Math 5800 10/11/21

HW 4-6(b)

- removed hint on problem statement
- made two solutions for the problem

Test 1
Monday 10/18
Study-notes \& homework
HW 3-

- Does a set have measure zero or not?
- $f=y$ almost everywhere
- proofs involving measure zero
- proofs involving $f=g$ almost everywhere

How 4 -

- Write step function in a rep. with only disjoint intervals
- Sf for step functions f
- proofs involving characteristic functions X_{s}
- proofs with step functions

Ended Topic 4 on $9 / 27 / 21$

Questions:
Not every X_{S} is a step function. $X_{\mathbb{R}}$ is not a step function.

Step function:

$$
f=c_{1} X_{I_{1}}+\ldots+c_{n} X_{I_{n}}
$$

I_{j} ane bounded intervals can assume $c_{j} \neq 0$

Our goal now is to show that the def of $\int f$ when $f \in L^{\circ}$ is well-defined.

Lemma: Let $\left(\varphi_{n}\right)_{n=1}^{\infty}$ be a non-increasing sequence $\left[\varphi_{n+1}(x) \leqslant \varphi_{n}(x) \quad\right.$ for all $n \geqslant 1$ and $\left.\begin{array}{r}x \in \mathbb{R}\end{array}\right]$
of non-negative $\left[\phi_{n}(x) \geqslant 0 \quad \forall x \in \mathbb{R}\right]$
step functions such that $\lim _{n \rightarrow \infty} \varphi_{n}(x)=0$ for almost all x. Then, $\quad \lim _{n \rightarrow \infty} \int \varphi_{n}=0$.
proof:
Let $\varepsilon>0$.
Since ϕ_{1} is a step function, there exists an interval $[a, b]$ where $\varphi_{1}(x)=0$ for all $x \in \mathbb{R}-[a, b]$

Also, since ϕ_{1} is a non-negative step function there exists $K>0$

$$
\text { where } \Phi_{1}(x) \leq K
$$ where

for all $x \in[a, b]$.
Since $\left(\varphi_{n}\right)_{n=1}^{\infty}$ is a non-increasing, nonnegative sequence of step functions we know $0 \leq \varphi_{n}(x) \leq \varphi_{1}(x)$ for all $x \in \mathbb{R}$.

So, for all $n \geqslant 1$ we have $\varphi_{n}(x)=0$ for all $x \in \mathbb{R}-[a, b]$ and

$$
0 \leq \varphi_{n}(x) \leq k \text { for all } x \in[a, b] \text {. }
$$

Each θ_{n} has a finite number of discontinuities.

$$
\left.\begin{array}{l}
\text { hus, } \\
A=\{x
\end{array} \begin{array}{|l}
\text { there exists } n \geqslant 1 \text { where } \\
\varphi_{n} \text { is discontinuous at } x
\end{array}\right\}
$$

Thus,

So, A contains all the points where the φ_{n}^{\prime} 's are discontinuous.
A is countable since its the countable union of finite sets.
Thus, A has measure zero.

Let

$$
B=\left\{x \mid \lim _{n \rightarrow \infty} \varphi_{n}(x) \neq 0\right\}
$$

By assumption, B has measure zero.
Let $C=A \cup B$.
Then, C has measure zero.
Thus, there exists a sequence

$$
I_{1}, I_{2}, I_{3}, \ldots
$$

of bounded open intervals where

$$
C \subseteq \bigcup_{j=1}^{\infty} I_{j}
$$

and $\sum_{j=1}^{\infty} l\left(I_{j}\right) \leqslant \varepsilon$

Consider any point $p \in[a, b]$ where $p \notin C$.
Then, $\left.\lim _{n \rightarrow \infty} \varphi_{n}(p)=0\right]$
Thus, there exists an integer N_{p}) depending on P, where

$$
\left|\Phi_{N_{p}}(p)-0\right|<\varepsilon
$$

Thus, $0 \leqslant \varphi_{N_{p}}(p)=\left|\varphi_{N_{p}}(p)\right|<\varepsilon$.
Since $p \notin C$, it is not a point of discontinuity of $\varphi_{N_{p}}$, thus there must exist an open interval J_{p} where $p \in J_{p}$ and bounded \uparrow $Q_{N_{p}}$ is constant on J_{p}

