Math 5800 10/27/21

Test 2 - HF $6 \& H W 7$
Monday Nov. 15

Corollary: Let $f, g \in L^{\prime}$.
Then:
(1) $|f-g| \in L^{\prime}$
(2) If $\int|f-g|=0$, then $f=g$ almost everywhere.
proof:
(1) Since $f, g \in L^{\prime}$ we know $f-g \in L^{\prime}$.
By HW 9 \#5(b), $|f-g| \in L^{\prime}$.

Note: $|f-g|(x)=|f(x)-g(x)| \mid \operatorname{pg} 3$
(2) $|f-g| \geqslant 0$ on all of \mathbb{R} and $|f-g| \in L^{\prime}$.
Suppose $\int|f-g|=0$.
From Monday, this implies that $|f-g|=0$ almost everywhere.
So, $|f(x)-g(x)|=0$ for almost all x.

Recall: $|A-B|=0$ iff $A=B$
So, $f(x)=g(x)$ for almost all x.

Notation: The Lebesgue integral \lfloor Pg 4 is over the entice real line.
So if $f \in L^{\prime}$, then we
sometimes write

$$
\int^{\text {netimes }} f=\int_{\mathbb{R}}^{\text {write }} f=\int_{-\infty}^{\infty} f(x) d x
$$

Def: Let $I \subseteq \mathbb{R}$ be any interval (possibly unbounded).
Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
Define $g=X_{I} \cdot f$, that is

$$
g(x)= \begin{cases}f(x) & \text { if } x \in I \\ 0 & \text { if } x \notin I \\ \uparrow & f\end{cases}
$$

If $g \in L^{\prime}$, then we define pg 5

$$
\int_{I} f=\underbrace{\int g}_{\begin{array}{c}
\text { Lebesgue } \\
\text { integral } \\
\text { over all of } \\
\mathbb{R}
\end{array}}
$$

and we say that $f \in L^{\prime}(I)$ and f is integrable on I

We define

$$
\begin{aligned}
& \text { We define } \\
& L^{\prime}(I)=\left\{f: \mathbb{R} \rightarrow \mathbb{R} \mid f \cdot X_{I} \in L^{\prime}\right\}
\end{aligned}
$$

Note:

$$
\begin{array}{ll}
f \cdot X_{(a, b)}, & f \cdot X_{[a, b)}, \\
f \cdot X_{(a, b]}, & f \cdot X_{[a, b]}
\end{array}
$$

are all equal to each other almost everywhere. So if one of them is in L^{\prime} then they all are and

$$
\int_{(a, b)}^{\text {then they all are }} f=\int_{[a, b)} f=\int_{(a, b]} f=\int_{[a, b]} f
$$

We can denote these integrals $b y \int_{a}^{b} f$ or $\int_{a}^{b} f(x) d x$

Notation:
$\int_{[a, \infty)} f$ and $\int_{(a, \infty)} f$ are sometimes
written as $\int_{a}^{\infty} f$
$\int_{(-\infty, a]} f$ and $\int_{(-\infty, a)} f$ are sometimes
written as $\int_{-\infty}^{a} f$

Ex: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=x$ for all x.

Let's show
that $f \in L^{\prime}([0,1])$.

Let $g=X_{[0,1]} \cdot f$
Then,

$$
\text { Then) } g(x)=\left\{\begin{array}{cl}
f(x) & \text { if } x \in[0,1] \\
0 & \text { otherwise }
\end{array}\right.
$$

We saw earlier in the class
that $g \in L^{\circ} \subseteq L^{\prime}$ and $\int g=\frac{1}{2}$.
So, $f \in L^{\prime}([0,1])$ and

$$
\int_{[0,1]} f=\int_{0}^{1} f=\int g=\frac{1}{2}
$$

Theorem: Let $a \leq c \leqslant b$ where $a, b, c \in \mathbb{R}$.
If $f \in L^{\prime}([a, c])$ and

$$
f \in L^{\prime}([c, b]),
$$

then $f \in L^{\prime}([a, b])$ and

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

proof: HW 7 \# 6

HL 7
(4) Let $f \in L^{\circ}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$.

Suppose $f=g$ almost everywhere.
Then,
(1) $g \in L^{\circ}$
and
(2) $\int g=\int f$
proof:
We are given that there exists an almost everywhere set $A \subseteq \mathbb{R}$ where $f(x)=g(x)$ for all $x \in A$. Since $f \in L^{\circ}$ there exists a non-decreasing sequence of step functions $\left(\phi_{n}\right)_{n=1}^{\infty}$ where $\lim _{n \rightarrow \infty} \Phi_{n}(x)=f(x)$ for all $x \in B$ where B is almost everywhere set and
$\lim _{n \rightarrow \infty} \int \phi_{n}$ converges, and

$$
\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}
$$

Since A and B are almost everywhere sets, $A \cap B$ is an almost everywhere set.
If $x \in A \cap B$, then

$$
\begin{aligned}
& f x \in A \cap B, \quad l \\
& \lim _{n \rightarrow \infty} \Phi_{n}(x)=f(x)=g(x) \\
& x \in B \quad x \in A
\end{aligned}
$$

$$
x \in B \quad x \in A
$$

Thus, $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of step functions with $\varphi_{n} \rightarrow g$ a most everywhere.
Since $\left(\int \varphi_{n}\right)_{n=1}^{\infty}$ converges, $g \in L^{0}$ and

$$
\int g=\lim _{n \rightarrow \infty} \int \varphi_{n}=\int f
$$

