Math 5800 10/27/21

Pg 1

Corollary: Let f,gEL. Then: $(1) | f-g | \in L'$ (2) If $\int |f-g| = 0$, then f=g almost everywhere. Proof: D Since f,gel we know f-geL. By HW 9 #5(b), $|f-g| \in L'$.

pgz

<u>Note:</u> |f-g|(x) = |f(x)-g(x)| [Pg 3]

(2) f-9 | ≥ 0 on all of R and |f-g| EL'. Suppose SIF-91=0. From Monday, this implies that |f-g|=0 almost So, |f(x)-g(x)|=0 for almost Recall: |A-B|=0 iff A=B Su, f(x) = g(x) for almost all x.

Notation: The Lebesgue integral P94 is over the entire real line. So if fEL, then we sometimes write o $\int f = \int f = \int f(x) dx$ $R = -\infty$ Def: Let ISR be any interval (possibly unbounded). Define $g = \chi_{I} \cdot f$, that is Let $f: \mathbb{R} \to \mathbb{R}$. $g(x) = \begin{cases} f(x) & \text{if } x \in \mathbb{I} \\ 0 & \text{if } x \notin \mathbb{I} \end{cases}$ Fring T

If
$$g \in L'$$
, then we define $Pg \leq \int_{I} f = \int_{I} gg$
Lebesgue integral of IR
and we say that $f \in L'(I)$
and f is integrable on I
We define
 $L'(I) = \{f : IR \to R \mid f \cdot \chi_I \in L'\}$

P96 Note: $f \cdot \chi_{(a,b)}, f \cdot \chi_{E^{a,b}},$ f. X_{(a,b]} , f. X_[a,b] are all equal to each other almost everywhere. So if one of them is in L then they all one and $\int f = \int f = \int f = \int f$ (a,b) [a,b] (a,b] [a,b] We can denote these integrals by Ŝf or Ŝf(x)dx

No tation:

P97

Sometimes are

are sometimes

Pg 8 E_X : Let $f: \mathbb{R} \to \mathbb{R}$ be f(x) = x for all x. Let's show that $f \in L'([0,1])$. \leftarrow Let $g = \chi_{[0,1]}$, f ومر Then, $\int f(x) \text{ if } x \in [0,1]$ $g(x) = \int 0 \text{ otherwise}$ We saw earlier in the class that $g \in L^{\circ} \subseteq L'$ and $\int g = \frac{1}{2}$. So, $f \in L'([o, i])$ and $\int f = \int f = \int g = \frac{1}{2}$

Theorem: Let a < c < b Where a, b, c E R. If $f \in L'([a, c])$ and $f \in L'([c,b]),$ then $f \in L'([a,b])$ and $\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$ Proof: HW 7 #6

pg 7

P9 10 HW 7 $f \in L^{\circ}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$. (4) Let f=g almost everywhere. Suppose Ogel Then, 2) [9 = ff and

We are given that there exists proof: an almost everywhere set A <= R where f(x) = g(x) for all $x \in A$. Since FEL° there exists a non-decreasing sequence of where Step functions (Pn) n=1 $\lim_{n \to \infty} \Psi_n(x) = f(x) \quad \text{for all } x \in B$ where B is almost everywhere

lim Pr converges, and pg 11 $\int f = \lim_{n \to \infty} \int \varphi_n$. Since A and B are almost everywhere sets, ANB is an almost everywhere set. If XEANB, then $\lim_{N \to \infty} \varphi_n(x) = f(x) = g(x)$ $x \in B \qquad x \in A$ Thus, $(q_n)_{n=1}^{\infty}$ is a non-decreasing $(q_n)_{n=1}^{\infty}$ is a no sequence of step functions with $P_n \rightarrow g$ almost everywhere. Since $(SP_n)_{n=1}^{\infty}$ converges, $g \in L^0$ and $\int g = \lim_{n \to \infty} \int \varphi_n = \int f.$