Thus, $0 \leq \varphi_{N_{p}}(x)<\varepsilon$
fur all $x \in J_{\rho}$.
Also, since the sequence is non-increasing, if $n \geqslant N_{p}$ then

$$
0 \leqslant \varphi_{n}(x) \leq \varphi_{N_{p}}(x)<\varepsilon
$$

for all $x \in J_{p}$
The open intervals I_{n} with $n \geqslant 1$ and J_{p} with $p \notin C, p \in[a, b]$ form a_{a} cover for $[a, b]$. open

By the Heine-Borel theorem [Math 4650] there is a finite subcover

$$
I_{n_{1}}, I_{n_{2}}, \ldots, I_{n_{r}}, J_{p_{1}}, J_{p_{2}}, \ldots, J_{p_{s}}
$$

that cover $[a, b]$.
There may not be any J_{p}^{\prime} 's in the above, ie $p_{s}=0$.
If that happens just add some in so we get $P_{s} \geqslant 1$.
Define $M=\max \left\{N_{p_{1}}, N_{P_{2}}, \ldots, N_{\rho_{s}}\right\}$
Then, $0 \leq \varphi_{n}(x)<\varepsilon$
for all $x \in \bigcup_{j=1}^{s} J_{p_{j}}$ when $n \geqslant M$.

Let

$$
\text { Let } S=\bigcup_{i=1}^{r}\left(I_{n_{i}} \cap[a, b]\right)
$$

and

Since each S and T are the union of bounded intervals, by HW 4 problem $7(b)$, we may express S and T as the Union of a finite number of disjoint bounded intervals, $S=\bigcup_{i=1}^{a} S_{i}$ and $T=\bigcup_{j=1}^{b} T_{j}$

Since $\quad S \subseteq \bigcup_{i=1}^{r} I_{n_{i}}$
by HW 4 , problem $7(e)$, we have that $\sum_{i=1}^{a} l\left(S_{i}\right) \leqslant \sum_{i=1}^{r} l\left(I_{n_{i}}\right)$

$$
\leq \sum_{n=1}^{\infty} l\left(I_{n}\right) \leq \varepsilon
$$

Since $T \subseteq[a, b]$, by HW 7 problem 12 , we know

$$
\sum_{j=1}^{b} l\left(T_{j}\right) \leq b-a
$$

By all the above, if $x \in[a, b]$, then

$$
\begin{aligned}
& \text { By all the above, } \\
& \qquad \varphi_{n}(x) \leq k \cdot X_{S}(x)+\varepsilon \cdot X_{T}(x) \\
& \text { for all } \in \begin{array}{l}
\text { if } x \in S, \text { then } S \leq[a, b], \\
\text { so } \varphi_{n}(x) \leq K \\
\text { if } x \in T, \text { then } T \leq U J_{e_{j}} \\
n=M
\end{array}
\end{aligned}
$$

Note, $S, T \in R$ from $H W$, so X_{S} and X_{T} are step functions.
Thus, integrating the previous formula we get if $n \geqslant M$ then

$$
\begin{aligned}
0 \leqslant \int \phi_{n} & \leqslant \int K \cdot X_{s}+\varepsilon \cdot X_{T} \\
& =K \cdot \sum_{i=1}^{a} l\left(S_{i}\right)+\varepsilon \cdot \sum_{j=1}^{b} l\left(T_{j}\right) \\
& \leq K \cdot \varepsilon+\varepsilon \cdot(b-a) \\
& =\varepsilon[K+(b-a)]
\end{aligned}
$$

Thus, given $\varepsilon^{\prime}>0$ we can set $\varepsilon=\frac{1}{k+(b-a)} \cdot \frac{\varepsilon^{\prime}}{2}$ and there will exist an $M>0$ where if $n \geqslant M$, then

$$
\begin{aligned}
& \text { an } M>0 \text { where if } n \geqslant M,(b-a),+n c n, \\
& \left|\int \varphi_{n}-0\right|=\int \varphi_{n} \leqslant \varepsilon[k+(b-a)]=\frac{\varepsilon^{\prime}}{2}<\varepsilon^{\prime} \\
& \text { Thus } \lim _{n \rightarrow \infty} \int \varphi_{n}=0 \text {. }
\end{aligned}
$$

