Math 5800 10/20/21

On Monday, $10 / 25$ I have to miss class. I will record a lesson for that day and email to everyone and post it on canvas.
Please watch the recording before Weds, $10 / 27$ I'll probably record it tomorrow or the next day. No class on Monday just Watch recording please.

Recap:

- $f: \mathbb{R} \rightarrow \mathbb{R}$
$f \in L^{0}$ means there exists a non-decreasing sequence of step functions $\left(\varphi_{n}\right)_{n=1}^{\infty}$
where $\varphi_{n} \rightarrow f$ almost everywhere and $\lim _{n \rightarrow \infty} \int \varphi_{n}$ exists.
We defined $\int f=\lim _{n \rightarrow \infty} \int \varphi_{n}$
- All step functions are in L°
- $f \in L^{0}$ where $f(x)= \begin{cases}x & \text { when } \\ 0 \leq x \leq 1 \\ 0 & \text { otherwise }\end{cases}$

- We showed that $\int f$ for $f \in L^{\circ}$ is well-defined
- We showed that if $f, g \in L^{\circ}$ and
$f(x) \geqslant g(x)$ for almost all x
then $\int f \geqslant \int g$

Theorem: Let $f, g \in L^{0}$ and $\alpha, \beta \in \mathbb{R}$ with $\alpha \geqslant 0$ and $\beta \geqslant 0$, then $\alpha f+\beta g \in L^{0}$ and

$$
\int(\alpha f+\beta g)=\alpha \int f+\beta \int g
$$

proof: HW.

Note: One can show that L° is not a linear space. That is, one can find $f, g \in L^{0}$ where $f-g \notin L^{0}$.
see WJ book on pg 54-55 this to you.

This motivates us to enlarge our space of functions.

Def: We define the space L^{\prime} of Lebesgue interable functions as

$$
L^{\prime}=\left\{f \left\lvert\, \begin{array}{l}
f=g-h \\
g, h \in L^{0}
\end{array}\right.\right\}
$$

Given $f=g-h$ with $g, h \in L^{0}$ we define

$$
\int f=\underbrace{\int g}_{L^{\circ} \text { integrals }}-\underbrace{\int h}_{\pi}
$$

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is integrable if $f \in L^{\prime}$.

Theorem: $L^{\circ} \subseteq L^{\prime}$
proof: Let $g \in L^{\circ}$.
Set $h: \mathbb{R} \rightarrow \mathbb{R}$ where $h(x)=0$ for all $x \in \mathbb{R}$
Note that $h=X_{(0,0)}=X_{\phi}$
So, $h \in L^{0}$ since h is a step
 function [by HW].
Then, $g=\underbrace{g}_{\text {in } L^{0}}-\underbrace{b}_{\text {in }} \in L^{\prime}$.

Theorem: $[W J$ book Corollary 1.5.1]
The integral defined on L^{\prime} is well-defined. That is, suppose that $f \in L^{\prime}$ where $f=g-h$ and $f=v-w$ where $g, h, v, w \in L^{\circ}$.
Then $\underbrace{\int g-\int h}_{S f}=\underbrace{\int v-\int w}_{\int f}$
proof: We have that

$$
g-h=f=v-w
$$

So, $g+w=v+h$.
By HW [pg 4 in notes] we have that $g+w \in L^{0}$ and $v+h \in L^{0}$?
and $\int g+w=\int g+\int_{0} w$
and $\int v+h=\int v+\int h$.
Thus,

$$
\begin{aligned}
\text { Thus, } \\
\qquad \begin{aligned}
\int g+\int w & =\int g+w \\
& =\int v+h=\int v+\int h .
\end{aligned}
\end{aligned}
$$

$=v+h$
Hence, $\int g+\int w=\int v+\int h$
Therefore, $\int g-\int h=\int v-\int w$

Theorem [WJ book-Thm 1.5.2] L^{\prime} is a linear space of functions. That is, if $f, u \in L^{\prime}$ and $\alpha, \beta \in \mathbb{R}$ then $\alpha f+\beta u \in L^{\prime}$ Furthermore, if this is the case then

$$
\begin{aligned}
& \text { se then } \\
& \int(\alpha f+\beta u)=\alpha \int f+\beta \int u
\end{aligned}
$$

proof:
Since $f \in L^{\prime}$ and $u \in L^{\prime}$ we know that there exist $g, h, v, w \in L^{0}$ where

$$
g, h, v, w \in L \text { and } u=V-w .
$$

case 1: Suppose $\alpha \geqslant 0$ and $\beta \geqslant 0$
Note that

$$
\begin{aligned}
\alpha f+\beta u & =\alpha(g-h)+\beta(v-w) \\
& =(\alpha g+\beta v)-(\alpha h+\beta w)
\end{aligned}
$$

By previous the / HW problem since $\alpha, \beta \geqslant 0$ and $g, v \in L^{0}$ we know that $\alpha g+\beta v \in L^{0}$ and

$$
\int(\alpha g+\beta v)=\alpha \int g+\beta \int v
$$

Since $\alpha, \beta \geqslant 0$ and $h, \omega \in L^{\circ}$ we know that $\alpha h+\beta \omega \in L^{0}$ and

$$
\begin{aligned}
& \text { se know that } \alpha h+\beta \text { 佔 } \\
& \int(\alpha h+\beta w)=\alpha \int h+\beta \int w
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \text { Thus, } \\
& \alpha f+\beta u=\underbrace{(\alpha g+\beta v)}_{\text {in } L^{0}}-\underbrace{(\alpha h+\beta \omega)}_{\text {in } L^{0}} \in L^{\prime}
\end{aligned}
$$

And

$$
\begin{aligned}
& \text { And } \\
& \begin{aligned}
{[(\alpha f+\beta u)} & =\int(\alpha g+\beta v)-\int(\alpha h+\beta w) \\
& =\alpha \int g+\beta \int v-\left[\alpha \int h+\beta \int \omega\right] \\
& =\alpha\left[\int g-\int h\right]+\beta\left[\int v-\int \omega\right] \\
\begin{array}{l}
f=g-h \text { pages } \\
u=v-w
\end{array} & =\alpha \int f+\beta \int u
\end{aligned}
\end{aligned}
$$

This concludes case 1 .

The remaining cases are proved in the same way as case 1 using the given decompositions below.
case 2: $\alpha<0, \beta<0$
Write

$$
\begin{aligned}
& \text { Irite } \\
& \begin{array}{l}
\alpha f+\beta u=\alpha g-\alpha h+\beta v-\beta w \\
\quad=((-\alpha) h+(-\beta) w)-((-\alpha) g+(-\beta) v)
\end{array}
\end{aligned}
$$

Case 3: $\alpha \geqslant 0, \beta<0$

$$
\begin{aligned}
& \text { Srite } \\
& \alpha f+\beta u=\alpha g-\alpha h+\beta v-\beta w \\
& =(\alpha g+(-\beta) w)-(\alpha h+(-\beta) v)
\end{aligned}
$$

Write
case $4: \alpha<0, \beta \geqslant 0$

$$
\begin{aligned}
& \text { ite } \\
& \alpha f+\beta u=\alpha g-\alpha h+\beta v-\beta w \\
& =((-\alpha) h+\beta v)-((-\alpha) g+\beta w)
\end{aligned}
$$

Write

