Math 5680 HF 8 Solutions
(1)

Part (i)
First we show that all the zeros of $p(z)=z^{6}-5 z^{2}+10$ lie inside of the disc $|z|<2$.
Let γ_{2} be the circle $|z|=2$

Let $f(z)=z^{6}$
and $h(z)=-5 z^{2}+10$

If z is on γ_{2}, then $|z|=2$ and so

$$
|f(z)|=\left|z^{6}\right|=|z|^{6}=2^{6}=64
$$

$$
\begin{aligned}
|h(z)| & =\left|-5 z^{2}+10\right| \leq\left|-5 z^{2}\right|+|10| \\
& =5|z|^{2}+10=5 \cdot 2^{2}+10=30
\end{aligned}
$$

Thus,

$$
|h(z)|=30<64=|f(z)|
$$

for all z on γ_{z}.
Thus, $f(z)=z^{6}$ and

$$
\begin{aligned}
& \text { Thus, } f(z)=z \text { and } \\
& p(z)=f(z)+h(z)=z^{6}-5 z^{2}+10
\end{aligned}
$$

have the same number of zeros (counting multiplicity) inside γ_{2}.
We know $f(z)=z^{6}$ has a zero at $z_{0}=0$ of multiplicity 6 and those are its only zeros inside γ_{2}.
Thus, $p(z)$ has 6 zeroes (counting multiplicity) inside of $|z|<2$. Since p is a deqpee 6 polynomial it cant have any more zeros.

Thus, all of the zoe cos of $p(z)$ are inside $|z|<2$

Part (ii)
Let $h(z)=-5 z^{2}$ and $f(z)=z^{6}+10$.
Let γ, be the circle $|z|=1$.
If z is on γ_{1}, then $|z|=1$ and so

$$
\begin{aligned}
|h(z)|=\left|-5 z^{2}\right| & =5|z|^{2} \\
& =5 \cdot 1^{2}=5
\end{aligned}
$$

and

So, if z is on γ, then

$$
|h(z)|=5<9 \leq|f(z)|
$$

By Rouche's theorem, $f(z)=z^{6}+10$ and $p(z)=h(z)+f(z)=z^{6}-5 z^{2}+10$ have the same number of zeros (counting multiplicity) inside γ_{1}.
How many zeros does f have inside γ,?
Suppose $f(z)=0$, ie $z^{6}+10=0$.
Then $z^{6}=-10$.
So, $\left|z^{6}\right|=10$.
Thus, $|z|^{6}=10$.

$$
\begin{aligned}
& \text { Thus, }|z|=10^{1 / 6}>1 . \\
& \text { So, }|z|=1.467799 \text {... } \\
& {\left[10^{1 / 6} \simeq 1.40 \text { of the } z\right.}
\end{aligned}
$$

Thus, none of the zeros of f lie inside γ_{1}.
So, $p(z)$ has no zeros inside γ_{1}. ∇

By pact (i) and ($i i$), all of the zeros of $p(z)=z^{6}-5 z^{2}+10$ lie in $A=\{z|\quad 1 \leq|z|<2\}$

(2) We are interested in the zeros of the function $g(z)=e^{z}-c z^{n}$
Let $f(z)=-c z^{n}$ and $h(z)=e^{z}$.
Notice that f has a zero at $z_{0}=0$ of multiplicity n. And f has no other zeros in \mathbb{C}.
Let γ_{1} be the curve $|z|=1$.
If z is on γ_{1} then $|z|=1$ and we have

$$
\begin{aligned}
&|f(z)|=\left|-c z^{n}\right|=|c||z|^{n}= \\
&=\left.c \cdot\right|^{n}=c>e \\
& \substack{c \in \mathbb{R} \\
c>e}
\end{aligned}
$$

and $(z=x+i y)$

$$
\begin{aligned}
& h(z)=\left|e^{z}\right|=\left|e^{x} e^{i y}\right| \\
&=\left|e^{x}\right| \underbrace{\left|e^{i y}\right|}_{1}\left|=\left|e^{x}\right|\right. \\
&=e^{x} \leqslant e \\
& e^{x}>0|z|=1 \\
& \text { so }-1 \leqslant x \leqslant 1
\end{aligned}
$$

Thus, if z is on γ_{1}, then

$$
|h(z)| \leqslant e<|f(z)|
$$

So, by Ruuche's theorem, $f(z)=-c z^{n}$ and $g(z)=h(z)+f(z)=e^{z}-c z^{n}$ both have n zeros (counting multiplicity) in $|z|<1 \quad\left[\right.$ ie inside of γ_{1}]
(3) We want to show that the function $p(z)=g(z)-z$ has exactly one zero inside the unit circle.

Let γ, be the unit circle $|z|=1$.

Let $f(z)=-z$.

Then, if z is on γ_{1} then $|z|=1$ and

$$
|g(z)|<1=|z|=|-z|=|f(z)|
$$

So, by Rovches' theorem, both

$$
\begin{aligned}
& \text { So, by Rovches theorem, both } \\
& f(z)=-z \text { and } p(z)=g(z)+f(z)=g(z)-z
\end{aligned}
$$

have the same number of zeroes (counting multiplicity) inside of γ_{1},
Since $f(z)=-z$ has 1 zero
inside of γ_{1}, ie with $|z|<1$,

We have that $p(z)=g(z)-z$ has exactly one zero inside $|z|<1$.
Thus, $g(z)=z$ at exactly one fixed point z in $|z|<1$.

