Math 5800 10/11/21

I

Step function:

$$f = c_1 X_{I_1} + \dots + c_n X_{I_n}$$

 I_j are bounded intervals
 c_{an} assume $c_j \neq 0$

Our goal now is to show that $\begin{bmatrix} P9 \\ 3 \end{bmatrix}$ the def of $\int f$ when $f \in L^0$ $\begin{bmatrix} P9 \\ 3 \end{bmatrix}$ is well-defined.

Lemma: Let $(q_n)_{n=1}^{\infty}$ be a non-increasing sequence $P_{n+1}(x) \leq P_n(x)$ for all $n \geq 1$ and $x \in \mathbb{R}$ of non-negative $\left[\begin{array}{c} \varphi_{n}(x) \geqslant 0 \quad \forall x \in \mathbb{R} \\ n \geqslant 1 \end{array} \right]$ step functions such that $\lim_{n \to \infty} \Phi_n(x) = D$ for almost all x. Then, $\lim_{n \to \infty} \int \varphi_n = 0.$

proof:

proof:
Let
$$\xi > 0$$
.
Since φ_i is a step function, there
exists an interval $[a,b]$ where
 $\varphi_i(x) = 0$ for all $x \in \mathbb{R} - [a,b]$
Also, since φ_i
is a non-negative
step function
there exists $K > 0$
where
 $0 \le \varphi_i(x) \le K$
for all $x \in [a,b]$.
Since $(\varphi_n)_{n=1}^{\infty}$ is a non-increasing,
non-negative sequence of step functions
non-negative sequence of step functions
we know $0 \le \varphi_i(x) \le \varphi_i(x)$
for all $x \in \mathbb{R}$.

So, for all
$$n \ge 1$$
 we have $\begin{bmatrix} p_3 \\ p_n(x) = 0 & \text{for all } x \in [R-[a,b] \end{bmatrix}$
and
 $0 \le q_n(x) \le K$ for all $x \in [a,b]$.
Each q_n has a finite number
of discontinuities.
Thus,
 $A = \{ x \mid \text{there exists } n \ge 1 \text{ where} \\ q_n \text{ is discontinuous at } x \}$
So, A contains all the points where
the q_n 's are discontinuous.
A is countable since its the
countable union of finite sets.
Thus, A has measure zero.

6 Let $B = \left\{ x \right\} \lim_{n \to \infty} \varphi_n(x) \neq 0 \right\}$ By assumption, B has measure zero. Let C = AUB. Then, C has measure zero. Thus, there exists a sequence T_1, T_2, T_3, \cdots of bounded open intervals where $C \subseteq \bigcup_{j=1}^{J} \mathbb{T}_{j}$ and $\sum_{j=1}^{\infty} l(T_j) \leq \mathcal{E}$

Consider any point
$$P \in [a,b]$$

where $P \notin C$.
Then, $\lim_{n \to \infty} \varphi_n(p) = 0$
Thus, there exists an integer $N_{P,s}$
depending on P_s where
 $| \varphi_n(p) - 0 | < \Sigma$.
Thus, $0 \leq \varphi_n(p) = | \varphi_{N_p}(p) | < \Sigma$.
Thus, $0 \leq \varphi_n(p) = | \varphi_{N_p}(p) | < \Sigma$.
Since $p \notin C_s$ it is not a point of
discontinuity of $\varphi_{N_p,s}$ thus there
discontinuity of $\varphi_{N_p,s}$ thus there
where $P \in J_p$ and
 φ_{N_p} is constant on J_p
 φ_{N_p} is constant on J_p

Thus,
$$0 \le \varphi(x) < \varepsilon$$

for all $x \in J_p$.

Also, since the sequence is
non-increasing, if
$$n \ge Np$$

then
 $0 \le \varphi_n(x) \le \varphi_{Np}(x) < \varepsilon$
for all $x \in Jp$
The open intervals In with $n \ge 1$
and Jp with $p \notin C, p \in [a,b]$
form a cover for $[a,b]$.

P9 8

| P9 | 9 By the Heine-Borel theorem [Math 4650] there is a finite subcover $T_{n_1}, T_{n_2}, \dots, T_{n_r}, T_{p_1}, T_{p_2}, \dots, T_{p_s}$ that cover [a,b]. There may not be any Jp's in the above, ie $P_s = O$. If that happens just add some in so we get Ps≥l. Define $M = \max \{N_{P_1}, N_{P_2}, \dots, N_{P_s}\}$ $0 \leq \varphi_n(x) < \varepsilon$ Then, all $x \in \bigcup_{j=1}^{s} J_{p_j}$ when $n \ge M$. fur

P9 10 Let r $S = \bigcup (I_n [a,b])$ i = ieach σf these and s $T = \bigcup_{j=1}^{s} \left(J_{p_j} \cap [a_j b_j] \right)$ is a bounded interval but might not Since each S and T 6e open are the union of bounded intervals, ______ by Hwy problem 7(b), we may express S and T as the Union of a finite number of disjoint bounded intervals, $S = \bigcup_{i=1}^{n} S_i$ and $T = \bigcup_{j=1}^{n} T_j$

Since $S \subseteq \bigcup_{i=1}^{r} T_{n_{i}}$ 1 by HW 4, problem 7(e), we have that $\hat{\Sigma}l(S_i) \leq \hat{\Sigma}l(I_{n_i})$ i=1 i=1 $\leq \tilde{\mathbb{Z}}(\mathbb{I}_{n}) \leq \mathcal{E}.$ Since TS[9,6], by HW 7 problem 12, we know $\sum_{j=1}^{b} l(T_j) \leq b - a$ By all the above, if $x \in [a, b]$, then $\Phi_{n}(x) \leq k \cdot \chi_{s}(x) + \xi \cdot \chi_{\tau}(x)$ for all f if $x \in S$, then $S \subseteq [a,b]$, so $\varphi_n(x) \leq K$ if $x \in T$, then $T \subseteq \bigcup J_{e_j}$ $S \Rightarrow \varphi_n(x) < E$

Note, S,TER from HW, P9 12 So Xs and XT are step tunctions. Thus, integrating the previous formula we get if n7, M then $0 \leq \int \varphi_n \leq \int K \cdot \chi_s + \varepsilon \cdot \chi_T$ $= K \cdot \sum_{i=1}^{\infty} l(S_i) + \varepsilon \cdot \sum_{j=1}^{\infty} l(T_j)$ $\leq K \cdot \Sigma + \Sigma \cdot (b - a)$ $= \Sigma [k+(b-a)]$ Thus, given $\varepsilon' > 0$ we can set $\varepsilon = \frac{1}{K + (b - a)} \cdot \frac{\varepsilon'}{2}$ and then will exist an M>O where if nz, M, then $\left|\int \varphi_{n} - 0\right| = \int \varphi_{n} \leq \mathcal{E}\left[k + (b - a)\right] = \frac{\mathcal{E}}{2} < \mathcal{E}'$ Thus $\lim_{n \to \infty} \int \varphi_n = 0$. Z