Math 5800 10/25/21

Recall:
$f \in L^{\prime}$ means: $f=g-h$
where $g, h \in L^{0}$
define $\underbrace{\int f}_{L_{\text {integral }}^{\prime}}=\underbrace{\int g}_{L^{\circ} \text { integral }}-\underbrace{\int h}_{L^{\circ} \text { integral }}$

Theorem: [wJ book The 1,5,3]
If $f \in L^{\prime}$ and $f(x) \geqslant 0$ for almost all x, then $\int f \geqslant 0$.
proof: Since $f \in L^{\prime}$ we know that $f=g-h$ where $g, h \in L^{0}$.
We know $f(x) \geqslant 0$ for almost all x.
Thus, $g(x)-h(x) \geqslant 0$ for almost all x.
So, $g(x) \geqslant h(x)$ for almost all x.
By our theorems on L° we have
that $\underbrace{\int g}_{L_{i}^{0}} \geqslant \underbrace{\iint_{j} h}_{\text {integrals }_{0}^{0}}$
Thus, $\int g \geqslant S h$.
So, $\int g-S h \geqslant 0$.
Thus, $\int f \geqslant 0$.

Corollary: Let $f, g \in L^{\prime}$.
If $f(x) \geqslant g(x)$ for almost all x, then $\int f \geqslant \int g$.
proof: Let $h=f-g$.
By a previous theorem, $h \in L^{\prime}$.
Since $f(x) \geqslant g(x)$ for almost all x, we know that

$$
\begin{aligned}
& \text { we know that } \\
& h(x)=f(x)-g(x) \geqslant 0
\end{aligned}
$$

for almost all x.
By the previous theorem $\int h \geqslant 0$.
We know $\int h=\int f-g=\int f-\int g$.
Thus, $\int f-\int g \geqslant 0$.
$f, g \in L^{\prime}$
So, $\int f \geqslant \int g$.

Theorem: Let $f \in L^{0}$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be any function.
If $f(x)=g(x)$ for almost all x, then the following is true:
(1) $g \in L^{0}$
and (2) $\int g=\int f$
proof: Homework.

Ex: Let $f=X_{(0,2]}$.
Then, $f \in L^{\circ}$ and $\int f=1 \cdot(2-0)=2$

Let $h_{1}(x)=X_{[0,2]}$
Then, $h_{1}(x)=f(x)$
 for $x \in \mathbb{R}-\{1\}$.
So, $h_{1}=f$ almost everywhere.
So, $h_{1} \in L^{0}$ and $\int h_{1}=\int f=2$.

Let $\quad h_{2}(x)= \begin{cases}1 & \text { if } x \in(0,2] \quad(\operatorname{pyS} \\ 1 & \text { if } x \in Q \text { and } x \notin(0,2] \\ 0 & \text { if } x \notin Q \text { and } x \notin(0,2] \\ & \text { partial picture of ha }\end{cases}$

We have that $h_{2}(x) \neq f(x)$ iff

$$
\begin{aligned}
& \text { le have that } h_{2}(x) \neq f(x) \\
& Q_{\text {has measure zero since its a }}^{\text {sh }} \cap[(-\infty, 0] \cup(2, \infty)]
\end{aligned}
$$

subset of Ch which has measure zero.
So, $h_{2}(x)=f(x)$ for almost all x. Thus, $h_{2} \in L^{0}$ and $\int h_{2}=\int f=2$

Theorem: Let $f \in L^{\prime}$.
Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be any function.
If $f=g$ almost everywhere, then the following are true:
(1) $g \in L^{\prime}$
and (2) $\int g=\int f$
proof: Since $f \in L^{\prime}$ we know that $f=a-b$ where $a, b \in L^{0}$.
And $\int f=\int a-\int b$.
Note that

$$
\begin{aligned}
& \text { te that } \\
& \begin{aligned}
& g=f-f+g=a-b-f+g \\
&=a-\underbrace{(b+f-9)}_{q} \\
&\left.\begin{array}{l}
\text { we know } \\
\text { is in L }
\end{array}\right] \\
& \begin{array}{c}
\text { we will } \\
\text { show this } \\
\text { is in } L^{\circ}
\end{array}
\end{aligned}
\end{aligned}
$$

Since $f=g$ almost everywhere, there exists an almost everywhere set A where $f(x)=g(x)$ for all $x \in A$.
Thus, $f(x)-g(x)=0$ for all $x \in A$.
Thus, $b(x)+f(x)-g(x)=b(x)$ for all $x \in A$.
So, $b+f-g=b$ almost everywhere.
By the previous theorem, since $b \in L^{\circ}$ we know $b+f-g \in L^{0}$ and

$$
\int(b+f-g)=\int b
$$

Summarizing, b th $a \in L^{0}$ and $b+f-g \in L^{0}$.
Thus, $g=a-(b+f-g) \in L^{\prime}$.
And,

$$
\begin{aligned}
& g=a-(b+f-g) \in L \\
& \int g=\int a-\int(b+f-g)=\int a-\int b \\
&=\int f .
\end{aligned}
$$

Theorem: (Monotone convergence tho) Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a non-decreasing sequence of L^{\prime} functions $\left[i e, f_{n} \in L^{\prime}\right.$ for all $n \geq 1]$
Suppose that $\left(\int f_{n}\right)_{n=1}^{\infty}$ is a bounded sequence.

Then, $\lim _{n \rightarrow \infty} f_{n}(x)$ converges for almost all x.

Moreover, if $f: \mathbb{R} \rightarrow \mathbb{R}$ where $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ for almost all x, then $f \in L^{\prime}$ and $\int f=\lim _{n \rightarrow \infty} \int f_{n}$
proof: Handout in email.

Corollary: Let $f \in L^{\prime}$ and $f \geqslant 0$ almost everywhere.
[ie, $f(x) \geqslant 0$ for almost all x]
If $\int f=0$, then $f=0$ almost everywhere
means: $f(x)=0$ for almost all x
proof: Define $f_{n}=n \cdot f$ for $n \geqslant 1$.
So, $f_{n}(x)=n \cdot f(x)$ for all x.
By a the in class, $f_{n} \in L^{\prime}$.
Then for all $x \in \mathbb{R}$ we have that

$$
\begin{aligned}
& \text { hen for all } x \in \mathbb{R} \text { we } \\
& \underbrace{1 \cdot f(x)}_{f_{1}(x)}<\underbrace{2 \cdot f(x)}_{f_{2}(x)}<\underbrace{3 \cdot f(x)}_{f_{3}(x)}<\cdots
\end{aligned}
$$

So, $\left(f_{n}\right)_{n=1}^{\infty}$ is a non-decreasing sequence of L functions.

Also, $\int f_{n}=\int n \cdot f=n \int f=n \cdot 0=0$.
So the sequence $\left(\int f_{n}\right)_{n=1}^{\infty}$ is

So, $\left(\int f_{n}\right)_{n=1}^{\infty}$ is bounded.
By the monotone convergence theorem,

$$
\lim _{n \rightarrow \infty} n \cdot f(x)=\lim _{n \rightarrow \infty} f_{n}(x)
$$

Converge for almost all x.
Note if $y \in \mathbb{R}$ and $y \neq 0$, then

$$
\lim _{n \rightarrow \infty} n \cdot y=\infty
$$

Thus, the only times that $\lim _{n \rightarrow \infty} n \cdot f(x)$ converge is when $f(x)=0$.

So, $f(x)=0$ for almost all x.

