

 $Part(\bar{i})$ First we show that all the zeros of $p(z) = z^{6} - 5z^{2} + 10$ lie inside of the disc 121<2. Let V2 be the circle |2|=2 Y2 Let $f(z) = z^6$ and $h(z) = -5z^{2} + 10$ If Z is on Vz, then 121=2 and so $|F(z)| = |z^6| = |z|^6 = 2^6 = 64$ $|h(z)| = |-5z^{2}+10| \leq |-5z^{2}| + |10|$ and $= 5|z|^{2} + |0| = 5 \cdot 2^{2} + |0| = 30$

Thus, [h(z)]=30<64=[f(z)] for all Z on Vz. Thus, $f(z) = z^6$ and $P(z) = F(z) + h(z) = z^6 - 5z^2 + 10$ have the same number of Zeros (counting multiplicity) inside &z. We know f(z1=z⁶ has a zero at Zo=0 of multiplicity 6 and those are its only zeros inside &z. Thus, p(z) has 6 zeroes (counting nultiplicity) inside of 121<2. Since p is a degree 6 polynomial it can't have any more zeros.

Thus, all of the zeros of p(z) are inside 12/22

Part (iii)
Let
$$h(z) = -5z^{2}$$
 and $f(z) = z^{6} + 10$.
Let χ_{1} be the circle $|z| = 1$.
If z is on χ_{1} ,
then $|z| = 1$ and so
 $|h(z)| = |-5z^{2}| = 5|z|^{2}$
 $= 5 \cdot |z|^{2} = 5$

and $\begin{aligned} |f(z)| &= |z^{6} + |o| \geqslant ||z^{6}| - |o|| \\ &= ||z|^{6} - |0| = ||^{6} - |o| = 9 \\ &= ||z|^{6} - |0| = ||^{6} - |o| = 9 \\ |b(z)| &= 5 < 9 \le |f(z)|, \end{aligned}$

By Rouche's theorem,
$$f(z) = z^{6} + 10$$

and $p(z) = h(z) + f(z) = z^{6} - 5z^{2} + 10$
have the same number of zeros (counting
multiplicity) inside δ_{1} .
How many zeros does f have inside δ_{r} ?
How many zeros does f have inside δ_{r} ?
Suppose $f(z) = 0$, ie $z^{6} + 10 = 0$.
Then $z^{6} = -10$.
So, $|z^{6}| = 10$.
Thus, $|z|^{6} = |0$.
Thus, $|z|^{6} = |0$.
 $\sum_{r=10^{16} > 1}$.
 $\sum_{r=10^{16} > 1}$.
 $\sum_{r=10^{16} > 1}$.
Thus, none of the zeros of f lie
Thus, none of the zeros of f lie
Thus, $p(z)$ has ho zeros inside δ_{1} .

2) We are interested in the
Zeros of the function
$$g(z) = e^{z} - cz^{n}$$

Let $f(z) = -cz^{n}$ and $h(z) = e^{z}$.
Notice that f has a zero at $z_{0} = 0$
of multiplicity n. And f has no
other zeros in C.
Let δ_{1} be the curve $|z| = 1$.
If z is on δ_{1} then
 $|z| = 1$ and we have
 $|f(z)| = |-cz^{n}| = |c||z|^{n} =$
 $= c \cdot 1^{n} = c > e$
CEIR
 $c > e$

and
$$(z=x+iy)$$

$$h(z) = |e^{z}| = |e^{x}e^{iy}|$$

$$= |e^{x}(|e^{iy}| = |e^{x}|$$

$$x = e^{x} \le e$$

$$f = e^{x} \le e$$

$$|z| = |$$

$$|z| = |$$

$$s = -1 \le x \le 1$$

Thus, if z is on or) then $|h(z)| \leq e < |f(z)|$. So, by Rouche's theorem, $f(z) = -cz^n$ and $g(z) = h(z) + f(z) = e^z - cz^n$ both have n zeros (counting multiplicity) in |z| < | [ie inside of 8,]

3 We want to show that the
function
$$p(z) = g(z) - z$$
 has exactly
une zero inside the unit circle.
Let δ_i be the unit
circle $|z|=1$.
Let $f(z) = -z$.
Then, if z is on δ_i then $|z|=1$ and
 $|g(z)| < | = |z| = |-z| = |f(z)|$
So, by Rouches' theorem, both
 $f(z) = -z$ and $p(z) = g(z) + f(z) = g(z) - z$
have the same number of zeroes (counting
multiplicity) inside δ_i δ_i ,
Since $f(z) = -z$ has 1 zero
inside δ_i δ_i , ie with $|z| < 1$, z

We have that p(z) = g(z) - zhas exactly one zero inside |z|<1. Thus, g(z) = z at exactly one fixed point z in |z|<1.