5680
HO 5
Solutions
(1) (a)

$$
\int_{|z|=\frac{1}{2}} \frac{d z}{(1-z)^{3}}
$$

The function $\frac{1}{(1-z)^{3}}$ is analytic on $\mathbb{C}-\{1\}$. So, $\frac{1}{(1-z)^{3}}$ is analytic on and inside the curve $|z|=\frac{1}{2}$
Thus by Cauchy's the (math 4680) we know $\int_{|z|=\frac{1}{2}} \frac{d z}{(1-z)^{3}}=0$
(1)(b) The function $f(z)=\frac{1}{(1-z)^{3}}$
 is analytic on $\mathbb{C}-\{1\}$ and has a pole at 1 . Thus, by the residue the

$$
\int_{\gamma} \frac{d z}{(1-z)^{3}}=2 \pi i \operatorname{Res}(f ; 1)
$$

Note that $f(z)=\frac{1}{(1-z)^{3}}=\frac{1}{(-1)^{3}(z-1)^{3}}=\frac{-1}{(z-1)^{3}}$
Laurent expansion of f at $z_{0}=1$ and the $\frac{1}{(z-1)}$ term is missing.
So, $b_{-1}=0$. Thus,

$$
\int_{\gamma} \frac{d z}{(1-z)^{3}}=0
$$

(1) (c)

Let $f(z)=\frac{e^{z}}{(1-z)^{3}}$
Then f is analytic on $\mathbb{C}-\{1\}$ where
 it has a pole at 1 .

Note that
is analytic at $z=1$ and $\varphi(1) \neq 0$.
This gives a pole of order 3 at

$$
\begin{aligned}
& \text { This gives a pole of } \\
& z_{0}=1 \text { and } \operatorname{Res}(f ; 1)=\frac{\varphi^{(3-1)}(1)}{(3-1)!} \\
& \varphi^{\prime}(z)=-e^{z}, \varphi^{\prime \prime}(z)=-e^{z} \quad=\frac{-e^{\prime}}{2!}=-\frac{1}{2} e
\end{aligned}
$$

Thus,

$$
\int_{|z-2|=2}^{(1-z)^{3}} \frac{e^{z}}{(-\pi i e}
$$

(1) (d)

Let $f(z)=\frac{e^{z}}{z(1-z)^{3}}$
Then f is analytic on $\mathbb{C}-\{0,1\}$.
f has poles at 0 and I.

We have that
where $\varphi(z)=-e^{z} / z$ is analytic at 1 and $\varphi(1) \neq 0$. So we have a pole of order 3 at $z_{0}=1$.
Also, $\varphi(z)=-z^{-1} e^{z}$

$$
\begin{aligned}
\varphi(z)= & -z e \\
\varphi^{\prime}(z) & =z^{-2} e^{z}-z^{-1} e^{z} \\
\varphi^{\prime \prime}(z)= & -2 z^{-3} e^{z}+z^{-2} e^{z} \\
& +z^{-2} e^{z}-z^{-1} e^{z}
\end{aligned}
$$

By the residue tho,

$$
\left.\begin{array}{rl}
\int \frac{e^{z}}{z(1-z)^{3}} d z & =2 \pi i \operatorname{Res}(f ; 1) \\
& =2 \pi i \frac{\varphi^{(3-1)}(1)}{(3-1)!} \\
& =\frac{2 \pi i}{2!}\left[-2(1)^{-3} e^{\prime}+(1)^{-2} e^{\prime}\right. \\
\left.+(1)^{-2} e^{1}-(1)^{-1} e^{1}\right]
\end{array}\right] \begin{aligned}
& =\pi i[-2 e+e+e-e] \\
\varphi^{\prime \prime}(z) & =-2 z^{-3} e^{z}+z^{-2} e^{z} \\
& +z^{-2} e^{z}-z^{-1} e^{z}
\end{aligned}
$$

(1) (e)

The function

$$
f(z)=\frac{e^{z}}{z^{2}(z-1)^{3}}
$$

is analytic on $\mathbb{C}-\{0,1\}$
It has poles at $z_{0}=0,1$
By the residue theorem

$$
\begin{aligned}
& \text { By the residue theorem } \\
& \int_{\gamma} \frac{e^{z} d z}{z^{2}(z-1)^{3}}=2 \pi i \operatorname{Res}(f ; 0)+2 \pi i \operatorname{Res}(f ; 1) \\
& \text { Note that } f(z)=\frac{e^{z} /(z-1)^{3}}{z^{2}}=\frac{9_{1}(z)}{z^{2}} \\
& e^{z} \text { is analytic at }
\end{aligned}
$$

