Math 5800 10/25/21

Recall ;

P9 1

 $f \in L'$ means: f = g - hwhere $g, h \in L^{\circ}$ $define \int f = \int g - \int h$ L' integralintegral

heorem: [WJ book Thm 1.5.3] [P9] If $f \in L'$ and $f(x) \ge 0$ for almost all x, then $\int f \ge 0$. <u>proof</u>: Since fel we know that f = g - h where $g, h \in L^{\circ}$. We know f(x)>0 for almost all x. Thus, $g(x) - h(x) \ge 0$ for almost all x. So, g(x)≥h(x) for almost all x. By our theorems on L'we have that 59 > 5h. L⁰ L⁰ integrals integrals Thus, SgzSh. 50, Sg-Sh 20. Thus, Sf ≥ 0.

Corollary: Let
$$f,g\in L'$$
.
If $f(x) \ge g(x)$ for almost all x ,
then $\int f \ge \int g$.
Proof: Let $h = f - g$.
By a previous theorem, $h \in L'$.
Since $f(x) \ge g(x)$ for almost all x ,
we know that
 $h(x) = f(x) - g(x) \ge 0$
for almost all x .
By the previous theorem $\int h \ge 0$.
We know $\int h = \int f - g = \int f - \int g$.
We know $\int h = \int f - g = \int f - \int g$.
Thus, $\int f - \int g \ge 0$.
 $\int f \ge g \ge 0$.
 $\int f \ge \int g \ge 0$.

Theorem: Let
$$f \in L^{\circ}$$
.
Let $g: \mathbb{R} \to \mathbb{R}$ be any function.
If $f(x) = g(x)$ for almost all x ,
then the following is true:
 $\bigcirc g \in L^{\circ}$
and $\bigcirc \int g = \int f$
proof: Homework.

Ex: Let
$$f = \chi_{(0,z]}$$
.
Then, $f \in L^{\circ}$ and $\int f = |\cdot(2-0)=2$
Let $h_1(x) = \chi_{[0,z]}$
Then, $h_1(x) = f(x)$
for $x \in \mathbb{R} - \Sigma I_2^{\circ}$.
So, $h_1 \in L^{\circ}$ and $\int h_1 = \int f = Z$.

Pg 5 Let $\int_{h_2(x)=}^{l} \int_{0}^{l}$ if x e (0,2] if $x \in Q$ and $x \notin (0, 2]$ if $x \notin (0, and x \notin (0, 2])$ \uparrow partial picture of h_2 We have that $h_2(x) \neq f(x)$ iff $X \in Q \cap (-\infty, 0] \cup (z, \infty)$ has measure zero since its a subset of CA which has Measure Zero. So, $h_2(x) = f(x)$ for almost all x. Thus, $h_2 \in L^\circ$ and $\int h_2 = \int f = 2$

Theorem: Let
$$f \in L'$$
.
Let $g: |\mathbb{R} \to \mathbb{R}$ be any function.
If $f = g$ almost everywhere, then
the following are true:
 $() g \in L'$
and $(2) \int g = \int f$
 $proof:$ Since $f \in L'$ we know that
 $f = a - b$ where $a, b \in L^{\circ}$.
And $\int f = \int a - \int b$.
Note that
 $g = f - f + g = a - b - f + g$
 $= a - (b + f - g)$
We know is in L° we will
show this
is in L° is in L°

Since f=g almost everywhere, [P] there exists an almost everywhere set A where f(x) = g(x) for all $x \in A$. Thus, f(x)-g(x)=0 for all $x \in A$. Thus, b(x) + f(x) - g(x) = b(x) for all xeA. So, b+f-g=b almost everywhere. By the previous theorem, since below We know b+f-g EL° and $\int (b+f-g) = \int b.$ Summarizing, both $a \in L^{\circ}$ and $b + f - g \in L^{\circ}$. Thus, $g = a - (b + f - g) \in L'$. And, $\int g = \int a - \int (b + f - g) = \int a - \int b$ = ∫f. def of Sg

Theorem: (Monotone conveyence than)
$$\begin{bmatrix} pg \\ g \end{bmatrix}$$

Let $(f_n)_{n=1}^{\infty}$ be a non-decreasing
sequence of L' functions [ie, $f_n \in L^1$
for all $n \ge 1$)
Suppose that $(\int f_n)_{n=1}^{\infty}$ is a bounded
sequence.
Then, $\lim_{n \to \infty} f_n(x)$ converges for
almost all x .
Moreover, if $f: \mathbb{R} \to \mathbb{R}$ where
 $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all x ,
 $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all x ,
 $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all x ,
 $f(x) = \lim_{n \to \infty} f_n(x)$ for almost all x .

Corollary: Let fEL' and | P9 | 9 $f \ge 0$ almost everywhere. [ie, f(x) > 0 for almost all x] If $\int f = 0$, then f = 0 almost everywhere means: f(x)=0 for almost all x Proof: Define $f_n = n \cdot f_n$ for $n \neq l$. So, $f_n(x) = n \cdot f(x)$ for all x. By a thm in class, $f_n \in L'$. Then for all XER we have that $1 \cdot f(x) < 2 \cdot f(x) < 3 \cdot f(x) < \cdots$ $f_{1}(x) < f_{2}(x) < f_{3}(x) < \cdots$ So, (fn) is a non-decreasing sequence of L'functions.

