Math 5680 HW 7 Solutions
(1) Let $z_{1}, z_{2} \in A$.

Suppose that f is analytic on A and $f^{\prime}\left(z_{1}\right) \neq 0$.
Suppose $D=D\left(z_{2} ; r\right)$ is contained in A.
We will show that f is not constant on D.
suppose that $f(z)=c$ for all $z \in D$ where c is a fixed complex number.
Let $f_{c}: A \rightarrow \mathbb{C}$ be the constant function $f_{c}(z)=c$ for all $z \in A$.
Then f_{c} is also analytic on A and $f(z)=c=f_{c}(z)$ for all $z \in D$.

By the identity theorem, $f(z)=f_{c}(z)$ for all $z \in A$.
Thus, $f(z)=c$ for all $z \in A$.
But then $f^{\prime}(z)=0$ for all $z \in A$.
This contradicts $f^{\prime}\left(z_{1}\right) \neq 0$.

Thus, f cannot be constant in any disc surrounding z_{2} contained in A
(2)

Suppose that $g: \mathbb{C} \rightarrow \mathbb{C}$ is an entice function where $g(z)=f(z)$ for all $z \in U$.

Let $h(z)=z$ for all $z \in \mathbb{C}$.
Then for $|z|<1$ we have $z \in U$ and thus $g(z)=f(z)=z=h(z)$.
So g and h are analytic functions on all of \mathbb{C} [which is a region] and are equal in the neighborhood $D(0 ; 1)=\{z| | z \mid<1\} \subseteq \mathbb{C}$.

By the identity theorem, $g(z)=h(z)$ for all $z \in \mathbb{C}$.
Thus, $g(z)=z$ for all $z \in \mathbb{C}$.
But we also have $g(z)=f(z)=z^{2}$ for all z with $|z|>2$
Thus, for all z with $|z|>2$ we have

$$
z=g(z)=z^{2}
$$

However this isn't true for say $z=3$ which has $|z|>2$ since

$$
3=z \neq z^{2}=9
$$

Therefore, there is no entice function g with $g(z)=f(z)$ for all $z \in U$.

