\left(\frac{1}{\varepsilon}\right)$.
Then if $n \geqslant N$, then $n>\log _{2}\left(\frac{1}{\varepsilon}\right)$ and we will have

$$
\begin{array}{r}
\text { and we will } \quad\left|\gamma_{n}(x)-f(x)\right| \leq \frac{1}{2^{n}}<\varepsilon \text { Part 2 } \\
\ll \text { lain }
\end{array}
$$

But $\gamma_{n} \nrightarrow f$ outside of $[0,1]$. But we can modify f.

Ex: Let

$$
\underline{E x:} \operatorname{Let}=\left\{\begin{array}{cc}
x & \text { if } x \in[0,1] \\
0 & \text { otherwise. }
\end{array}\right.
$$

Then, g has the same standard construction γ_{n} as f does on $[0,1]$ because $f(x)=g(x)$
 for all $x \in[0,1]$.
And we just saw that $\gamma_{n}(x) \rightarrow g(x)$ when $x \in[0,1]$.
If $x \notin[0,1], \gamma_{n}(x)=0=g(x) \quad \forall n \geqslant l$ and so $\gamma_{n}(x) \rightarrow g(x)$
Thus, $\gamma_{n} \rightarrow g$ pointwise on all of

Theorem: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be bounded on $[a, b]$.
Let $\left(\gamma_{n}\right)_{n=1}^{\infty}$ be the standard construction for f on $[a, b]$.

Then:
(1) $\left(\gamma_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions
(2) $\gamma_{n}(x) \leq f(x)$
for all $n \geqslant 1$ and $x \in[a, b]$
proof:
(1) Let $x \in[a, b]$ and $n \geqslant 1$.

Then, $\gamma_{n}(x)=\sum_{i=1}^{2^{n}} m_{n, i} \cdot X_{I_{n, i}}$ and $\gamma_{n+1}(x)=\sum_{j=1}^{2^{n+1}} m_{n+1, j} \cdot X_{I_{n+1, j}}(x)$

Then, $x \in I_{n, k}$ for some $1 \leq k \leq 2^{n}$ and also $x \in I_{n+1, e}$ for some $1 \leq l \leq 2^{n+1}$.
And, $I_{n+1, e} \subseteq I_{n, k}$ because at each stage n, we subdivide each interval in half to get to the $(n+1)$ - stage

Thus,

$$
\begin{gathered}
\left\{f(t) \mid t \in I_{n+1, e}\right\} \subseteq\left\{f(t) \mid t \in I_{n, k}\right\} \\
I_{n+1, e} \subseteq I_{n, k}
\end{gathered}
$$

So,

$$
\begin{align*}
\gamma_{n+1}(x) & =m_{n+1, l} \\
& =\inf \left\{f(t) \mid t \in I_{n+1, \ell}\right\} \\
& \geqslant \inf \left\{f(t) \mid t \in I_{n, k}\right\} \\
& =m_{n, k}=\gamma_{n}(x) .
\end{align*}
$$

(2) Let $x \in[a, b]$ and $n \geqslant 1$. (pg 10 Let $I_{n, k}$ be the subinterval that x is in with $1 \leq k \leq 2$?

Then,

$$
\begin{align*}
\gamma_{n}(x) & =m_{n, k} \\
& =\inf \left\{f(t) \mid t \in I_{n, k}\right\} \\
& \leq f(x) \tag{2}
\end{align*}
$$

because

$$
x \in I_{n, k}
$$

Def: Let $\left(f_{n}\right)_{n=1}^{\infty}$
be a sequence of functions defined on $S \subseteq \mathbb{R}$.
So, $f_{n}: S \rightarrow \mathbb{R}$ for all $n \geqslant 1$.
Let $f: S \rightarrow \mathbb{R}$.
We say that f_{n} converges to f almost everywhere in S
if the following are true:
(1) there exists $A \subseteq S$ where

$$
\begin{aligned}
& \text { there } \\
& \lim _{n \rightarrow \infty} f_{n}(x)=f(x) \\
& \text { for all } x \in A .
\end{aligned}
$$

and (2) $S-A$ has measure $z e r o$.

If $S=\mathbb{R}$ in the previous definition and (1) and (2) are true then we are saying that $f_{n} \rightarrow f$ on some almost everywhere set $A \subseteq \mathbb{R}$.
In this special case we just say that f_{n} converges to f almost everywhere instead of saying "frenverges to f almost everywhere in $\mathbb{R}^{\prime \prime}$

