Math 5680 HW 7 Solutions

H_____ () Let Z1, Z2EA. • 7, Suppose that f 1 is analytic on A 1 and $f'(z_i) \neq D$. Suppose $D = D(z_{2jr})$ is contained in A. We will show that f is not constant on D. Suppose that f(z) = c for all $z \in D$ where c is a fixed complex number. Let $f_{c}: A \rightarrow C$ be the constant function $f_c(z) = c$ for all $z \in A$. Then fe is also analytic on A and $f(z)=c=f_{c}(z)$ for all $z\in D$.

By the identity theorem, $f(z) = f_c(z)$ for all $z \in A$. Thus, f(z)=c for all ZEA. But then f'(z)=0 for all $z \in A$. This contradicts $f'(z_1) \neq 0$. Thus, f cannot be constant in any disc surrounding Zz contained in A

Suppose that $g: C \to C$ is an entire function where g(z) = f(z) for all $z \in U$. Let h(z) = z for all $z \in \mathbb{C}$. Then for 12/<1 we have ZEV and thus g(z) = f(z) = z = h(z). 9 and h are analytic functions on all of C [which is a region] So and are equal in the neighborhood $D(0;1) = \{z \mid |z| < |j| \le C$

By the identity theorem,
$$g(z) = h(z)$$

for all $z \in C$.
Thus, $g(z) = z$ for all $z \in C$.
But we also have $g(z) = f(z) = z^{z}$
for all z with $|z| > 2$
Thus, for all z with $|z| > 2$ we have
 $z = g(z) = z^{2}$.
However this isn't true for say
However this isn't true for say
 $z = 3$ which has $|z| > 2$ since
 $z = 3$ which has $|z| > 2$ since
 $z = 4z^{2} = 9$.
Therefore, there is no entire
function g with $g(z) = f(z)$
for all $z \in V$.

.