Where $\varphi_{1}(z)=\frac{e^{z}}{(z-1)^{3}}$ is analytic at $z_{0}=0$ and $\varphi_{1}(0) \neq 0$. So we have a pole of order 2 at $z_{0}=0$ and so
we have $\operatorname{Res}(f ; 0)=\frac{\varphi_{1}^{(2-1)}(0)}{(2-1)!}=\frac{\varphi_{1}^{\prime}(0)}{1}$

$$
\begin{gathered}
\varphi(z)=(z-1)^{-3} e^{z}=-3(0-1)^{-4} e^{0}+(0-1)^{-3} e^{0} \\
\phi^{\prime}(z)=-3(z-1)^{-4} e^{z}=-3-1=-4 \\
+(z-1)^{-3} e^{z}
\end{gathered}
$$

Also, $f(z)=\frac{e^{z} / z^{2}}{(z-1)^{3}}=\frac{\varphi_{2}(z)}{(z-1)^{3}}$ where $\varphi_{2}(z)=e^{z} / z^{2}$ is analytic at $z_{0}=1$ and $\varphi_{2}(1)=e^{1} / 1^{2}=e \neq 0$.
So, we have a pole of order 3 at

$$
\begin{aligned}
& z_{0}=1 . \quad A(s 0, \\
& \varphi_{2}(z)=z^{-2} e^{z} \\
& \varphi_{2}^{\prime}(z)=-2 z^{-3} e^{z}+z^{-2} e^{z} \\
& \varphi_{2}^{\prime \prime}(z)=+6 z^{-4} e^{z}-2 z^{-3} e^{-3}-2 z^{-3} e^{z}+z^{-2} e^{z} \\
& =6 z^{-4} e^{z}-4 z^{-3} e^{z}+z^{-2} e^{z}
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{Res}(f ; 1) & =\frac{\varphi_{2}^{(3-1)}(1)}{(3-1)!} \\
& =\frac{6(1)^{-4} e^{1}-4(1)^{-3} e^{1}+(1)^{-2} e^{1}}{2} \\
& =\frac{6 e-4 e+e}{2}=\frac{3}{2} e
\end{aligned}
$$

$$
\begin{aligned}
& \text { Thus, } \\
& \begin{aligned}
\int_{\gamma} \frac{e^{z}}{z^{2}(z-1)^{3}} d z & =2 \pi i\left[-4+\frac{3}{2} e\right] \\
& =-8 \pi i+3 \pi i e
\end{aligned}
\end{aligned}
$$

Thus,
(2) (a) Let $z=x+i y$.

Then $\cos (z)=0$
iff $\frac{e^{i z}+e^{-i z}}{2}=0$
iff $e^{i z}+e^{-i z}=0$
iff $e^{i(x+i y)}+e^{-i(x+i y)}=0$
iff $e^{-y} e^{i x}+e^{y} e^{-i x}=0$

$$
\sin (-x)
$$

iff $e^{-y}[\cos (x)+i \sin (x)]$

$$
=-\sin (x)
$$

$$
\cos (-x)
$$

$$
\begin{aligned}
& e^{-y}[\cos (x)+i \sin (x)] \\
& +e^{y}[\cos (-x)+i \sin (-x)]=0
\end{aligned}
$$

$$
=\cos (x)
$$

iff $\left(e^{-y}+e^{y}\right) \cos (x)$

$$
\begin{aligned}
& \left(e^{-y}+e^{y}\right) \cos (x) \\
& +i\left(e^{-y}-e^{y}\right) \sin (x)=0
\end{aligned}
$$

iff
and $\left(e^{-y}-e^{y}\right) \sin (x)=0(* *)$

In equation (*) either $e^{-y}+e^{y}=0$ or $\cos (x)=0$
But $e^{-y}>0$ and $e^{y}>0$, so $e^{-y}+e^{y} \neq 0$.
Thus, for (*) to hold we need $x=\frac{\pi}{2}+\pi n$ where $n \in \mathbb{Z}$.

Now plug $x=\frac{\pi}{2}+\pi n$ into $\left(k^{*}\right)$ to get

Since $\sin \left(\frac{\pi}{2}+\pi n\right) \neq 0$ for all n This gives $e^{-y}-e^{y}=0$, multiply by e^{y} to get $1-e^{2 y}=0$,

So, $e^{2 y}=1$.
Thus, $y=0$.
Therefore the solutions to

$$
\cos (z)=0
$$

are $z=x+i y=\frac{\pi}{2}+\pi n, n \in \mathbb{Z}$.

(2) (b)

From 2(a) we know that $\cos (z)=0$ iff $z=\frac{\pi}{2}+\pi n$ where $n \in \mathbb{Z}$.
Also, $\sin (z) \neq 0$ When $z=\frac{\pi}{2}+\pi n$.

Thus,

$$
f(z)=\frac{\sin (z)}{\cos (z)}
$$

has poles at

$$
\begin{aligned}
& \text { has poles at } \\
& z= \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}, \cdots
\end{aligned}
$$

So, $\frac{\pi}{2}$ and $\frac{3 \pi}{2}$ are the poles in γ.

Let $g(z)=\sin (z), h(z)=\cos (z)$.
Then

$$
\begin{aligned}
& g\left(\frac{\pi}{2}\right)=\sin \left(\frac{\pi}{2}\right)=1 \neq 0 \\
& h\left(\frac{\pi}{2}\right)=\cos \left(\frac{\pi}{2}\right)=0 \\
& h^{\prime}\left(\frac{\pi}{2}\right)=-\sin \left(\frac{\pi}{2}\right)=-1 \neq 0
\end{aligned}
$$

Thus, $\frac{\pi}{2}$ is a simple pole of f and $\operatorname{Res}\left(f ; \frac{\pi}{2}\right)=\frac{g\left(\frac{\pi}{2}\right)}{h^{\prime}\left(\frac{\pi}{2}\right)}=\frac{1}{-1}=-1$ Also

$$
\begin{aligned}
& g\left(\frac{3 \pi}{2}\right)=\sin \left(\frac{3 \pi}{2}\right)=-1 \\
& h\left(\frac{3 \pi}{2}\right)=\cos \left(\frac{3 \pi}{2}\right)=0 \\
& h^{\prime}\left(\frac{3 \pi}{2}\right)=-\sin \left(\frac{3 \pi}{2}\right)=1 \neq 0
\end{aligned}
$$

Thus, $\frac{\pi}{2}$ is a simple pole of f and $\operatorname{Res}\left(f ; \frac{3 \pi}{2}\right)=\frac{g\left(\frac{3 \pi}{2}\right)}{h^{\prime}\left(\frac{3 \pi}{2}\right)}=\frac{-1}{1}=-1$

Thus,

$$
\begin{aligned}
\int_{\gamma} \frac{\sin (z)}{\cos (z)} d z & =2 \pi i\left[\operatorname{Res}\left(f ; \frac{\pi}{2}\right)+\operatorname{Res}\left(f ; \frac{3 \pi}{2}\right)\right] \\
& =2 \pi i[-1-1] \\
& =-4 \pi i
\end{aligned}
$$

(3) Note that $e^{z}-1=0$ iff $e^{z}=1$ iff $z=0+i 2 \pi n$ where $n \in \mathbb{Z}$.
The function

$$
f(z)=\frac{1}{e^{z}-1}
$$

has poles at $z=i 2 \pi n$ $n \in \mathbb{Z}$.

The poles of f that are inside γ are $-2 \pi i$ and O and $2 \pi i$.

Now, $f(z)=\frac{g(z)}{h(z)}$ where $g(z)=1$ and $h(z)=e^{z}-1$.
We have $h^{\prime}(z)=e^{z}$.
So, $g(-2 \pi i)=1, h(-2 \pi i)=e^{-2 \pi i}-1=1-1=0$

$$
\begin{aligned}
& \text { So, } g(-2 \pi i)=0 \\
& h^{\prime}(-2 \pi i)=e^{-2 \pi i}=1 \neq 0
\end{aligned}
$$

So, $\operatorname{Res}(f ;-2 \pi i)=\frac{g(-2 \pi i)}{h^{\prime}(-2 \pi i)}=\frac{1}{1}=1$
Also, $g(0)=1, h(0)=e^{0}-1=1-1=0$
$h^{\prime}(0)=e^{0}=1 \neq 0$
So, $\operatorname{Res}(f ; 0)=$
Also, $g(2 \pi i)=1, h(2 \pi i)=e^{2 \pi i}-1=1-1=0$

$$
\begin{aligned}
& \text { Also, } g(2 \pi \lambda)=1 \neq 0 \\
& h^{\prime}(2 \pi i)=e^{2 \pi i}=1 \neq \frac{g(2 \pi i)}{h^{\prime}(2 \pi i)}=\frac{1}{1}=1 \\
& \text { So, } \operatorname{Res}(f ; 2 \pi i)=
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \int_{\gamma} \frac{1}{e^{z}-1} d z \\
& =2 \pi i[\operatorname{Res}(f ;-2 \pi i)+\operatorname{Res}(f ; 0) \\
& \\
& +\operatorname{Res}(f ; 2 \pi i)] \\
& =2 \pi i[1+1+1]=6 \pi i
\end{aligned}
$$

(4)

Let

$$
\begin{aligned}
& \text { Let } \\
& f(z)=\frac{e^{z^{2}}}{z^{2}}
\end{aligned}
$$

f is analytic on $\mathbb{C}-\{0\}$.

Then,
$f(z)=\frac{\varphi(z)}{z^{2}}$ where $\varphi(z)=e^{z^{2}}$ and $\varphi(0)=e^{0^{2}}=1 \neq 0$ and φ is analytic at 0 .
Thus, f has a pole of order 2 at $z_{0}=0$.

$$
\begin{aligned}
\text { So, } \operatorname{Res}(f ; 0)= & \frac{\varphi^{(2-1)}(0)}{(2-1)!} \\
& =\frac{\varphi^{\prime}(0)}{1} \\
\phi(z)=e^{z^{2}} & =\frac{2(0) e^{0^{2}}}{1}=0 .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\int_{\gamma} \frac{e^{z^{2}}}{z^{2}} d z & =2 \pi i \operatorname{Res}(f ; 0) \\
& =2 \pi i[0] \\
& =0
\end{aligned}
$$

